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Abstract

Klibanoff, Marinacci and Mukerji (2005) propose a quite general and elegant

model of smooth ambiguity preferences that embeds SEU and maxmin preferences

as special cases. Unfortunately, Skiadas (2008) shows that KMM preferences cannot

be distinguished from SEU preferences when considering Brownian or Poissonian

uncertainty. This drawback suggests that KMM preferences cannot be used to

model the ambiguity attitude in a continuous-time setting. This paper proposes

an alternative representation of preferences under ambiguity that overcomes the

problem highlighted by Skiadas (2008) while preserving the advantages of KMM

preferences. The proposed preferences are shown to also have SEU and maxmin

preferences as special cases.

1 Introduction

The fundamental assumption of subjective expected utility (SEU henceforth) is that

agents with an expected utility representation act as if they can attach probabilities to all

relevant states with absolute confidence (Savage, 1954; Anscombe and Aumann, 1963).

Therefore, ambiguity about the evaluation of a prospect is indistinguishable from the risk

inherent in that prospect1. In other words, the SEU axioms imply that the probability
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1Ambiguity and risk together characterize uncertainty.
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weighting across possible evaluations (ambiguity) and the probabilities for payoffs (risk)

can be collapsed to represent the decision maker’s preferences with a single probability

measure for the relevant states.

Although SEU allows to set problems in a simple and tractable way, this comes at a cost:

The confusion of ambiguity with risk sources leads to discrepancies between predictions

implied by SEU and actual behavior. Emblematic are the results in Ellsberg (1961) who

shows that the amount and quality of the information a decision maker has about the

relevant events affects his preferences. In particular, he observes that decision makers

display a dislike for ambiguous situations, they prefer to choose when probabilities are

known and are willing to pay in order to avoid choosing in an ambiguous context. As a

consequence, individuals can be seen as displaying ambiguity aversion, just as they display

risk aversion.

In the spirit of Ellsberg’s results, many decision theory models of ambiguity have been

put forward. The most prominent are the multiple priors maxmin expected utility (MEU)

proposed by Gilboa and Schmeidler (1989) and the Choquet expected utility (CEU) model

of Schmeidler (1989). The former allows the decision maker’s beliefs to be represented

by multiple probabilities, and represents his preferences by the maxmin on the set of the

expected utilities. The non-singleton nature of the priors set reflects the limited informa-

tion available (ambiguity) to the decision maker, which may not be enough detailed to

summarize his beliefs in a single probability measure. The ”min” represents the decision

maker’s (extreme) aversion to ambiguity. The inter-temporal versions of MEU preferences

are proposed and analyzed in Epstein and Wang (1994) for the discrete-time case and in

Chen and Epstein (2002) for the continuous-time case. An extension of MEU to weighted

MEU (α-MEU) is provided in Ghirardato, Maccheroni and Marinacci (2004). On the

other hand, CEU models the decision maker’s beliefs on the state space as non-additive

probabilities (i.e. capacities) and his preferences by Choquet integrals. Reference is made

for instance to Ghirardato and LeBreton (2000) or Zhang (2002) for investigations on

Choquet rationality and Bassett, Koenker and Kordas (2004) for application of Choquet

rationality to portfolio selection.

More recently, to account for ambiguity and aversion to ambiguity, researchers in eco-

nomics and finance have used robust control theory whose application to economics was

pioneered by Hansen and Sargent (and coauthors). In the robust control approach, the

decision maker problem is seen as the interplay of two agents with opposed interests. On

one hand, using a reference model, a benevolent agent tries to maximize the satisfaction of

the decision maker by selecting the best act among a set of accessible acts. On the other

hand, a malevolent nature chooses the probability measure that, associated with the act
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chosen by the benevolent agent, minimizes the satisfaction of the decision maker. The

malevolent nature cannot, however, choose any possible probability measure. Her choice

is restricted by a convex cost function that makes deviations from the reference model

of the decision maker less attractive for her, the more confident about the correctness

of the reference model the decision maker is. Entropic preferences have been recently

axiomatized by Maccheroni, Marinacci and Rustichini (2006).

Also MEU was successfully used to explain financial market phenomena in disagreement

with the predictions of models based on (S)EU preferences. For instance, Epstein and

Miao (2003) use MEU preferences to explain the home bias regarding investment deci-

sions, Routledge and Zin (2004) show that ambiguity aversion can lead to situations with

lack of liquidity and trade on a market, Cao et al. (2005) show that limited participation

(under-diversification) may arise in an equilibrium with heterogeneous ambiguity averse

agents in the presence of ambiguity, Epstein and Schneider (2008) and Illeditsch (2008)

show that MEU preferences can generate excess volatility, negative skewness and excess

kurtosis in returns moments. In order to obtain the desired results, these contributions

exploit the presence of a kink in the MEU preferences as documented in Dow and Werlang

(1992). This non-differentiable point generates a so called first-order risk aversion.

However, whereas the kink in MEU preferences can lead to interesting results, it should not

be a necessary feature of ambiguity averse preferences. To this end, Klibanoff, Marinacci

and Mukerji (2005) (KMM henceforth) propose a smooth representation of preferences

under ambiguity. Whereas ambiguity is still modeled by a set of priors, called ∆, their

basic idea is to model the attitude toward ambiguity with a function φ = v ◦ u−1 op-

erating on the set of expected utilities of an ambiguous act generated by all probability

measures in ∆, with v being a second-order utility function and u the classic VNM utility

function characterizing the risk attitude. Beside smoothness, their representation offers

other advantages. First, in contrast to MEU and CEU, there is a full separation between

ambiguity and ambiguity aversion. Second, their representation allows to use the same

well-developed tools that are applied to the analysis of decision makers’ risk attitude to

quantify ambiguity aversion. Third, risk and ambiguity premia are distinctly determined.

Unfortunately, as pointed out by Skiadas (2008), KMM preferences have the drawback

that, if Brownian or Poissonian uncertainty is considered, they generate an ambiguity pre-

mium which, compared to the risk premium, is of second-order importance only, so that

KMM preferences cannot be distinguished from SEU preferences. This also suggests that

KMM preferences cannot be used in a continuous-time setting to gain new insights. The

problem highlighted by Skiadas (2008) is given by the fact that KMM preferences model

the attitude toward ambiguity on the dispersion of expected utilities. As a consequence,
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the implied ambiguity premium will depend on the variance of these expected utilities: A

negligible term in a continuous-time setting.

In our opinion this drawback stems from the fact that KMM (2005) treat simultaneously

the phase of assessment of the distribution (over outcomes) of the ambiguous act and

the prospect evaluation phase2. In order to overcome the problem, we suggest that the

assessment of the distribution (over outcomes) of the ambiguous act should be treaded

before the evaluation phase. We assume that the decision maker is able to extrapolate

the source of ambiguity from the context and then, once he has resolved the ambiguity

problem by selecting a single distribution over outcomes that suits his ambiguity prefer-

ences, he evaluates the prospect taking into account the context (e.g. his current wealth,

the time elapsing to payoff realization) and his risk attitude; this even in continuous-time

if considered as the limit of the discrete-time case.

This way of reasoning seems to us more natural and there is also neuroscientifical evi-

dence in this sense. Hsu, Bhatt, Adolphs, Tranel and Camerer (2005) show with functional

magnetic resonance imaging (fMRI) that regions of the brain more sensitive to ambiguity

(amygdala and orbitofrontal cortex, OFC) react rapidly and activity in regions related to

reward anticipation builds up slowly and peaks significantly later than that of the amyg-

dala and the OFC.

The purpose of this paper is therefore to propose an alternative representation of prefer-

ences under ambiguity that overcomes the problem raised by Skiadas (2008) while trying

to preserve the most of the advantages and the most of the intuition of KMM preferences.

To this end, whereas KMM model ambiguity aversion on the set of expected utilities

associated with an ambiguous act, called f , we propose to model the decision maker’s

attitude toward ambiguity directly on the ambiguous act f . For a single period choice,

the proposed preferences representation takes the following form

V (f) = E
[
u
(
`fre
)]
, (1)

where f is an ambiguous act, u is a von Neumann-Morgenstern (VNM henceforth) util-

ity index and `fre is what we call a risk-equivalent lottery belonging to the set of merely

risky acts. The attitude toward ambiguity is taken into account in the distribution `fre

under which the expected utility of the act f is calculated. Because our main interest is

the Brownian setting, we present the case where there is only ambiguity about the first

2In their model, the ambiguity about the distribution over outcomes of an act is taken into account
through the possible certainty equivalents (evaluation phase) of the ambiguous act (refer to Definition 1
and 2, pp. 1854, 1857, regarding second-order acts and Assumption 2, p. 1855, regarding the evaluation
of second-order acts).
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moment of the distributions over outcomes of the ambiguous acts since, in such an envi-

ronment, ambiguity can only concern the first moment of the prospected payoffs. It is also

shown that the proposed preferences representation embeds SEU and MEU preferences

as special cases.

Finally, we use the expression single period choice to denote a decision taking into ac-

count today, denoted by time t, and tomorrow, denoted by t + dt in a continuous-time

setting or t+ 1 is a discrete-time setting. Single period choices may be analyzed also in a

dynamic environment by focusing on a single time interval and the information set today

and neglecting what might happen after tomorrow. In contrast, inter-temporal choices

take into account a sequence of time intervals. The length of the time interval is dt in the

continuous-time case.

