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ABSTRACT.  Proper scoring rules provide convenient and highly efficient tools for eliciting 

subjective beliefs.  As traditionally used, however, they are valid only under expected value 

maximization.  This paper shows how proper scoring rules can be generalized to modern 

(“nonexpected utility”) theories of risk and ambiguity, yielding mutual benefits: the empirical 

realism of nonexpected utility is introduced in proper scoring rules, and the beauty and 

efficiency of proper scoring rules is introduced in nonexpected utility.  An experiment 

demonstrates the feasibility of our generalized proper scoring rule, yielding plausible empirical 

results.   
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1 A preliminary version of this paper circulated with the title “Is the Quadratic Scoring Rule Really Incentive 

Compatible?”  This paper received helpful and detailed comments from Glenn Harrison. 
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1. Introduction 

In many situations, no probabilities are known of uncertain events that are relevant to our 

decisions, and subjective assessments of the likelihoods of such events have to be made.  

Proper scoring rules provide an efficient and incentive-compatible tool for eliciting such 

subjective assessments from choices.  They use cleverly constructed optimization problems 

where the observation of one single choice suffices to determine the exact quantitative degree 

of belief of an agent.  This procedure is more efficient than the observation of binary choices or 

indifferences, commonly used in decision theory, because binary choices only give inequalities 

and approximations, and indifferences are hard to elicit. 

 The measurement of subjective beliefs is important in many domains (Gilboa & 

Schmeidler 1999; Machina & Schmeidler 1992; Manski 2004), and proper scoring rules have 

been widely used accordingly, in accounting (Wright 1988), Bayesian statistics (Savage 1971), 

business (Staël von Holstein 1972), education (Echternacht 1972), finance (Shiller, Kon-Ya, & 

Tsutsui 1996), medicine (Spiegelhalter 1986), politics (Tetlock 2005), psychology 

(McClelland & Bolger 1994), and other fields (Hanson 2002; Johnstone 2006; Prelec 2004).  

Proper scoring rules are especially useful for giving experts incentives to exactly reveal their 

degrees of belief.  They are commonly used, for instance, to measure the degree of belief of 

weather forecasters and to improve their calibration (Palmer & Hagedorn 2006; Yates 1990).  

They have recently become popular in experimental economics and game theory.  The 

quadratic scoring rule is the most popular proper scoring rule today (McKelvey & Page 1990; 

Nyarko & Schotter 2002; Palfrey & Wang 2007), and is the topic of this paper. 

 Proper scoring rules were introduced independently by Brier (1950), Good (1952, p. 112), 

and de Finetti (1962).  They have traditionally been based on the assumption of expected value 

maximization, i.e. risk neutrality.  All applications up to today that we are aware of have 

maintained this assumption.  Empirically, however, many deviations from expected value 

maximization have been observed, and this may explain why proper scoring rules have not 

been used by modern decision theorists so far.  The first deviation was pointed out by Bernoulli 

(1738), who noted that risk aversion prevails over expected value, so that, under expected 

utility, utility has to be concave rather than linear.  Second, Allais (1953) demonstrated, for 

events with known probabilities, that people can be risk averse in ways that expected utility 

cannot accommodate, so that more general decision theories are called for with other factors 
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besides utility curvature (Kahneman & Tversky 1979; Quiggin 1982; Tversky & Kahneman 

1992).  Third, Keynes (1921), Knight (1921), and Ellsberg (1961) demonstrated the importance 

of ambiguity for events with unknown probabilities (“Knightian uncertainty”).  Then 

phenomena occur that are fundamentally different than those for known probabilities, which 

adds to the descriptive failure of expected value.  Gilboa (1987), Gilboa & Schmeidler (1989), 

Hogarth & Einhorn (1990), Schmeidler (1989), and Tversky & Kahneman (1992) developed 

decision theories that incorporate ambiguity.  Halevy (2007) provided a recent empirical study 

into the new phenomena.  Typical new implications for economic theory are in Hansen, 

Sargent, & Tallarini (1999) and Mukerji & Tallon (2001). 

 It is high time that proper scoring rules be updated from the expected-value model as 

assumed in the 1950s, when proper scoring rules were introduced, to the current state of the art 

in decision theory, where violations of expected value have been widely documented.  Such an 

update, provided by this paper, brings mutual benefits for practitioners of proper scoring rules 

and for the study of risk and ambiguity.  For practitioners of proper scoring rules we show 

how to improve the empirical performance and validity of their measurement instrument.  For 

studies of risk and ambiguity we show how to benefit from the efficient measurement 

instrument provided by proper scoring rules.  Regarding the first benefit, we bring bad news 

when describing the many empirical deviations from expected value that distort classical proper 

scoring rules, but good news when we give quantitative assessments of those distortions and 

ways to correct for them.  In the experiment in this paper we will find no systematic biases for a 

repeated-payment treatment, so that no correction may be needed for group averages then.  This 

can be further good news for classical applications of proper scoring rules.  Regarding the 

second benefit, we show how subjective beliefs and ambiguity attitudes can easily be isolated 

from risk attitude, using the incentive compatibility and efficiency of proper scoring rules. 