The remainder of this paper is as follows. The next section reviews the problem high-

lighted by Skiadas (2008) both in the single period and with recursive KMM preferences.

Section 3 introduces the proposed preferences representation in a single period choice

setting. An inter-temporal version, and its continuous-time limit, is outlined in section 4.

Section 5 relates the inter-temporal preferences representation to the generalized stochas-

tic differential utility of Lazrak and Quenez (2003). Section 6 concludes.

2 KMM preferences and the continuous-time limit

This section provides a brief review of the problem highlighted by Skiadas (2008). Namely,

that the ambiguity premium implied in KMM preferences vanishes when Brownian or

Poissonian uncertainty are considered. Only Brownian uncertainty is considered here. It

has to emphasized here that the problem highlighted by Skiadas (2008) does not extend

to all small risks. For small risks à la Pratt (discrete-time), KMM preferences generate a

non-negligible ambiguity premium that is mainly driven by the dispersion of the means of

the plausible payoff distributions. Chen, Ju and Miao (2008) and Ju and Miao (2008), for

instance, apply KMM preferences in such a context. In a continuous-time setting, however,

the notion of ”local” is confounded with the notion of ”instantaneous”. Consequently, all

(instantaneous) moments are constrained to be ”small” and the dispersions thereof are

constrained to be negligibly ”small”.

2.1 Single period choice

The KMM approach is presented in a setting called single period choice, where the decision

maker evaluates at time t a payoff prospect X at time t + dt. The payoff prospect is
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modeled as a diffusion process, providing the decision maker with an information set Ft
at time t which restricts the anticipations of the decision maker as the possible payoff

realizations.

The smooth ambiguity preferences proposed by KMM (2005) have the following form

V (f) =

∫
∆

φ

(∫
S

u(f)dπ

)
dψ = Eψ [φ (Eπ [u (f)])] , (2)

where ∆ represents a set of countably additive probability measures π, ψ is a second-

order countably additive probability measure that assigns weights (beliefs) to the different

probability measures π ∈ ∆, f is an ambiguous act, u is a VNM utility function, and φ =

v◦u−1 is a function operating on the set of expected utilities and characterizing ambiguity

aversion, with v being a second-order utility function. Note that SEU preferences are

embedded in KMM preferences: If φ is linear ψ and π’s can be combined in a single

probability measure. In addition, KMM (2005) show that MEU preferences are a special

case of KMM preferences when ambiguity aversion (the concavity of φ) tends to infinity3.

Consider now a probability space (Ω,F , P ) and a standard, one-dimensional Brownian

motion B = (Bt) defined on (Ω,F , P ). The Brownian filtration (Ft) is generated by

the realizations of {Bs}0≤s≤t and the P -null sets of F . Note that P is neither the true,

objective measure, nor the subjective measure used by the decision maker. It has just

the function of determining what is possible and what is not, i.e. defining the null sets.

Consider also a diffusion process X = (Xt) that is adapted to (Ft), with dXt = µdt+σdBt

under P , where µ and σ are finite constants. Given the ”history” Ft, consider a decision

maker facing, at t, a prospect that pays off a monetary amount Xt+dt = xt + dXt =

xt + µdt+ σdBt, at t+ dt, where xt = X(Ft)4.

Following Chen and Epstein (2002), ambiguity in such an environment is about whether B

is a standard Brownian motion. The decision maker considers the prospect under several

probability measures, denoted by Qθi with i = 1, ..., k, that are plausibly describing the

history represented by Ft and are equivalent to P in the sense that they agree with P

on what is possible and impossible almost surely. The set comprising these measures

is denoted by ∆ and P belongs to it. Assuming that all measures in ∆ are mutually

absolutely continuous with respect to P , they can be defined using their densities which,

in turn, are defined by density generators θi = (θi,t) such that Zθi
t is a P -martingale

dZθi
t = −Zθi

t θi,tdBt with dQθi

dP

∣∣∣
Ft
≡ Zθi

t . For the sake of simplicity θi,t is considered to be

constant in time for i = 1, ..., k.

3Refer to KMM(2005), Proposition 3 and Appendix A.3.
4xt can be interpreted as the current wealth of the decision maker at t and Xt+dt as the future wealth

at t+ dt.
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Of course, P makes the process B a standard Brownian motion. Therefore, there is

ambiguity whether B is a Qθi-Brownian motion, i = 1, ..., k. Specifically Girsanov’s

theorem implies that for Qθi , dBi
t = dBt + θidt is a Qθi-Brownian motion. Consequently,

ambiguity concerns exclusively the drift of dXt. This is due to the Brownian environment

and the assumption of absolute continuity.

Considering the measures in ∆ and Girsanov’s theorem, the decision maker considers k

potential distributions for dXt. Specifically, dX i
t ∼ N(µidt, σ

2dt) where µi = µ− σθi for

i = 1, ..., k. The decision maker assigns weights ψ = (ψ1, .., ψk) to the elements in ∆ or,

equivalently, to the k plausible distributions of dXt.

Having defined the setting in which the decision maker takes his decisions, we can verify

the point made by Skiadas (2008) that, when the anticipation interval is converging to

zero, the KMM certainty equivalent reduces to an expected utility certainty equivalent

implying that ambiguity can be disregarded.

The certainty equivalent of KMM preferences is defined as follows

CEKMM = u−1
(
φ−1 (Eψ [φ (Ei [u (Xt+dt)])])

)
,

or, since φ = v ◦ u−1,

CEKMM = v−1 (Eψ [v (CEX (i))]) ,

where CEX(i) is the certainty equivalent of Xt+dt computed with respect to the distribu-

tion of dXt induced by Qθi ∈ ∆

CEX(i) ≈ Xt + µidt−
1

2
Au (Xt + µidt)σ

2dt, Au(·) ≡ −u
′′(·)
u(·)

.

We can therefore compute the KMM certainty equivalent

CEKMM ≈ Eψ [CEX(i)]−1

2
Av (Eψ [CEX(i)]) Eψ

[
(CEX(i)− Eψ [CEX(i)])2] , Av(·) ≡ −v

′′(·)
v′(·)

.

Proposition 1 [KMM certainty equivalent]. By letting Eψ [CEX(i)] = CEX and Eψ[µi] =

µ, we have that

CEKMM ≈ Xt + µdt− 1

2
Eψ [Au (Xt + µidt)]σ

2dt

− 1

2
Av
(
CEX

)
Eψ

[(
µi − µ−

1

2
(Au (Xt + µidt)− Eψ [Au (Xt + µidt)])σ

2

)2
]
dt2.

Proof. Omitted.
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As it can be noted, the ambiguity premium is a dt2 term and therefore it is a negligible

term as compared to the risk premium which is a dt term.

The intuition is as follows. KMM assume that for every ambiguous act f there exists

a corresponding second-order act f 2 mapping the set of priors, ∆, into the set of conse-

quences. According to Definition 2, p. 1857, KMM (2005), the consequences associated to

the second-order act, f 2, correspond to the certainty equivalents of the objective lotteries

that are associated to the ambiguous act f . In a Brownian setting, the certainty equiv-

alents (CEX(i)) are functions not only of the moments but also of dt. In particular, the

ambiguous moment of dXt, µ, is multiplied by dt. Consequently, since dt is infinitesimal,

the certainty equivalents, CEX(i)’s, are so close to each other that the second-order act

associated to Xt+dt is an almost constant act and the decision maker considers the degree

of ambiguity in the lottery Xt+dt, i.e. the dispersion of the CEX(i)’s, as negligible.

2.2 Inter-temporal choice

To further emphasize the isomorphism between KMM preferences and SEU in a continuous-

time setting, it is shown that the stochastic differential utility (SDU henceforth) implied

by KMM preferences is equivalent to that of SEU preferences. According to KMM (2009),

the recursive form of their smooth ambiguity preferences is given by

Vt(f) = u(ft) + βφ−1 (Eψ,t [φ (Eπ,t [Vt+1])]) , (3)

where β is a discount factor, f is now an ambiguous plan with payoff ft at time t, and

the rest has the same interpretation as for equation (2).

As primitives consider the Brownian environment and the decision maker with multiple

priors described in the preceding subsection5. Additionally, let the time set be T = [0, T ],

with T < ∞. Consider now an ambiguous payoff plan C = (Ct) taking values in R.

The payoff process C is progressively measurable with respect to {Ft}0≤t≤T and squared

integrable. The SDU for KMM preferences considering the process C is provided in the

following Proposition.

Proposition 2 [KMM SDU]. Assume that the SDU follows the generic law of motion

dV C
t = µV

C

t dt+σV
C

t dBt under the probability measure P where µV
C

t and σV
C

t are suitable,

adapted processes. Then, for the ambiguous payoff plan C, the KMM SDU is given by

dV C
t ≈

(
−u (Ct) + δV C

t

)
dt+ θσV

C

t dt+ σV
C

t dBt, Eψ[θi] = θ, V C
T = 0. (4)

5We abstract from restrictions on the set of priors others than those described in the preceding section.
We are aware that, in an inter-temporal setting, learning may impose additional restrictions on ∆.
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Proof. Refer to Appendix A.1.

In other words, assuming that the ambiguous plan follows the dynamics dCt = µCt dt +

σCt dBt under the probability measure P , the result in Proposition 2 suggests that a KMM

decision maker cannot be distinguished from a SEU decision maker that considers the pro-

cess dCt =
(
µCt − θσCt

)
dt+σCt dB

θ
t with Eψ[θi] = θ, as describing the likely dynamics of C.

This is because the function φ(·), characterizing the ambiguity attitude of the KMM deci-

sion maker, does not play any role in the KMM SDU. Consequently, in a continuous-time

environment, inter-temporal KMM preferences cannot provide any additional insights

compared to SEU preferences. Given the result in Section 2.1, this conclusion is not sur-

prising since KMM model their inter-temporal preferences as a sequence of single period

choices (quasi-myopic preferences).

3 Risk-equivalent preferences: Single period choice

An alternative representation of preferences under ambiguity is introduced in this section.

This preferences representation is mainly based on three assumptions that will be elicited

in subsection 3.2. The main idea is to separate in two stages the evaluation of ambiguous

acts. In the first stage, the decision maker deducts the possible distributions over conse-

quences that the ambiguous act may be associated to and, by focusing on the source of

ambiguity, he selects the risk-equivalent distribution over consequences that is compati-

ble with his ambiguity attitude. In the second stage, using the determined risk-equivalent

distribution and VNM’s expected utility, the decision maker evaluates the ambiguous act

according to his risk attitude. Of course, for merely risky acts, only the second stage

applies.

In other words, the decision maker expresses two kind of preferences. On one hand, as

usual, he states his preferences over acts through a VNM index u. On the other hand, he

also states preferences over the set of expected values of ambiguous acts through a VNM

index ν. While the former has the usual interpretation in terms of risk attitude, the latter

has the function of describing the decision maker’s ambiguity attitude. Specifically, using

standard tools, it is possible to determine the amount, in terms of expected value, that the

decision maker is ready to give up to exchange the ambiguous situation with a just risky

situation. Consequently, it is possible to derive the associated risk-equivalent distribution

over consequences. The role of this distribution is to aggregate probabilistic information

about the ambiguous act with the tastes of the decision maker over ambiguity, so that, in

a second step, the utility associated with the ambiguous act can be computed with this
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single, risk-equivalent distribution in mind.

Note that the proposed preferences focus on ambiguity about the first moment. Am-

biguity on the second moment is not considered here since in a diffusion setting with

ambiguity, ambiguity is exclusively associated to the drift of any prospect.

While the formulation of preferences directly on probabilistic characteristics of the dis-

tribution of the ambiguous act is unusual, it has an intuitive appeal. By doing so, the

decision maker displays a general preference for distributions yielding high expected val-

ues compared to others associated with low expected values. However, the decision maker

may display decreasing marginal satisfaction in the expected value, so that he would feel

great if the expectation value were large, but he would be glad to exchange some of that

large expected value to avoid facing ambiguity and, therefore, potentially facing a low

expected value which he deeply dislikes.

3.1 Preliminaries

We consider the same setting as KMM (2005). States of nature and events are represented

by the pair (S,ΣS), where S = Ω× (0, 1] and ΣS = A⊗B1. A and B1 are the σ-algebras

on Ω and (0, 1], respectively.

An act is a mapping from S to the set of consequences C ⊂ R and it is generically denoted

by f : S → C. The set of all acts is denoted by F .

In this setting a merely risky lottery is defined as an act ` ∈ F that is invariant to events

in Ω: `(A1, B) = `(A2, B), for any A1, A2 ∈ A and B ⊆ (0, 1]. The set of these particular

acts is denoted by Lr ⊂ F .

Let ∆ be the set of countably additive product probability measures on S. An element

in ∆ is denoted by πi : ΣS → C, i = 1, ..., k. Elements in ∆ are such that, given a

Lebesgue measure λ : B1 → [0, 1], π(A× B) = π(A× (0, 1])λ(B) for A ∈ A and B ∈ B1.

Consequently, for lotteries in Lr, π(A × B) = λ(B) = q, for any A ∈ A, B ⊆ (0, 1] and

q ∈ [0, 1]. In other words, for any probability q ∈ [0, 1], the KMM (2005) setting allows

to construct an act (risky lottery) that yield a consequence with probability q. The set F
is, therefore, populated with both ambiguous acts, generically denoted by f, g ∈ F and

merely risky lotteries, generically denoted by ` ∈ Lr ⊂ F .

An act f combined with a probability measure πi induces a probability distribution πfi

over the consequences set C. Formally, πfi : ΣC → [0, 1], where ΣC is the σ-algebra on

C with πfi (c) = πi(f
−1(c)), c ∈ ΣC. KMM (2005) show that, given any f ∈ F and

any πi ∈ ∆, there exists a lottery ` ∈ Lr that has the same distribution of πfi
6, this

6Refer to KMM (2005), Lemma 1.
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risky lottery is denoted by `fi . Accordingly, an act f can be also considered as a set

Lf = {`f1 , ..., `
f
k} ⊂ Lr of merely risky lotteries where `fi is generated by combining πi

with f , for i = 1, ..., k. This makes ambiguous acts similar to Anscombe and Aumann

(1963) horse-roulette lotteries.

As in KMM (2005), the decision maker has beliefs as the likelihood of the different prob-

ability measures in the set ∆ to be the right probability measure. These beliefs are

represented by a second-order countably additive probability measure which is denoted

by ψ : Σ∆ → [0, 1], where Σ∆ represents the partition on the set ∆.

Since the focus of this analysis is on the ambiguity about the first moment as implied by

the diffusion setting, and in particular by the Girsanov’s theorem, we make the following

assumption.

Assumption 0. For an ambiguous act f ∈ F , the (objective) lotteries `fi ∈ Lf ,

i = 1, ..., k, are all equal in distribution up to a right or left translation such that the

distributions differ only in their first moments7.

For each ambiguous act f , M̃f =
{
µf1 , ..., µ

f
k

}
denotes the set comprising the diverging

parameter between `f1 , ..., `
f
k

8. In other words the set M̃f represents the source of ambi-

guity faced by the decision maker when considering the act f . The set M̃ collects the

sets M̃f for all f ∈ F . To better understand the meaning of the set M̃f , let us consider

an example.

Example 1. Consider again the ambiguous prospect Xt+dt of section 2.1. Under any

probability measure πi ∈ ∆ the prospect Xt+dt satisfies

Xt+dt = xt + (µ− θiσ)dt+ σdBi
t = xt + µ

Xt+dt
i dt+ σdBi

t.

In this case µ
Xt+dt
i represents the ambiguous drift of the monetary payoff dXt. The set

M̃Xt+dt is the collection of all µ
Xt+dt
i , i = 1, ..., k.

3.2 Behavioral assumptions

This subsection presents the behavioral underpinnings of the proposed representation.

The essence of the proposed preferences can be summarized by three assumptions.

Assumption 1 [Expected Utility on lotteries]. There exists a continuous, strictly in-

7This is not a particularly restricting assumption since most of the studies in finance and economics
using preferences with multiple priors make this assumption.

8µf
i has to be interpreted as the distribution drift parameter which can be (but not necessarily) the

expected gain in the discrete case and the usual process drift in a Brownian setting.
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creasing index u : C → R such that for all lotteries `i, `j ∈ Lr

`i � `j ⇔ E [u (`i)] ≥ E [u (`j)] .

In Assumption 1, the set of risky lotteries Lr is exploited to determine the risk attitude

of the decision maker so that he expresses his risk preferences in the standard way. This

same assumption is made in KMM (2005).

Assumption 2 [Subjective Expected Utility on M̃]. There exists a unique, countably

additive, second-order probability measure ψ and a continuous, strictly increasing index

ν : M̃ → R such that for f, g ∈ F

f �M g ⇔
∫

∆

ν
(
µ̃f
)
dψ(π) ≥

∫
∆

ν (µ̃g) dψ(π).

Note that the preference order �M on the set of ambiguous acts F\Lr is just a preliminary

preference order. If we asked the decision maker about his preferences at this stage, he

would say: ”Look, for the moment I have just assessed the ambiguity associated to the

ambiguous acts f and g. Given the fact that ambiguity makes me uncomfortable, I would

rather prefer f to g. However, this is not my final word. Before stating my ultimate

preference order, I have to further consider the riskiness of the prospects. It may be also

possible that I will change my mind.”

This assumption allows to determine a unique ”certainty equivalent” for all sets M̃f ∈ M̃
and, therefore, the risk-equivalent distribution `fre for all f ∈ F .

Definition 1 [Risk-equivalent distribution]. Consider an ambiguous act f ∈ F . Given

the assumed index ν and beliefs ψ on ∆, the risk-equivalent distribution `fre is the one for

which the following condition holds

ν
(
µfre
)

= Eψ

[
ν
(
µ̃f
)]
.

The risk-equivalent distribution allows the decision maker to aggregate all his informa-

tion, beliefs and attitude toward ambiguity in a single distribution over outcomes so that

the decision maker can now formulate a preference ordering over acts in F using the risk-

equivalent distribution as the single probabilistic reference for the ambiguous prospects.

With this in mind, we can state our last behavioral assumption.

Assumption 3 [Expected Utility on equivalent lotteries]. The decision maker ranks am-

biguous acts according to the expected utility criterion applied to risk-equivalent lotteries

12



`re. Therefore, for f, g ∈ F

f � g ⇔ E
[
u
(
`fre
)]
≥ E [u (`gre)] .