 Our correction technique can be interpreted as a new calibration method (Keren 1991; 

Yates 1990) that does not need many repeated observations, unlike traditional calibration 

methods (Clemen & Lichtendahl 2005).  An efficient aspect of our method is that we need 

not elicit the entire risk attitudes of agents so as to correct for them.  For instance, we need 

not go through an entire measurement of the utility and probability weighting functions.  

Instead, we can immediately infer the correction from a limited set of readily observable data 

(the “correction curve”; see later).   

 We emphasize that the biases that we correct for need not concern mistakes on the part of 

our subjects.  Deviations from risk neutrality need not be irrational and, according to some, 

even deviations from Bayesian beliefs need not be irrational, nor are the corresponding 
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ambiguity attitudes (Gilboa & Schmeidler 1989).  Thus, learning and incentives need not 

generate the required corrections.  The required corrections concern empirical deficiencies of 

the model of expected value, i.e. they concern the researchers analyzing the data. 

 We illustrate the feasibility of our method through an experiment where we measure the 

subjective beliefs of participants about the future performance of stocks after provision of 

information about past performance.  The empirical findings confirm the usefulness of our 

method.  Violations of additivity of subjective beliefs are reduced but not eliminated by our 

corrections.  Thus, the classical measurements will contain violations of additivity that are 

partly due to the incorrect assumption of expected value, but partly they are genuine.  

Subjective beliefs are genuinely nonadditivity.  They cannot be modeled through additive 

subjective probabilities. 

 From the Bayesian perspective, violations of additivity are undesirable.  Because we can 

measure these violations, we can investigate which of several implementations of proper 

scoring rules best approximate the Bayesian model.  To illustrate this point, we compared two 

experimental treatments: (1) only one single large decision is randomly selected and paid for 

real; (2) every decision is paid, and subjects earn the sum of (moderate) payments.  Because of 

the law of large numbers one expects the results of treatment (2), with repeated small payments, 

to stay closer to expected value and Bayesianism than those of treatment (1) will.  This was 

confirmed in our experiment, where smaller corrections were required for the repeated 

payments than for the single payment. 

 The analysis of this paper consists of three parts.  The first part (§§3-5) considers various 

modern theories of risk and ambiguity, and derives implications for proper scoring rules from 

these theories.  This part is of interest to practitioners of proper scoring rules because it shows 

what distortions affect these rules.  It is of interest to decision theorists because it shows a 

new field of application. 

 The second part of the paper, §§6-7, applies the revealed-preference reversal technique to 

the results of the first part.  That is, we do not assume theoretical models to derive empirical 

predictions therefrom, but we assume empirical observations and derive the theoretical 

models from those.  §6 presents the main result of this paper, showing how subjective beliefs 

can be derived from observed choices in an easy manner.  §7 contains a simple example 

illustrating such a derivation at the individual level.  It shows in particular that many 

decision-theoretic details, presented in the first part to justify our correction procedures, need 

not be studied when applying our method empirically.  Readers interested only in applying 

our method empirically can skip most of §§3-6, reading only §3 up to Theorem 3.1 and 
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Corollary 6.4.  For practitioners of proper scoring rules, the second part of this paper then 

shows how beliefs can be derived from observed proper scoring rules under more realistic 

descriptive theories.  We introduce so-called risk-corrections to correct for distortions.  For 

the study of subjective (possibly non-Bayesian) beliefs and ambiguity attitudes, the second 

part of this paper shows how proper scoring rules can be used to measure and analyze these 

concepts efficiently.  An observed choice in a proper scoring rule gives as much information 

as an observed indifference in a binary choice while avoiding the empirical difficulties of 

observing indifferences. 

 The third part of the paper, §§8-11, presents an experiment where we implement our 

correction method.  We present some preliminary findings on nonadditive beliefs and on 

different implementations of real incentives.  For brevity, detailed examinations of empirical 

implementations of our method, of the descriptive and normative properness of additive 

subjective beliefs, the effects of real incentives, and also of interpretations of beliefs and 

ambiguity attitudes, are left as topics for future study.  Our contribution is to show how those 

concepts can be measured.  The experiment of this paper, thus, serves to demonstrate the 

empirical implementability of our theoretical contribution. 

 §8 contains methodological details.  §9 presents results regarding the biases that we 

correct for, and §10 presents some implications of the corrections of such biases.  Discussions 

and conclusions are in §§11-12.  Appendix A presents proofs and technical results, Appendix 

B surveys the implications of modern decision theories for our measurements, and Appendix 

C presents details of the experimental instructions.   

 

2. Proper Scoring Rules; Definitions 

 Let E denote an event of which an agent is uncertain about whether or not it obtains, such 

as snow in Amsterdam in March 1932, whether a stock’s value will decrease during the next 

half year, whether a ball randomly drawn from 20 numbered balls will have a number below 

5, whether the 100th digit of π is 3, and so on.  The degree of uncertainty of an agent about E 

will obviously depend on the information that the agent has about E.  Some agents may even 

know with certainty about some of the events.  Most events will, however, be uncertain.  For 

most uncertain events, no objective probabilities of occurrence are known, and our decisions 

have to be based on subjective assessments, consciously or not, of their likelihood.   
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 Prospects designate event-contingent payments.  We use the general notation (E:x, y) for 

a prospect that yields outcome x if event E obtains and outcome y if Ec obtains, with Ec the 

complementary event not-E.  The unit of payment for outcomes is one dollar.  Risk concerns 

the case of known probabilities.  Here, for a prospect (E:x, y), the probability p of event E is 

known, and we can identify this prospect with a probability distribution (p:x, y) over money, 

yielding x with probability p and y with probability 1−p. 

 Several methods have been used in the literature to measure the subjective degree of 

belief of an agent in an event E.  Mostly these have been derived from: (a) binary 

preferences, which only give inequalities or approximations; (b) binary indifferences, which 

are hard to elicit, e.g. through the complex Becker-DeGroot-Marschak mechanism (Braga & 

Starmer 2005; Karni & Safra 1987) or bisection (Abdellaoui, Vossman, & Weber (2005); (c) 

introspection, which is not revealed-preference based let alone incentive-compatible.  Proper 

scoring rules provide an efficient and operational manner for measuring subjective beliefs 

that deliver what the above methods seek to do while avoiding the problems mentioned. 

 Under the quadratic scoring rule (QSR), the most commonly used proper scoring rule 

and the rule considered in this paper, a qsr-prospect  

 (E: 1−(1−r)2, 1−r2),  (2.1) 

is offered to the agent, where 0 ≤ r ≤ 1 is a number that the agent can choose freely.  The 

number chosen is a function of E, sometimes denoted rE, and is called the (uncorrected) 

reported probability of E.  The reasons for this term will be explained later.  More general 

prospects (E: a−b(1−r)2, a−br2) for any b>0 and a∈— can be considered, but for simplicity we 

restrict our attention to a = b = 1.  No negative payments can occur, so that the agent never 

loses money.  It is obvious that if the agent is certain that E will obtain, then he will 

maximize 1−(1−r)2, irrespective of 1−r2, and will choose r=1.  Similarly, r=0 is chosen if E 

will certainly not obtain.  The choice of r = 0.5 gives a riskless prospect, yielding 0.75 with 

certainty.  Increasing r increases the payment under E but decreases it under Ec.  Under the 

event that happens, the QSR pays 1 minus the squared distance between the reported 

probability of a clairvoyant (who assigns probability 1 to the event that happens) and the 

reported probability of the agent (r under E, 1−r under Ec).  The following symmetry between 

E and Ec will be crucial in later theories. 
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OBSERVATION 2.1. The quadratic scoring rule for event E presents the same choice of 

prospects as the quadratic scoring rule for event Ec, with each prospect resulting from r as 

reported probability of E identical to the prospect resulting from 1−r as reported probability 

of Ec.  · 

 

 Because of Observation 2.1, we have 

 rEc = 1− rE. (2.2) 

 

3. Proper Scoring Rules and Subjective Expected Value 

 The first two parts of our analysis concern a theoretical analysis of proper scoring rules.  

This section considers the model commonly assumed for proper scoring rules, from their 

introduction in the 1950s up to today: subjective expected value maximization.  It means, 

first, that the agent assigns a subjective probability p to each event E.2  Second, the agent 

maximizes expected value with respect to probabilities. 

 For QSRs and an event E with (subjective) probability P(E) = p, subjective expected 

value implies that the agent maximizes 

 p × (1−(1−r)2)  +  (1−p) × (1−r2)   =   1 − p(1−r)2 − (1−p)r2. (3.1) 

If event E has probability p, then we also write R(p) for rE throughout this paper.  According 

to Eq. 3.1, and all other models considered in this paper, all events E with the same 

probability p have the same value rE, so that R(p) is well-defined.  We have the following 

corollary of Eq. 2.2. 

 R(1−p) = 1 − R(p). (3.2) 

                                                
2 In this paper, the term subjective probability is used only for probability judgments that are Bayesian in the 

sense of satisfying the laws of probability.  In the literature, the term subjective probability has sometimes been 

used for judgments that deviate from the laws of probability, including cases where these judgments are 

nonlinear transformations of objective probabilities when the latter are given.  Such concepts, different than 

probabilities, will be analyzed in later sections, and we will use the term (probability) weights or beliefs, 

depending on the way of generalization, to designate them. 
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 The following theorem demonstrates that the QSR is incentive compatible.  The theorem 

immediately follows from the first-order optimality condition 2p(1−r) − 2r(1−p) = 0 in Eq. 

3.1.  Second-order optimality conditions are verified throughout this paper and will not be 

discussed in what follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THEOREM 3.1.  Under subjective expected value maximization, the optimal choice rE is equal 

to the probability p of event E, i.e. R(p) = p.  · 
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FIGURE 3.1.  Reported probability R(p) as a function of probability p 
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 It is in the agent's best interest to truthfully report his subjective probability of E.  This 

explains the term “reported probability.”  In Theorem 3.1, reported probabilities satisfy the 

Bayesian additivity condition for probabilities.  Additivity is the well-known property that the 

probability of a disjoint union is the sum of the separate probabilities.  We call the number rE 

the (uncorrected) reported probability.   

 Figure 3.1 depicts R(p) as a function of the probability p which, under expected value as 

considered here, is simply the diagonal r = p, indicated through the letters EV.  The other 

curves and points in the figure will be explained later.  Throughout the first two parts of this 

paper, we use variations of the following theoretical example. 