Note that the preference � represents the ultimate decision of the decision maker, the

one, that we can ascertain by observing the actions of the decision maker.

3.3 Characterization of ambiguity aversion

Following the definition of absolute ambiguity aversion proposed in Ghirardato and Mari-

nacci (2002)9, and applied by KMM (2005)10, the ambiguity aversion is characterized by

the properties of the index ν, the function representing preferences over the set M̃ .

An ambiguity averse decision maker will (weakly) prefer the certainty-equivalent (CE

henceforth) of an ambiguous act f calculated under SEU assumptions to the act f itself.

In other words, the SEU decision maker is taken as the ambiguity neutrality reference.

Definition 2 [Absolute ambiguity aversion]. A decision maker displays (absolute) am-

biguity aversion if, for all f ∈ F ,

CE (f)SEU � f.

For a SEU decision maker CE (f)SEU ∼ f . Furthermore, he aggregates all the information

at his disposal and his beliefs in a single probability measure. Consequently, the SEU

decision maker evaluates the utility associated to an act f with the unique probability

measure π such that Eπ[f ] = Eψ [Eπ [f ]] for all f ∈ F . In the proposed preferences

representation, this is equivalent to saying that, for an SEU decision maker, the index ν

is linear. For strict preference �, as usual, the index ν must be strictly concave. This is

stated in the following Proposition.

Proposition 3 [Absolute ambiguity aversion]. A decision maker with a preference index

ν and beliefs ψ on π ∈ ∆ is said to be averse to ambiguity, if for all f ∈ F

ν
(
Eψ

[
µ̃f
])
> Eψ

[
ν
(
µ̃f
)]
. (5)

Proof. Omitted.

Proposition 3 suggests that in order to display ambiguity aversion, the decision maker

9Refer to Ghirardato and Marinacci (2002), Definition 9.
10Refer to KMM (2005), Definition 4.
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must have a strictly increasing, concave index ν: ν ′(·) captures the decision maker’s

preferences for rosy scenarios (distributions giving a large expected payoff) and ν ′′(·) his

discomfort with the possibility of having to face a bad scenario (characterized by a low

expected payoff). Using conventional tools, it is possible to quantify this trade-off in

terms of expected payoff that the decision maker is willing to give up in order to face just

risk.

3.4 Uncertainty premium

We have now all the ingredients to analyze the decision maker’s reward for bearing uncer-

tainty. The uncertainty premium can be derived by a two-steps procedure. The first aims

at determining the risk-equivalent distribution `re. The second derives the uncertainty

premium implied by the decision maker’s ordering over acts.

Proposition 4 [Risk equivalent distribution]. Assume a decision maker facing an am-

biguous act f . Assume further that the decision maker has beliefs ψ over π ∈ ∆. Let the

source of ambiguity be represented by the set M̃f =
{
µf1 , ..., µ

f
k

}
. Furthermore, let µf and

σ2
µ̃f

be the mean and the variance of the ambiguous component measured with respect

to the decision maker’s beliefs ψ. Then, assuming that σ2
µ̃ is local, the risk-equivalent

distribution `fre is the one satisfying the condition

µfre ≈ µf − 1

2
Aν
(
µf
)
σ2
µ̃f , Aν

(
µf
)
≡ −

ν ′′
(
µf
)

ν ′
(
µf
) . (6)

Proof. Omitted.

By analogy to risk theory, Aν will be called throughout the paper the coefficient of (ab-

solute) ambiguity aversion. Note, furthermore, that the uniqueness of `fre is ensured by

Assumption 0 constraining ambiguity to be only about the first moment. Since we have

now a distribution that summarizes all the available information and the decision maker’s

attitude toward ambiguity, it is possible to determine the uncertainty premium.

Let us first consider a discrete case where µf1 , ..., µ
f
k are interpreted as expected gains.

Proposition 5a [Uncertainty premium]. Assume a decision maker facing an ambiguous

act f . Then, for a local (small) risk in f , σ2, the uncertainty premium is given by

κ̂ ≈ 1

2
Aν
(
µf
)
σ2
µ̃f +

1

2
Au
(
µfre
)
σ2, Au(µfre) ≡ −

u′′
(
µfre
)

u′
(
µfre
) . (7)

Proof. Refer to Appendix A.2.
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Equation (7) implies that the decision maker not only requires a reward for bearing risk,

σ2, according to his risk attitude, Au(·), but he requires also to be rewarded for the poor

information quality (or ambiguous information), σ2
µ̃, related to act f according to his

attitude toward ambiguity (or information quality), Aν(·).
Note that if the available information on the occurrence of the underlying states is very

accurate, σ2
µ̃f

tends to zero for all f ∈ F and the first term in equation (7), i.e. the

ambiguity premium, disappears. This is not because the decision maker is not averse to

ambiguity, but rather because there is no ambiguity about the occurrence of the states.

In other words, in an environment without ambiguity the actions undertaken by a risk-

equivalent decision maker are not distinguishably different from those of a VNM expected

utility decision maker.

Let us now turn to the continuous case where µf1 , ..., µ
f
k are interpreted as drifts.

Proposition 5b [Uncertainty premium]. Assume a decision maker facing an ambiguous

prospect Xt+dt as described in Section 2.1. Then the uncertainty premium is given by

κ̂ ≈ 1

2
Aν(µ− θσ)σ2

θσ
2dt+

1

2
Au(Ere[Xt+dt])σ

2dt, σ2
θ = Eψ[(θi − θ)2]. (8)

Proof. Refer to Appendix A.3.

Note that the product σ2
θσ

2 is not necessarily converging to zero as fast as dt and, therefore,

the ambiguity premium and the risk premium can be of the same order dt. In our

framework, there is no a priori reason that, locally, the risk-equivalent distribution overlaps

the true distribution which is unknown. Equation (8) implies that when there is no risk,

σ2 = 0, both premia disappear because the prospect is deterministic, that is, riskless and

unambiguous.

3.5 Comparison of ambiguity attitudes

The following definition specifies the comparative notion of ambiguity aversion in the

present context.

Definition 3 [Comparative ambiguity aversion]. Assume two decision makers A and B

characterized by �A and �B. Assume further that the two decision makers share the same

set of priors ∆ and they additionally share the same beliefs ψ on probability measures in

∆. Then, A is said to be more ambiguity averse than B if, for all f ∈ F ,

`fre,B �A `
f
re,A and `fre,B �B `

f
re,A, `fre,A, `

f
re,B ∈ L

r.
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Given this definition, the following Proposition determines the notion of comparative

ambiguity aversion in cardinal terms.

Proposition 6 [Comparative ambiguity aversion]. Assume two decision makers A and

B facing the same ambiguous act f . Then, given Definition 3, saying that A is more

ambiguity averse than B implies that

AνA
(
µf
)
≥ AνB

(
µf
)
⇔ µfre,A ≤ µfre,B.

Proof. Omitted.

Given the monotonicity of the utility indexes uA and uB the result is straightforward. In

a nutshell, Proposition 6 states that the more ambiguity averse decision maker will be the

one displaying more cautiousness when evaluating the utility associated to the ambiguous

prospect f .

Note that the comparison of ambiguity across decision makers can be made independently

of their risk attitudes. This is in contrast to KMM preferences since, in their setting, the

function φ, characterizing ambiguity aversion, is related to the VNM utility function u,

characterizing risk aversion, through the second-order utility function v.

3.6 Extreme attitudes toward ambiguity

This section studies the implications of extreme ambiguity attitudes. Namely, we analyze

the situations of neutrality and extreme aversion toward ambiguity. As it will be shown,

neutrality corresponds to the classic case of SEU preferences, while extreme ambiguity

aversion corresponds to Gilboa and Schmeidler’s MEU.

Neutrality toward ambiguity implies a linear index ν. As a consequence, the risk-equivalent

probability measure corresponds to the simple aggregation of beliefs ψ with the proba-

bility measures in the set ∆ and, therefore, his preferences cannot be distinguished from

SEU preferences. The following Proposition formalizes the implications of ambiguity neu-

trality.

Proposition 7 [Neutrality toward ambiguity]. Combining a linear preference index ν

on probability measures with Propositions 4 and 5(a,b), the following statements are

equivalent:

1. the risk-equivalent distribution `fre implies that µfre = µf ;

2. the required uncertainty premium κ̂ corresponds to the risk premium;

16



3. an ambiguity neutral decision maker cannot be distinguished from a SEU decision

maker.

Proof. Omitted.

On the other hand, in the case of an extreme ambiguity aversion, the decision maker’s

attitude toward ambiguity is described by an extremely concave index ν. The next propo-

sition shows the isomorphism between MEU preferences and extreme ambiguity averse

risk-equivalent preferences.

Proposition 8. [Extreme ambiguity aversion]. Assume that for a decision maker n

Aνn →∞. Then the following statements are equivalent:

1. the risk-equivalent distribution `fre implies that µfre = infµfi ∈M̃f µ̃
f
i ;

2. the required uncertainty premium κ̂ corresponds to κ̂ ≈ µf−infµfi ∈M̃f µ
f
i +

1
2
Au
(
µfre
)
σ2

(in the discrete case, Proposition 5a) and κ̂ ≈ (µf−infµfi ∈M̃f µ
f
i )dt+

1
2
Au(Ere[Xt+dt])σ

2dt

(in the continuous case, Proposition 5b);

3. an extremely ambiguity averse decision maker cannot be distinguished from a MEU

decision maker.