 

EXAMPLE 3.2.  An urn K (“known” distribution) contains 25 Crimson, 25 Green, 25 Silver, 

and 25 Yellow balls.  One ball will be drawn at random.  C designates the event of a crimson 

ball drawn, and G, S, and Y are similar.  E is the event that the color is not crimson, i.e. it is 

the event Cc = {G,S,Y}.  Under expected value maximization, rE = R(0.75) = 0.75 is optimal 

in Eq. 2.1, yielding prospect (E:0.9375, 0.4375) with expected value 0.8125.  The point rE is 

depicted as rEV in Figure 3.1.  Theorem 3.1 implies that rG = rS = rY = 0.25.  We have rG + rS + 

rY = rE, and the reported probabilities satisfy additivity.  · 

 

4. Two Commonly Found Deviations from Expected Value under 

Risk, and Their Implications for Quadratic Proper Scoring Rules 

 This section considers two factors that distort proper scoring rule measurements, and that 

should be corrected for.  These factors concern decision attitudes and can be identified from 

decision under risk, with events for which probabilities are given.  Proper scoring rules serve 

to examine other kinds of events, namely events with unknown probabilities.  Those events 

will be the topic of the following sections.  This section considers known probabilities only 

so as to identify biases, as a preparation for the following sections.  §4.1 defines the domain 

of decision under risk, and then explains the organization of the other subsections. 
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4.1. Decision under Risk 

 

ASSUMPTION 4.1.1. [Decision under Risk].  For event E, an objective probability p is given.  

· 

 

 Any deviation of a reported probability rE from the objective probability p entails a bias 

that should be corrected for.  Under expected value maximization we obtain, similarly as in 

Theorem 3.1, that the agent should report r=p, so that there is no bias.  The hypothetical 

situation of an agent using a subjective probability in Theorem 3.1 different than the 

objective probability in Assumption 4.1.1 cannot arise under plausible assumptions.3  

Subjective probabilities agree with objective probabilities whenever the latter exist, and this 

will be assumed throughout. 

 The effects of the factors that deviate from expected value and that distort the classical 

proper scoring rule measurements, explained later, are illustrated in Figure 3.1.  Their 

quantitative size will be illustrated through extensions of Example 3.2.  §4.2 considers the 

first factor generating deviations, being nonlinear utility under expected utility.  This section 

extends earlier studies of this factor by Winkler & Murphy (1970).  We use expected utility 

and its primitives as in Savage’s (1954) usual model.  Extensions to alternative models 

(Broome 1990; Karni 2007; Luce 2000) are a topic for future research.  §4.3 considers the 

second factor, namely violations of expected utility for known probabilities. 

 

4.2. The First Deviation: Utility Curvature 

 

 Bernoulli (1738) put forward the first deviation from expected value.  Because of the risk 

aversion in the so-called St. Petersburg paradox, Bernoulli proposed that people maximize the 

expectation of a utility function U.  We assume that U is continuously differentiable with 

                                                
3 The first assumption is what defines decision under risk: that the only relevant aspect of events is their 

objective probability, and the second that we have sufficient richness of events to carry out the following 

reasoning.  The claim then follows first for equally-probable n-fold partitions of the universal event, where 

because of symmetry all events must have both objective and subjective probabilities equal to 1/n.  Then it 

follows for all events with rational probabilities because they are unions of the former events.  Finally, it follows 

for all remaining events by proper continuity or monotonicity conditions.  There have been several 

misunderstandings about this point, especially in the psychological literature (Edwards 1954, p. 396; 

Schoemaker 1982, Table 1). 
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positive derivative everywhere, implying strict increasingness.  We assume throughout that 

U(0) = 0.  Eq. 3.1 is now generalized to 

 pU(1−(1−r)2) + (1−p)U(1−r2) . (4.2.1) 

The first-order optimality condition for r, and a rearrangement of terms (as in the proof of 

Theorem 5.2), implies the following result.  For r ≠ 0.5, the theorem also follows as a 

corollary of Theorem 5.2 and Eq. 3.2. 

 

THEOREM 4.2.1.  Under expected utility with p the probability of event E, the optimal choice 

r = R(p) satisfies: 

 r  =  
p

p + (1−p)
U´(1−r2)

U´(1−(1−r)2)
 
  . (4.2.2) 

· 

 

 Figure 3.1 depicts an example of the function r under expected utility, indicated by the 

letters EU, and is similar to Figure 3 of Winkler & Murphy (1970); it is confirmed 

empirically by Huck & Weizsäcker (2002).  The decision-based distortion in the direction of 

0.5 is opposite to the overconfidence (probability judgments too far from 0.5) mostly found in 

direct judgments of probability without real incentives (McClelland & Bolger 1994), and 

found among experts seeking to distinguish themselves (Keren 1991, p. 2f24 and 252; the 

“expert bias”, Clemen & Rolle 2001).  Optimistic and pessimistic distortions of probability 

can also result from nonlinear utility if the probability considered is a consensus probability 

for a group of individuals with heterogeneous beliefs (Jouini & Napp 2007). 

 

EXAMPLE 4.2.2.  Consider Example 3.2, but assume expected utility with U(x) = x0.5.  

Substitution of Eq. 4.2.2 (or Theorem 5.2 below) shows that rE = R(0.75) = 0.69 is optimal, 

depicted as rEU in Figure 3.1, and yielding prospect (E:0.91, 0.52) with expected value 

0.8094.  The extra risk aversion generated by concave U has led to a decrease of rE by 0.06 

relative to Example 3.2, distorting the probability elicited, and generating an expected-value 

loss of 0.8125 − 0.8094 = 0.0031.  This amount can be interpreted as a risk premium, 

designating a profit margin for an insurance company.  By Eq. 2.2, rC = 0.31, and by 

symmetry rG = rS = rY = 0.31 too.  The reported probabilities violate additivity, because rG + 
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rS + rY = 0.93 > 0.69 =  rE.  This violation in the data reveals that expected value does not 

hold.  · 

 

OBSERVATION 4.2.3.  Under expected utility with probability measure P, rE = 0.5 implies P(E) 

= 0.5.  Conversely, P(E) = 0.5 implies rE = 0.5 if risk aversion holds.  Under risk seeking, rE ≠ 

0.5 is possible if P(E) = 0.5.  · 

 

 Theorem 4.2.1 clarifies the distortions generated by nonlinear utility, but it does not 

provide an explicit expression of R(p), i.e. r as a function of p, or vice versa.  It seems to be 

impossible, in general, to obtain an explicit expression of R(p).  We can, however, obtain an 

explicit expression of the inverse of R(p), i.e. p in terms of r (Corollary 6.1).  For numerical 

purposes, R(p) can then be obtained as the inverse of that function—this is what we did in our 

numerical analyses, and how we drew Figure 3.1.   

 

4.3. The Second Deviation: Nonexpected Utility for Known Probabilities 

 

 In the nonexpected utility analyses that follow, we will often restrict our attention to r ≥ 

0.5.  Results for r < 0.5 then follow by interchanging E and Ec, and the symmetry of 

Observation 2.1 and Eq. 2.2. 

 Event A is (revealed) more likely than event B if, for some positive outcome x, say x = 

100, the agent prefers (A:x, 0) to (B:x, 0).  In all models considered hereafter, this 

observation is independent of the outcome x>0.  In view of the symmetry of QSRs in 

Observation 2.1, for r  ≠  0.5 the agent will always allocate the highest payment to the most 

likely of E and Ec.  It leads to the following restriction of QSRs. 

 

OBSERVATION 4.3.1.  Under the QSR in Eq. 2.1, the highest outcome is always associated 

with the most likely event of E and Ec.  · 

 

Hence, QSRs do not give observations about most likely events when endowed with the 

worst outcome.  Similar restrictions apply to all other proper scoring rules considered in the 

literature so far. 
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 We now turn to the second deviation from expected value.  With M denoting 106, the 

preferences M ê (0.8: 5M, 0) and (0.25:M, 0) Ä (0.20:5M, 0) are plausible.  They would 

imply, under expected utility with U(0) = 0, the contradictory inequalities U(M) > 0.8 × 

U(5M) and 0.25U(M) < 0.20 × U(5M) (implying U(M) < 0.8 × U(5M)), so that they falsify 

expected utility.  It has since been shown that this paradox does not concern an exceptional 

phenomenon pertaining only to hypothetical laboratory choices with extreme amounts of 

money, but that the phenomenon is relevant to real decisions for realistic stakes (Kahneman 

& Tversky 1979).  The Allais paradox and other violations of expected utility have led to 

several alternative models for decision under risk, the so-called nonexpected utility models 

(Machina 1987; Starmer 2000; Sugden 2004).  For the prospects relevant to this paper, QSRs 

with only two outcomes and no losses, all presently popular static nonexpected-utility 

evaluations of qsr-prospects (Eq. 2.1) are of the following form (see Appendix B).  We first 

present such evaluations for the case of highest payment under event E, i.e. r ≥ 0.5, which can 

be combined with p ≥ 0.5. 

 For r ≥ 0.5: w(p)U(1−(1−r)2) + (1−w(p))U(1−r2). (4.3.1) 

Here w is a continuous strictly increasing function with w(0) = 0 and w(1) = 1, and is called a 

probability weighting function.  Expected utility is the special case of w(p) = p.  By 

symmetry, the case r < 0.5 corresponds with a reported probability 1−r > 0.5 for Ec, giving 

the following representation.  

 For r < 0.5: w(1−p)U(1−r2) + (1 − w(1−p))U(1−(1−r)2). (4.3.2) 

The different weighting of an event when it has the highest or lowest outcome is called rank-

dependence.  It suffices, by Eqs. 2.2 and 3.2, to analyze the case of r ≥ 0.5 for all events. 