Proof. Refer to Appendix A.4.

In order to better understand the convergence mechanisms toward SEU and MEU implied

by ambiguity neutrality and extreme ambiguity aversion respectively, let us consider the

following example.

Example 2. Assume a decision maker facing an ambiguous act f . The decision maker

ambiguity aversion is denoted by Aν as defined by equation (5). The decision maker’s

preferences over probability measures are represented by a negative exponential ν (µ̃) =

− exp (−Aµ̃) so that Aν = A. Assume further that the decision maker’s set of prior

probability measures contains only two elements ∆ = [π1, π2] such that M̃f =
[
µf1 , µ

f
2

]
with µf1 < µf2 . Finally, the decision maker has beliefs ψ = [0.5, 0.5] on the probability

measures π1 and π2, that is, he thinks that the right probability measure may be π1 with

probability 0.5 and π2 with probability 0.5.

Applying Definition 1, we have that the decision maker will consider as risk-equivalent

the lottery `fre that satisfies

µfre = − 1

A
ln
(

0.5 exp
(
−Aµf1

)
+ 0.5 exp

(
−Aµf2

))
.

The following figure plots µfre for µf1 = −0.05 and µf2 = 0.10 as a function of A.
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As it can be noted, for A→ 0, the risk-equivalent lottery `fre tends to the one implied by

ambiguity neutrality, that is,

lim
A→0

µfre = µf = 0.5µf1 + 0.5µf2 = 0.025.

Consequently, according to Proposition 7, the decision maker can be hardly distinguished

from a SEU decision maker.

On the other hand, as A→∞, the decision maker will be almost indistinguishable from

a MEU decision maker, that is,

lim
A→∞

µfre = inf
µfi ∈M̃f

µfi = µf1 = −0.05.

In other words, a decision maker with an extremely concave index ν considers exclusively

the most disadvantageous distribution as risk-equivalent. This is in accordance with

Proposition 8.

4 Risk-equivalent preferences: Inter-temporal choice

The recursive representation of risk-equivalent preferences is now introduced. In order

to have a simple, recursive preferences formulation, additional assumptions are needed.
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Namely, these assumptions impose the temporal consistency of choices, the irrelevance of

the past and the invariance of the shape of u and ν and of the discount factor β across

states and trough time. Under these assumptions the proposed preferences have the form

Vst(f) = u(fst(s
t)) + βE

p
f
st

re(st)

[Vst,xt+1(f)].

4.1 Preliminaries

In an inter-temporal setting, the decision maker’s objects of choice are no more acts but

rather plans. A plan is still a map from the states space to the consequences space.

However, the states space describes now all possible paths on an event tree. The states

space is modeled as in KMM (2009). Consider an infinite time horizon T = {1, ..., t, ...}.
Let {Xt}t∈T be finite observations spaces on which the sequence of random variables

{Xt}t∈T is defined. A realization of the random variable Xt is denoted by xt. The

random variables {Xt}t∈T are endowed with their power sets At = 2Xt , t ∈ T .

A path up to time t is denoted by st = (x1, ..., xt) and the collection of all finite paths

up to time t is given by St =
∏t

τ=1Xτ and, in general, the set of all possible paths is

S =
∏

t∈T Xt. An observation path st identifies a node, that is, the history of observations

up to time t. The set of all nodes is S =
⋃
t∈T Xt.

The product σ-algebra on S is defined by Σ =
⊗

t∈T At and ∆ represents the set of

probability measures defined on Σ. As in the single period choice setting, πi : Σ→ [0, 1]

denotes a generic element of ∆. Given B ∈ Σ and an observation path st, πi(B | st)
represents the probability, under i, that the observation path will belong to B given that

node st was reached (provided that st is a possible node, i.e. πi(s
t) > 0). Moreover, for

all t ∈ T , the one-step-ahead probability πi(·; st) : At+1 → [0, 1] given st ∈ St is

πi(xt+1; st) =
πi(x1, .., xt, xt+1)

πi(x1, .., xt)
, for any xt+1 ∈ Xt+1, πi ∈ ∆.

πi(xt+1; st) is the probability that is assigned, under i, to the observation xt+1 given that

node st was attained.

The decision maker assigns a degree of belief to all measures in ∆. The beliefs ψ : Σ∆ →
[0, 1] are indexed by the reached observation node st, t ∈ T , such that

ψst(πi) =
πi(s

t)ψ(πi)∫
∆
π(st)dψ(π)

11, i = 1, ..., k.

11We recognize that the equation contains an inconsistency. Given the uncountable nature of the
objects in ∆, writing ψ(πi) and ψst(πi) is imprecise. This is done, however, to maintain some unity of
notation with Section 3.1.
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At time 0 and t ∈ T , the decision maker chooses a payoff plan. At time t the available

information is given by the history of observations st. Denoting by C ⊂ R the set of

consequences, a plan f is a mapping f : {0} × T × S → C associating a payoff stream

to all possible observation paths. The payoff of plan f at time t is denoted by f(st) ∈ C
and it represents the payoff the decision maker receives if he chooses plan f and the node

st is reached. f can, therefore, be regarded also as a function f : S → C. Payoff plan f

is an adapted payoff process meaning that the payoff f(st) is measurable with respect to

the filtration Σt = σ(x1, ..., xt) and Σ0 = {S, ∅}, for t ∈ {0} ∪ T . The set of such plans is

denoted by F .

A special class of payoff plans are the deterministic plans. A deterministic plan is gener-

ically denoted by d and the set of all deterministic plans by D. Deterministic plans are

characterized by the fact that their payoff streams do not depend on the reached node,

that is, for each t ∈ T the payoff of plan d at t is d(st) = c(t) ∈ C for any st ∈ St.

Considered are also (objective) randomizations of deterministic plans, called mixed de-

terministic plans, paying off at time t ∈ T di(s
t) = ci(t) with probability pi where di ∈ D,

i = 1, ..., n and 0 ≥ pi ≥ 1,
∑n

i=1 pi = 1. The set of mixed deterministic plans is denoted

by P . Mixed deterministic plans are the counterpart of the merely risky lotteries in Lr

in the above single period choice setting.

Fixing the node st, the set of continuation plans at st, denoted by Fst comprises plans in

F only at the possible succeeding nodes
⋃
τ≥t S

τ (st). A continuation plan is generically

denoted by fst :
⋃
τ≥t S

τ (st) → C. An important subset of continuation plans are one-

step-ahead continuation plans characterized by a constant payoff stream from time t+ 1

onward depending on the realization xt+1, that is, on the node reached at time t + 1. In

other words, for these special plans all the uncertainty is resolved between time t and t+1

with the realization of the random variable Xt+1. A one-step-ahead continuation plan is

generically denoted by f ∗st and is characterized by the following general payoff structure

f ∗st(s
τ ) =

{
fst(s

t), τ = t,

fst(s
t+1), τ ≥ t+ 1.

(9)

The set of such plans is denoted by F∗st ⊂ Fst .
For deterministic plans, the set Dst represents the set of deterministic continuation plans

and a generic deterministic continuation plan is denoted by dst . We consider also continu-

ation plans for mixed deterministic payoff plans. A mixed deterministic continuation plan

is denoted by pst ∈ Pst . Note that deterministic and mixed deterministic continuation

plans do not depend on the reached node st, such continuation plans are indexed with st
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just for uniformity of notation.

We consider one-step-ahead mixed deterministic continuation plans denoted generically

by p∗st ∈ P∗st ⊂ Pst . Such plans are randomizations of deterministic plans that agree on

the payoff at time t and are characterized by constant payoff streams from t+ 1 onward.

The peculiarity of these mixed plans is that their implied one-step-ahead distributions

over consequences are the same at every point in time τ ≥ t. A one-step-ahead mixed

deterministic continuation plan is characterized by the following general payoff structure

p∗st(s
τ ) =

{
c(t) = dj,st(s

t), dj,st(s
t) = dk,st(s

t), j = 1, ..., n, k = 1, ..., n, τ = t,

c(τ) = dj,st(s
τ ) with probability pj, j = 1, ..., n, τ ≥ t+ 1.

In general, (one-step-ahead) mixed deterministic continuation plans may represent ran-

domizations over uncountably many plans in Dst =
∏

τ≥t C. Consequently, a random-

ization over deterministic continuation plans pst(i) ∈ Pst is characterized by a function

pi : ΣDst → [0, 1] where ΣDst is the σ-algebra induced by the product topology on Dst .
Combining f ∗st with the one-step-ahead probability πi(xt+1; st), πi ∈ ∆, as above defined,

determines a one-step-ahead distribution over C which can be replicated by some one-

step-ahead mixed deterministic plan denoted by p∗st(f
∗
st , πi(xt+1; st)) with c(t) = fst(s

t).

Therefore, f ∗st can be considered as a set P f∗
st = {p∗st(f ∗st , π1), ..., p∗st(f

∗
st , πk)} ⊂ P∗st .

Recalling that we are focusing on ambiguity on the first moment, Assumption 0 is

rephrased for the present context.