 Both in Eq. 4.3.1 and in Eq. 4.3.2, w is applied only to probabilities p ≥ 0.5, and needs to 

be assessed only on this domain in what follows.  This restriction is caused by Observation 

4.3.1.  We display the implication. 

 

OBSERVATION 4.3.2.  For the QSR, only the restriction of w to [0.5,1] plays a role, and w's 

behavior on [0,0.5) is irrelevant.  · 
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Hence, for the risk-correction introduced later, we need to estimate w only on [0.5,1].  An 

advantage of this point is that the empirical findings about w are uncontroversial on this 

domain, the general finding being that w underweights probabilities there.4 

 

THEOREM 4.3.3.  Under nonexpected utility with p the probability of event E, the optimal 

choice r = R(p) satisfies: 

 For r > 0.5:  r  =  
w(p)

w(p) + (1−w(p))
U´(1−r2)

U´(1−(1−r)2)
 
  . (4.3.3) 

· 

 

 The above result, again, follows from the first-order optimality condition, and also 

follows as a corollary of Theorem 5.2 below.  As an aside, the theorem shows that QSRs 

provide an efficient manner for measuring probability weighting on (0.5, 1] if utility is linear, 

because then simply r = R(p) = w(p).  An extension to [0, 0.5] can be obtained by a 

modification of QSRs, discussed further in the next section (Eqs. 5.6 and 5.7). 

 

EXAMPLE 4.3.4.  Consider Example 4.2.2, but assume nonexpected utility with U(x) = x0.5 

and 

 w(p) = (exp(−(−ln(p))α)) (4.3.4) 

with parameter α = 0.65 (Prelec 1998).  This function agrees with common empirical 

findings (Tversky & Kahneman 1992; Abdellaoui 2000; Bleichrodt & Pinto 2000; Gonzalez 

& Wu 1999).  From Theorem 4.3.3 it follows that rE = R(0.75) = 0.61 is now optimal, 

depicted as rnonEU in Figure 3.1.  It yields prospect (E:0.85, 0.63) with expected value 0.7920.  

The extra risk aversion relative to Example 4.2.2 generated by w for this event E has led to an 

extra distortion of rE by 0.08.   The extra expected-value loss (and, hence, the extra risk 

premium) relative to Example 4.2.2 is 0.8094 − 0.7920 = 0.0174.  By Eq. 4.3.1, rC = 0.39, 

and by symmetry rG = rS = rY = 0.39 too.  The reported probabilities strongly violate 

additivity, because rG + rS + rY = 1.17 > 0.61 = rE.  · 

                                                
4 On [0,0.5) the patterns is less clear, with both underweighting and overweighting (Abdellaoui 2000, Bleichrodt 

& Pinto 2000, Gonzalez & Wu 1999). 
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 Figure 3.1 illustrates the effects through the curve indicated by nonEU.  The curve is flat 

around p = 0.5, more precisely, on the probability interval [0.43, 0.57].  For probabilities 

from this interval the risk aversion generated by nonexpected utility is so strong that the agent 

goes for maximal safety and chooses r = 0.5, corresponding with the sure outcome 0.75 (cf. 

Manski 2004 footnote 10).  Such a degree of risk aversion is not possible under expected 

utility, where r = 0.5 can happen only for p = 0.5 (Observation 4.2.3).  This observation 

cautions against assigning specific levels of belief to observations r = 0.5, because proper 

scoring rules may be insensitive to small changes in the neighborhood of p = 0.5.   

 Up to this point, we have considered deviations from expected value and Bayesianism at 

the level of decision attitude, and beliefs themselves were not yet affected.  This will change 

in the next section. 

 

5. A Third Commonly Found Deviation from Subjective Expected 

Value Resulting from Non-Bayesian Beliefs and Ambiguity, and 

Its Implications for Quadratic Proper Scoring Rules 

 This section considers a third deviation from expected value maximization.  This 

deviation does not (merely) concern decision attitudes as did the two deviations examined in 

the preceding section.  It rather concerns subjective beliefs about events with unknown 

probabilities (which involves ambiguity).  These are the events that proper scoring rules serve 

to examine.  Thus, the deviation in this section does not concern something we necessarily 

have to correct for, but rather it concerns something that we want to measure and investigate 

without a commitment as to what it should look like.   

 In applications of proper scoring rules it is commonly assumed that the agent chooses 

(Bayesian) subjective probabilities p = P(E) for such events, where these subjective 

probabilities are assumed to satisfy the laws of probability.  The agent evaluates prospects the 

same way for subjective probabilities as if these probabilities were objective, leading to the 

following modification of Eq. 4.3.1: 

 For r ≥ 0.5: w(P(E))U(1−(1−r)2) + (1−w(P(E)))U(1−r2). (5.1) 
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 For w the identity with w(P(E)) = P(E), Eq. 5.1 reduces to subjective expected utility, the 

subjective version of Eq. 4.2.1.  In applications of proper scoring rules it is commonly 

assumed that not only w, but also U is the identity, leading to subjective expected value 

maximization, the model analyzed in §3. 

 The approach to unknown probabilities of Eq. 5.1, treating uncertainty as much as 

possible in the same way as risk, is called probabilistic sophistication (Machina & 

Schmeidler 1992).  All results of §4 can be applied to this case, with distortions generated by 

nonlinear U and w.  Probabilistic sophistication can be interpreted as a last attempt to 

maintain Bayesianism at least at the level of beliefs.  Empirical findings, initiated by Ellsberg 

(1961), have demonstrated however that probabilistic sophistication is commonly violated 

empirically. 

 

EXAMPLE 5.1 [Violation of Probabilistic Sophistication].  Consider Example 4.3.4, but now 

there is an additional urn A (“ambiguous”).  Like urn K, A contains 100 balls colored 

Crimson, Green, Silver, or Yellow, but now the proportions of balls with these colors are 

unknown.  Ca designates the event of a crimson ball drawn from A, and Ga, Sa, and Ya are 

similar.  Ea is the event Ca
c = {Ga,Sa,Ya}.  If probabilities are assigned to drawings from the 

urn A (as assumed by probabilistic sophistication) then, in view of symmetry, we must have 

P(Ca) = P(Ga) = P(Sa) = P(Ya), so that these probabilities must be 0.25.  Then P(Ea) must be 

0.75, as was P(E) in Example 4.3.4.  Under probabilistic sophistication combined with 

nonexpected utility as in Example 4.3.4, rEa must be the same as rE in Example 4.3.4 for the 

known urn, i.e. rEa = 0.61.  It implies that people must be indifferent between (E:x, y) and 

(Ea:x, y) for all x and y.  The latter condition is typically violated empirically.  People usually 

have a strict preference for known probabilities, i.e.  

 (E:x, y) ê (Ea:x, y).5   

Consequently, it is impossible to model beliefs about uncertain events Ea through 

probabilities, and probabilistic sophistication fails.  This observation also suggests that rEa 

may differ from rE.  · 

 

                                                
5 This holds also if people can choose the three colors to gamble on in the ambiguous urn, so that there is no 

reason to suspect unfavorable compositions. 
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 The deviations from expected value revealed by Ellsberg through the above example 

cannot be explained by utility curvature or probability weighting, and must be generated by 

other factors.  Those other, new, factors refer to components of beliefs and decision attitudes 

that are typical of unknown probabilities.  They force us to give up on the additive measure 

P(E) in our model.  Besides decisions, also beliefs may deviate from the Bayesian principles.  

The important difference between known and unknown probabilities was first emphasized by 

Keynes (1921) and Knight (1921). 

 As explained in Appendix B, virtually all presently existing models for decision under 

uncertainty evaluate the qsr-prospect of Eq. 2.1 in the following way: 

 For r ≥ 0.5: W(E)U(1−(1−r)2) + (1−W(E))U(1−r2). (5.2) 

Here W is a nonadditive set function often called weighting function or capacity, which 

satisfies the natural requirements that W assigns value 0 to the vacuous event ∅, value 1 to 

the universal event, and is increasing in the sense that C ⊃ D implies W(C) ≥ W(D).  For 

completeness, we also give the formula for r < 0.5, which can be obtained from Eq. 5.2 

through symmetry (Observation 2.1). 

 For r < 0.5: (1−W(Ec))U(1−(1−r)2) + W(Ec)U(1−r2). (5.3) 

 Under probabilistic sophistication (Eq. 5.1), subjective belief P can be recovered from W 

through P = w−1(W), where w−1 can be interpreted as a correction for non-neutral risk 

attitudes.  Machina (2004) argued that almost-objective probabilities can be constructed in 

virtually all circumstances of uncertainty, so that a domain for w is always available.  In 

general, the “risk-corrected” function w−1(W) need not be a probability.  We write 

 B(E) = w−1(W). 

 In general, B is what remains if the risk component w is taken out from W.  It is common 

in decision theory to interpret factors beyond risk attitude as ambiguity.  Then B reflects 

ambiguity attitude.  There is no consensus about the extent to which ambiguity reflects non-

Bayesian beliefs, and to what extent it reflects non-Bayesian decision attitudes beyond belief.  

If the equality B(E) + B(Ec) = 1 (binary additivity) is violated, then it can further be debated 

whether B(E) or 1 − B(Ec) is to be taken as an index of belief or of ambiguity.  Such 

interpretations have not yet been settled, and further studies are called for.  We will usually 

refer to B as reflecting beliefs, to stay as close as possible to the terminology used in the 
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literature on proper scoring rules today.  On some occasions we will refer to the decision-

theoretic ambiguity.  Irrespective of the interpretation of B, it is clear that the behavioral 

component w−1 of risk attitude should be filtered out before an interpretation of belief can be 

considered.  This paper shows how this filtering out can be done. 

 In Schmeidler (1989), the main paper to initiate Eqs. 5.2 and 5.3, w was assumed linear, 

with expected utility for given probabilities, and W coincided with B.  Schmeidler interpreted 

this component as reflecting beliefs.  So did the first paper on nonadditive measures for 

decision making, Shackle (1949).  Many studies of direct judgments of belief have supported 

the thesis that subjective beliefs may deviate from Bayesian probabilities (McClelland & 

Bolger 1994; Shafer 1976; Tversky & Koehler 1994).  Bounded rationality is an extra reason 

to expect violations of additivity at the level of beliefs (Aragones et al. 2005; Charness & 

Levin 2005). 

 We rewrite Eq. 5.2 as 

 For r ≥ 0.5: w(B(E))U(1−(1−r)2) + (1−w(B(E)))U(1−r2). (5.4). 