Assumption 0∗. For an ambiguous one-step-ahead continuation plan f ∗st ∈ F∗st , the as-

sociated one-step-ahead distributions implied by the one-step-ahead mixed deterministic

continuation plans in P f∗
st differ only in their drifts.

Example 3. Consider a decision maker facing the ambiguous plan f ∗st . Suppose that

the one-step-ahead mixed deterministic continuation plans in P f∗
st imply the following

one-step-ahead distribution over consequences

c(t+ ∆t) = c(t) + µ
f∗
st

i (st)∆t+ σ(st)ε̃∆t, i = 1, ..., k, c(t) = fst(s
t),

where ε̃ is a compact white noise.

The set M̃f∗
st = {µf

∗
st

1 (st), ..., µ
f∗
st

k (st)} collects the µ
f∗
st

i (st) implied by all πi(xt+1; st) ∈ ∆.

The mean over all µ
f∗
st

i (st) ∈ M̃f∗
st measured with respect to the decision makers beliefs

at node st is denoted by Eψ(st)[µ̃
f∗
st (st)] = µf

∗
st (st).
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4.2 Assumptions

In order to obtain a simple, recursive preferences representation, additional assumptions

on the inter-temporal process of decision making are needed. To this end, it seems rea-

sonable to consider the same assumptions made by KMM (2009). While Assumptions 4

and 5 are quite standard for an inter-temporal setting and are not specific to the model

of preferences under ambiguity presented above, Assumptions 6 and 7 allow to embed the

single period choice preferences representation in the inter-temporal setting. While some

of these assumptions may be not necessary in general, they are considered to make the

recursive representation as simple as possible and to be able to apply standard tools in

dynamic programming.

Assumption 4 [Consequentialism]. In evaluating plans at a node st, the decision maker

considers only payoffs from that point onward.

This assumption ensures that the decision maker’s problem can be approached at the time

at which it occurs without considering what happened or did not happen at all precedent

nodes (S1, ..St−1).

Assumption 5 [Dynamic consistency]. Given two ambiguous plans f and g that yield

the same payoff today, and, no matter what happens between t and t + 1, f is always

preferred to g at t+ 1, then f is preferred to g also at time t.

Assumption 5 essentially imposes that, if we consider two plans that differ (in terms of

payoffs) only from tomorrow onward, no matter what might occur from today to tomor-

row, then the plan associated with the highest payoff tomorrow, will not only be preferred

tomorrow but already today.

Assumption 6 [Discounting]. Consider the decision maker facing a deterministic plan

d ∈ D at st. Then the utility associated with this plan is represented by the utility index

U(st) : C → R which has the form

Ust (dst) =
∑
τ≥t

βτ−tst ust (dst (sτ )) .

Assumption 7 [Invariance]. There is β ∈ (0, 1) and u : C → R continuous and strictly

increasing such that, in Assumption 6, βst = β and ust = u for all st. Additionally, there

is ν : M̃ → R continuous and strictly increasing such that νst = ν for all st.
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4.3 Representation

Given Assumptions 2, 7 and the above notion of one-step-ahead mixed deterministic plan,

we are able to determine the st-conditional one-step-ahead risk-equivalent distribution for

all f ∗st ∈ F∗st . By analogy to Definition 1 and adapting Proposition 4, the st-conditional

one-step-ahead risk-equivalent distribution is defined as follows.

Definition 4. [st-conditional risk-equivalent distribution]. Consider an ambiguous act

f ∗st ∈ F∗st . the st-conditional risk-equivalent distribution is the one for which the following

condition holds

ν
(
µ
f∗
st
re (st)

)
= Eψ(st)

[
ν
(
µ̃f
∗
st (st)

)]
.

The one-step-ahead mixed deterministic plan implying the st-conditional one-step-ahead

risk-equivalent distribution for f ∗st is denoted by p∗st(f
∗
st , re(s

t)).

Given Assumptions 3, 4, 6 and 7, the continuation value Vst(·) representing �st on Fst ∪
Pst ∪ Dst associated to f ∗st is given by

Vst(f
∗
st) =

∫
Dst

(∑
τ≥t

βτ−tu(dst(s
τ ))

)
dp

f∗
st

re(st)(dst), (10)

= u(f ∗st(s
t)) + β

E
p
f∗
st

re(st)

[u(dst(s
t+1))]

1− β
, (11)

where the second equation uses the payoff structure of f ∗st detailed in equation (9). Given

the generality of the payoff structure in equation (9), the result in equation (11) holds for

all plans in F∗st .
To find the recursive preference representation, we need finally the notion of continuation

certainty equivalent.

Definition 5. Given f ∈ F and st ∈ St, the continuation certainty equivalent ~cf,st ∈ Dst
of f at st is a constant payoff stream with cf,st ∈ C such that ~cf,st ∼st fst .

Combining Assumptions 6 and 7 with Definition 5, the continuation value of f at st

satisfies

Vst(f) = Ust(~cf,st) =
u(cf,st)

1− β
.

We can now state recursive preference representation.

Proposition 9. Given Assumptions 0∗-7, Definitions 4 and 5, the inter-temporal risk-
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equivalent preferences representation has the following form

Vst(f) = u(fst(s
t)) + βE

p
f
st

re(st)

[Vst+1(f)]. (12)

Proof. Refer to Appendix A.5.

4.4 Continuous-time limit

In this section, the continuous-time version of the recursive utility representation in equa-

tion (12) is presented. To this end the setting in Section 4.1 has to be specialized. The

finite observation space is now assumed to be the same over time {Xt}t∈T = X and it

comprises only two elements, X = {H,T}. Moreover, let πi ∈ ∆ be such that the random

variables {Xt}t∈T are i.i.d., that is,

πi(xt+1; st) =
πi(x1, ..., xt+1)

πi(x1, ..., xt)
=

∏t+1
τ=1 qi(xτ )∏t
τ=1 qi(xτ )

= qi(xt+1), xt+1 = H,T,

where qi(·) = At → [0, 1], t ∈ {0} ∪ T , is the marginal distribution associated to πi.

Let us define the random variable Yt : X → {−
√

∆t,
√

∆t}, t ∈ T , where ∆t represents

the (discrete) time increment, such that

Yt =

{ √
∆t if xt = H,

−
√

∆t if xt = T.

Consider also Mt =
∑t

τ=1 Yτ with M0 = 0. We assume that there exists a probability

measure in ∆, denoted by π̂ such that stochastic process Mt is a symmetric random walk.

In other words, we assume that there exists π̂ ∈ ∆ such that qπ̂(H) = qπ̂(T ) = 1
2
.

By letting ∆t tend to the infinitesimal time increment dt, we can approach the continuous-

time limit and by the Central Limit Theorem the π̂-random walk becomes a π̂-standard

Brownian motion B = (Bt) defined on (S,Σ, π̂). Note that π̂ is neither the objective

measure nor the subjective measure used by the decision maker, it has the function,

beside that of making B a standard Brownian motion, of determining null sets.

As in Section 2.1, we assume that measures in ∆ are absolutely continuous with respect

to π̂ and, therefore, they can be defined by density generators θi = (θi,t) such that

Zθi
t = dπi

dπ̂

∣∣
Σt

is a π̂-martingale. For simplicity, we assume that θi is constant for all

πi ∈ ∆.

Consider now a square-integrable payoff process (plan) C = (Ct) ∈ F taking values in

C. Assuming that C is a Σt-adapted process that evolves according to the SDE dCt =
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µCt dt+σCt dBt under π̂ and dCt = (µCt − θiσCt )dt+σCt dBt under πi, with µCt and σCt being

finite parameters, the following Proposition delivers the risk-equivalent preferences SDU

associated to plan C.

Proposition 10 [Risk-equivalent preferences SDU]. Consider a decision maker endowed

with risk-equivalent preferences facing the ambiguous plan C. Assume that the SDU

follows the generic law of motion dV C
t = µV

C

t dt+ σV
C

t dBt under the probability measure

π̂. Then, the risk-equivalent preferences SDU associated to C is given by

dV C
t ≈

(
−u (Ct) + δV C

t

)
dt+θ

(
st
)
σV

C

t dt+
1

2
Aν
(
µCt
(
st
))
σ2
θ(s

t)σCt σ
V C

t dt+σV
C

t dBt, V C
T = 0.

(13)

Proof. Refer to Appendix A.6.

By looking at equation (13), it is possible to emphasize the difference between decision

makers with SEU and risk-equivalent preferences. The difference has a twofold interpre-

tation.

On one hand, both the SEU and the risk-equivalent decision makers can be seen as consid-

ering the process dCt =
(
µCt − θ (st)σCt

)
dt+ σCt dB

θ(st)
t to be the likely payoff process of

plan C. However, while the SEU decision maker is ambiguity neutral12 and, therefore, he

does not require any reward for bearing ambiguity, the risk-equivalent decision maker de-

mands an ambiguity premium approximatively equal to 1
2
Aν
(
µCt (st)

)
σ2
θ(s

t)σCt σ
V C

t dt > 0.

On the other hand, the risk-equivalent decision maker can be considered as more cautious

than the SEU decision maker. That is, while the SEU decision maker deems the above

process dCt under πθ(st) as the likely one, the risk-equivalent decision makers considers the

process C as evolving according to dCt ≈
(
µCt − θ (st)σCt − 1

2
Aν
(
µCt (st)

)
σ2
θ(s

t)σCt
2
)
dt+

σCt dB
re(st)
t . Since 1

2
Aν
(
µCt (st)

)
σ2
θ(s

t)σCt
2dt > 0, the drift of dCt is lower for the risk-

equivalent decision maker and, therefore, he displays cautiousness.

Note that, for Aν → 0, that is, for a linear index ν, we find again the same isomor-

phism between SEU and risk-equivalent preferences stated in Proposition 7. Similarly, for

Aν → ∞, that is, for an extremely concave index ν, the same isomorphism of Proposi-

tion 8 between MEU and risk-equivalent preferences is obtained. These claims are stated

formally in the following Corollary to Proposition 10.

Corollary 10 [SDU isomorphisms]. (a) For Aν → ∞, the risk-equivalent SDU con-

12Refer to Proposition 7.
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verges to the MEU SDU

dV C
t =

(
−u (Ct) + δV C

t

)
dt+ sup

πi∈∆
θi
(
st
)
σV

C

t dt+ σV
C

t dBt, V C
T = 0. (14)

(b) For Aν → 0, the risk-equivalent SDU converges to the SEU SDU

dV C
t =

(
−u(Ct) + δV C

t

)
dt+ θ

(
st
)
σV

C

t dt+ σV
C

t dBt, V C
T = 0. (15)

Proof. For part (a) refer to Appendix A.7, for part (b) the proof is omitted.

Equation (14) corresponds to the backward stochastic differential equation (BSDE hence-

forth) of Theorem 2.2(a) in Chen and Epstein (2002), where the inter-temporal aggregator

has the form f
(
Ct, V

C
t

)
= u (Ct)− δV C

t . Note that supπi∈∆ θi (s
t) is the largest θ associ-

ated to a π ∈ ∆ such that ψ (st(π)) > 0.

5 Generalized SDU and risk-equivalent SDU

Lazrak and Quenez (2003) present a general form for the SDU (GSDU henceforth) that

accounts for a dependency of the inter-temporal aggregator f(·) with respect to the in-

tensity process (σV
C

t in the above notation). Introducing such a dependency implies a

form of local non-affinity with the utility process and therefore increases risk aversion.

The GSDU is defined as the solution of the BSDE

−dV C
t = f(Ct, V

C
t , Zt)dt− ZtdBt, V C

T = 0,

where Zt is the intensity process in Lazrak and Quenez (2003) notation. To gain further

insights, their inter-temporal aggregator can be decomposed into two component

f(Ct, V
C
t , Zt) = g(Ct, V

C
t )− h(Ct, V

C
t , Zt),

where

g(Ct, V
C
t ) = f(Ct, V

C
t , 0) and h(Ct, V

C
t , Zt) = f(Ct, V

C
t , 0)− f(Ct, V

C
t , Zt).

The decomposition tells us that each GSDU can be associated with a function g that is

interpreted as the inter-temporal aggregator of the usual SDU and a function h(·) that

represents a risk penalization (if h(·) > 0) of the GSDU with respect to its associated

SDU. This penalization comes from the aversion of the decision maker to the ”intensity”
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of the variability in the utility process and non-affinity with surprises in the utility process.

The authors show that the GSDU can accommodate the SEU SDU and the MEU SDU

as specific cases13. As it can be readily seen from equation (13) and since SEU and

MEU are special cases of risk-equivalent preferences14, risk-equivalent preferences can be

also embedded in the GSDU of Lazrak and Quenez (2003). Namely, for risk-equivalent

preferences we have that

f(Ct, V
C
t , Zt) ≈ u (Ct)− δV C

t −
(
θ +

1

2
Aν
(
µCt
)
σ2
θσ

C
t

)
Zt.

15 (16)

This is important since it allows to use the properties of GSDU developed in Lazrak and

Quenez (2003) to characterize the generalized risk attitude of the decision maker implied

by risk-equivalent preferences. In other words, this allows us to confirm the statements

in Propositions 3 and 6.

5.1 Absolute generalized risk aversion

In line with the definition of risk aversion in Duffie and Epstein (1992), Lazrak and Quenez

(2003) give the following definition of a risk averse GSDU.

Definition 6. A GSDU is called risk averse iff for any feasible payoff process C, the

deterministic process C given for all t by Ct = E [Ct] is initially preferred to C

V C
0 ≥ V C

0 .

Applying this definition, Lazrak and Quenez (2003) show that if f(·), i.e. the inter-

temporal aggregator of the GSDU, is (1) concave with respect to C and V and (2)

f
(
Ct, V

C
t , Zt

)
≤ f

(
Ct, V

C
t , 0

)
, (17)

then the associated GSDU is risk averse in the generalized sense. While the concavity of

f(·) in C and V captures the classical risk aversion, the second condition captures the

non-affinity with surprises in the utility function, which, in the present context, is named

ambiguity aversion.

Equation (17) implies that ∂f
∂Z

< 0. Combining equation (16) with Proposition 3, it can

be readily checked that, in the present context, this is indeed the case when Aν > 0, that

13Refer to Lazrak and Quenez (2003), Section 3, p. 158-159.
14Refer to Corollary 10.
15To make notation less heavy, the node st is omitted.
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is, when the decision maker is ambiguity averse.

5.2 Comparative generalized risk aversion

According to Proposition 4 in Lazrak and Quenez (2003), a decision maker A is more risk

averse (in the general sense) than another decision maker B if

1. fA
(
Ct, V

C,A
t , 0

)
= fB

(
Ct, V

C,B
t , 0

)
, and

2. fA
(
Ct, V

C,A
t , Zt

)
≤ fB

(
Ct, V

C,B
t , Zt

)
.

Applying these conditions to the specification of f(·) in equation (16), and assuming that

A and B have the same beliefs and share the same set of priors we have that

fA
(
Ct, V

C,A
t , Zt

)
≤ fB

(
Ct, V

C,B
t , Zt

)
⇒ AνA(·) ≥ AνB(·). (18)

This confirms the statement in Proposition 6. Note that assumptions made on beliefs

and set of priors were also present in Proposition 6, here they ensure that the term θZt

in equation (16) is equal for both decision makers.

6 Conclusion

Focusing on the Brownian setting, the paper proposes a representation of preferences un-

der ambiguity that tries to preserve the most of the intuition of KMM preferences while

overcoming their drawback as shown by Skiadas (2008). Specifically, for our representa-

tion of preferences, the implied ambiguity premium does not necessarily evaporate with

the time increment dt → 0. We also show that risk-equivalent preferences may be indis-

tinguishable from SEU and MEU preferences when the index ν is linear and extremely

concave, respectively. Moreover, risk-equivalent preferences have the advantage that they

allow to compare ambiguity attitudes across decision makers without imposing any re-

striction on their risk attitudes. Finally, the paper advances an inter-temporal version

of the proposed preferences representation. Exploiting the properties of the Lazrak and

Quenez (2003) GSDU, the analysis of the inter-temporal version and of its continuous-

limit confirms the insights gained in the single period choice setting.
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A Proofs

A.1 Proposition 2

Considering that the discount factor in continuous-time is β = exp(−δdt), the recursive

continuous-time version of equation (3), given the payoff process C, is

V C
t = exp(−δdt)u (Ct) dt+ exp(−δdt)φ−1

(
Eψ,t

[
φ
(
Eπ,t

[
V C
t + dV C

t

])])
, (19)

where dV C
t = µV

C

t dt+σV
C

t dBt under probability measure P . Let us now focus on the sec-

ond term on the right-hand side. Approximating by Taylor expansion φ−1
(
Eψ,t

[
φ
(
Eπ,t

[
V C
t + dV C

t

])])
around V C

t we have that

φ−1
(
Eψ,t

[
φ
(
Eπ,t

[
V C
t + dV C

t

])])
≈ V C

t +Eψ,t

[
Eπ,t

[
dV C

t

]]
−1

2
Aφ
(
V C
t

)
Eψ,t

[(
Eπ,t

[
dV C

t

])2
]
.

Injecting this approximation in equation (19), regrouping V C
t terms, and multiplying both

sides by exp(δdt)

(exp(δdt)− 1)V C
t ≈ u (Ct) dt+ Eψ,t

[
Eπ,t

[
dV C

t

]]
− 1

2
Aφ
(
V C
t

)
Eψ,t

[(
Eπ,t

[
dV C

t

])2
]
.

Considering that dV C
t = µV

C

t dt+ σV
C

t dBt under P and that the third term on the right-

hand-side is negligible (dt2 term)

δV C
t dt ≈ u (Ct) dt+ µV

C

t dt− θσV Ct dt, Eψ,t[Eπ,t[θi]] = θ,

and, therefore,

dV C
t ≈ (−u(Ct) + δV C

t )dt+ θσV
C

t dt+ σV
C

t dBt.

Q.E.D.

A.2 Proposition 5a

Considering that µfre in equation (6) is the expected gain of the risk-equivalent distribution

and that by Assumption 3 the utility of act f is given by

V (f) = E
[
u
(
`fre
)]
. (20)

We just need to apply conventional tools to determine the certainty equivalent of V (f)

and replace the expected gain µfre by the right-hand side of equation (6) to find equation

(7).
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Q.E.D.

A.3 Proposition 5b

The ambiguous prospect is given by

Xt+dt = xt + dXt = xt + (µ− θiσ)dt+ σdBi
t = xt + µ

Xt+dt
i dt+ σdBi

t.

As already mentioned in Example 2, the source of ambiguity for this prospect is repre-

sented by M̃Xt+dt = {µXt+dt1 , ..., µ
Xt+dt
k }.

Using Proposition 4, the risk-equivalent distribution of Xt+dt satisfies the condition

µXt+dtre ≈ µXt+dt − 1

2
Aν(µXt+dt)σ2

µ̃Xt+dt
,

and the risk-equivalent lottery is therefore

Xt+dt ≈ xt + (µXt+dt − 1

2
Aν(µXt+dt)σ2

µ̃Xt+dt
)dt+ σdBre

t ,

≈ xt + (µ− θσ − 1

2
Aν(µ− θσ)σ2

θσ
2)dt+ σdBre

t , σ2
θ = Eψ[(θi − θ)2].

Knowing the risk-equivalent distribution we can finally compute the certainty equivalent

associated to Xt+dt

CE(Xt+dt) = u−1(Ere[u(Xt+dt)]) ≈ Ere[Xt+dt]−
1

2
Au(Ere[Xt+dt])Ere[(Xt+dt − Ere[Xt+dt])

2],

≈ xt + (µ− θσ)dt− 1

2
Aν(µ− θσ)σ2

θσ
2dt− 1

2
Au(Ere[Xt+dt])σ

2dt.

Therefore, the uncertainty premium is

κ̂ ≈ 1

2
Aν(µ− θσ)σ2

θσ
2dt+

1

2
Au(Ere[Xt+dt])σ

2dt, σ2
θ = Eψ[(θi − θ)2].

Q.E.D.

A.4 Proposition 8

The proof of Proposition 8 is mainly based on Lemma 8 in KMM (2005), p. 1886.

Lemma. Let ξ be a mapping ξ : ∆ → R and let η be a countably additive probabil-

ity measure on ∆. Suppose {ρn}n is a sequence of real-valued functions ρn : I → R
defined on an interval I of R with Arrow-Pratt coefficients Aρn : I → R such that
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limn→∞ (infx∈I A
ρ
n(x)) = +∞ and Aρn ≤ Aρn+1 for each x ∈ I and each n. Then

lim
n→∞

ρ−1
n

(∫
∆

ρn (ξ) dη

)
= inf ξ. (21)

Proof. Refer to KMM (2005), pp. 1886-1887.

Translating the notation of this Lemma in the present context, for an ambiguous act

f ∈ F , the set I ⊂ R corresponds to the set M̃f , the real-valued ρ is ν : M̃f → R, η

corresponds to the decision maker’s beliefs ψ on π ∈ ∆, and, finally, ξ is µf : ∆→ M̃f .

The Lemma implies that if we consider a set of decision makers that are sorted ac-

cording to their ambiguity aversion Aν0 ≥ Aν1 ≥ .. ≥ .. ≥ Aνn ≥ .. and we have that

limn→∞ (infx∈I A
ν
n(x)) = +∞, that is, as n grows very large we have extremely ambiguity

averse decision makers, then

lim
n→∞

ν−1
n

(∫
∆

νn
(
µ̃f
)
dψ

)
= inf

µfi ∈M̃f

µfi . (22)

It follows that for an extremely ambiguity averse decision maker n facing act f , the

risk-equivalent distribution satisfies

µfre = inf
µfi ∈M̃f

µfi , (23)

and, by following the steps of the proofs of Propositions 5a and 5b, the required uncer-

tainty premia are

κ̂ ≈ µf − inf
µfi ∈M̃f

µfi +
1

2
Au
(
µfre
)
σ2,

κ̂ ≈ (µf − inf
µfi ∈M̃f

µfi )dt+
1

2
Au(Ere[Xt+dt])σ

2dt,

respectively.

Q.E.D.

A.5 Proposition 9

By Definition 5, fst ∼st ~cf,st and, therefore, fst , xt+1 ∼st,xt+1 ~cf,st,xt+1 for all xt+1 ∈ Xt+1.

Consider a continuation plan f̃st ∈ F∗st characterized by the following payoff structure

f̃st(s
τ ) =

{
fst(s

t), τ = t,

cf,st,xt+1(sτ ), τ ≥ t+ 1.
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By Definition 5, fst ∼st f̃st . Given that Vst(f) = Ust(~cf,st) =
u(cf,st )

1−β ,

Vst,xt+1(f)(1− β) = u(cf,st,xt+1).

Since f̃st ∈ F∗st , we can use the result in equation (11) to write

Vst(f̃st) = u(fst(s
t)) + β

E
p
f̃
st

re(st)

[u(dst(s
t+1))]

1− β
,

= u(fst(s
t)) + β

E
p
f̃
st
r e(st)

[u(u−1(E
p
f̃
st

re(st)

[u(dst(s
t+1))]))]

1− β
,

= u(fst(s
t)) + β

E
p
f̃
st

re(st)

[u(cf,st,xt+1)]

1− β
,

= u(fst(s
t)) + βE

p
f̃
st

re(st)

[Vst,xt+1(f̃st)].

Since fst ∼st f̃st and by Assumption 4, we find that

Vst(f) = u(fst(s
t)) + βE

p
f
st

re(st)

[Vst,xt+1(f)].

Q.E.D.

A.6 Proposition 10

Considering that the discount factor in continuous-time is β = exp(−δdt), the recursive

continuous-time version of equation (12), given the payoff process C, is

V C
t = exp(−δdt)u(Ct)dt+ exp(−δdt)EreC(st)[V

C
t + dV C

t ]. (24)

Regrouping Vt terms, the above equation may be rewritten as

(exp(δdt)− 1)V C
t = u (Ct) dt+ EreC(st) [dVt] . (25)

Consider now the ambiguous process C whose payoffs evolves according to dCt =
(
µCt − θiσCt

)
dt+

σCt dB
i
t for πi ∈ ∆. The source of ambiguity is represented by the set M̃C

t = {µCt,1, ..., µCt,k}
with µCt,i = µCt −θiσCt . Following Proposition 4, it can be shown that, upon having reached

node st, the risk-equivalent distribution is characterized by

µCt,re(s
t) ≈ µCt − θ

(
st
)
σCt︸ ︷︷ ︸

µCt (st)

−1

2
Aν
(
µCt
(
st
))
σ2
θ(s

t)σCt
2, (26)
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where θ (st) = Eψ(st) [θi]and σ2
θ(s

t) = Eψ(st)[(θi − θ(st))2].

By Girsanov’s theorem, this implies that dB
reC(st)
t ≈ dBt+

(
θ (st) + 1

2
Aν
(
µCt (st)

)
σ2
θ(s

t)σCt
)
dt.

With the conjecture that the SDU evolves according to dVt = µV
C

t dt + σV
C

t dBt under π̂,

we have that

EreC(st)

[
dV C

t

]
≈
(
µV Ct − θ

(
st
)
σVt −

1

2
Aν
(
µCt
(
st
))
σ2
θ(s

t)σCt σ
V C

t

)
dt. (27)

Combining equation (25) with equation (27), we finally find the SDU for recursive risk-

equivalent preferences stated in Proposition 10

dV C
t ≈

(
−u (Ct) + δV C

t

)
dt+ θ

(
st
)
σV

C

t dt+
1

2
Aν
(
µCt
(
st
))
σ2
θ(s

t)σCt σ
V C

t dt+ σV
C

t dBt.

Q.E.D.

A.7 Corollary 10(a)

From Proposition 8(1) we know that an extremely ambiguity averse decision maker deems

as risk-equivalent the distribution yielding the expectation

µfre = inf
µfi ∈M̃f

µfi . (28)

If now this decision makers considers an ambiguous plan C whose payoff under some

probability measure πi ∈ ∆ evolves according to

dCt =
(
µCt − θiσCt

)︸ ︷︷ ︸
µCt

dt+ σCt dB
i
t, (29)

then he considers as risk-equivalent the distribution that minimizes µCt , and he perceives

the payoff of C as evolving according to

dCt =

(
µCt − sup

πi∈∆
θi
(
st
)
σCt

)
︸ ︷︷ ︸

inf
µC
i,t
∈M̃C

t
µCt

dt+ σCt dB
arg supπi∈∆ θi
t . (30)

Note that supπi∈∆ θi (s
t) is the largest θ associated to a π ∈ ∆ such that ψ (st(π)) > 0.

By Girsanov’s theorem we have, therefore, that dB
arg supπi∈∆ θi
t = dBt + supπi∈∆ θi (s

t) dt.

Conjecturing that the SDU follows the differential equation dV C
t = µV

C

t dt+σV
C

t dBt under
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π̂, we find that

EreC(st)

[
dV C

t

]
=

(
µV

C

t − sup
πi∈∆

θi
(
st
)
σV

C

)
dt. (31)

Combining equation (25) with equation (31), we have that the SDU for an extremely

ambiguity averse decision maker follows the process

dV C
t =

(
−u (Ct) + δV C

t

)
dt+ sup

πi∈∆
θi
(
st
)
σV

C

t dt+ σV
C

t dBt, (32)

which corresponds to the SDU in Theorem 2.2(a) in Chen and Epstein (2002), with the

inter-temporal aggregator f
(
Ct, V

C
t

)
= u (Ct)− δV C

t .

Q.E.D.
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