 For r < 0.5: (1−w(B(Ec)))U(1−(1−r)2) + w(B(Ec))U(1−r2). (5.5) 

In general, B assigns value 0 to the vacuous event ∅, value 1 to the universal event, and B is 

increasing in the sense that C ⊃ D implies B(C) ≥ B(D).  These properties similarly hold for 

the composition w(B(.)), as we saw above. 

 As with the weighting function w under risk, B is also applied only to the most likely one 

of E and Ec in the above equations, reflecting again the restriction of the QSR of Observation 

4.3.1.  Hence, under traditional QSR measurements we cannot test binary additivity directly 

because we measure B(E) only when E is more likely than Ec.  These problems can easily be 

amended by modifications of the QSR.  For instance, we can consider prospects  

 (E: 2−(1−r)2, 1−r2), (5.6) 

i.e. qsr-prospects as in Eq. 2.1 but with a unit payment added under event E.  The classical 

proper-scoring-rule properties of §2 are not affected by this modification, and the results of 

§3 are easily adapted.  With this modification, we have the liberty to combine event E with 

the highest outcome both if E is more likely than Ec and if E is less likely, and we avoid the 

restriction of Observation 4.3.1.  We then can observe w of the preceding subsection, and 

W(E) and B(E) over their entire domain.  Similarly, with prospects 
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 (E: 1−(1−r)2, 2−r2), (5.7) 

we can measure the duals 1 − W(Ec), 1 − w(1−p), and 1 − B(Ec) over their entire domain.  In 

this study we confine our attention to the QSRs of Eq. 2.1 as they are classically applied 

throughout the literature.  We reveal their biases according to the current state of the art of 

decision theory, suggest remedies whenever possible, and signal the problems that remain. 

Further investigations of the, we think promising, modifications of QSRs in the above 

equations are left to future studies. 

 The restrictions of the classical QSRs will also hold for the experiment reported later in 

this paper.  There an application of the QSR to events less likely than their complements are 

to be interpreted formally as the measurement of 1 − B(Ic).  The restrictions also explain why 

the theorems below concern only the case of r > 0.5 (with r = 0.5 as a boundary solution).   

 The following theorem, our main theorem, specifies the first-order optimality condition 

for interior solutions of r for general decision making, incorporating all deviations described 

so far. 

 

THEOREM 5.2.  Under Eq. 5.4, the optimal choice r satisfies: 

 If r > 0.5, then  r  =  rE   =   
w(B(E))

w(B(E)) + (1−w(B(E)))
U´(1−r2)

U´(1−(1−r)2)
 
   . (5.8) 

· 

 

 We cannot draw graphs as in Figure 3.1 for unknown probabilities, because the x-axis 

now concerns events and not numbers.  The W values of ambiguous events will be relatively 

low for an agent with a general aversion to ambiguity, so that the reported probabilities r in 

Eq. 5.8 will be relatively small, i.e. close to 0.5.  We give a numerical example. 

 

EXAMPLE 5.3.  Consider Example 5.1.  Commonly found preferences (E:100, 0) ê (Ea:100, 0) 

imply that w(B(Ea)) < w(B(E)) = w(0.75).  Hence, by Theorem 5.2, rEa will be smaller than 

rE.  Given the strong aversion to unknown probabilities that is often found empirically 

(Camerer & Weber 1992), we will assume that rEa = 0.52.  It is depicted as rnonEUa in Figure 

3.1, and yields prospect (Ea:0.77, 0.73) with expected value 0.7596.  The extra preference for 

certainty relative to Example 4.3.4 generated by unknown probabilities for this event Ea has 
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led to an extra distortion of rEa by 0.61 − 0.52 = 0.09.   The extra expected-value loss relative 

to Example 4.3.4 is 0.7920 − 0.7596 = 0.0324.  This amount can be interpreted as the 

ambiguity-premium component of the total uncertainty premium.  By Eq. 4.3.1, rC = 0.48, 

and by symmetry rG = rS = rY = 0.48 too.  The reported probabilities violate additivity to an 

extreme degree, because rG + rS + rY = 1.44 > 0.52 = rEa.  The behavior of the agent is close to 

a categorical fifty-fifty evaluation, where all nontrivial uncertainties are weighted the same 

without discrimination. 

 The belief component B(Ea) is estimated to be w−1(W(Ea)) = w−1(0.52) = 0.62.  This 

value implies that B must violate additivity.  Under additivity, we would have B(Ca) = 1 − 

B(Ea) = 0.38 and then, by symmetry, B(Ga) = B(Sa) = B(Ya) = 0.38, so that B(Ga) + B(Sa) + 

B(Ya) = 3 × 0.38 = 1.14.  This value should, however, equal B{Ga,Sa,Ya} = B(Ea) under 

additivity which is 0.62, leading to a contradiction.  Hence, additivity must be violated. 

 Of the total deviation of rEa = 0.52 from 0.75, being 0.23, a part of 0.06 + 0.08 = 0.14 is 

the result of deviations from risk neutrality that distorted the measurement of B(Ea), and 0.09 

is the result of nonadditivity (ambiguity) of belief B.  · 

 

  Theorem 5.2 is valid for virtually all static models of decision under uncertainty and 

ambiguity known in the literature today, because Eqs. 5.4 and 5.5 capture virtually all these 

models (see Appendix B).  Some qualitative observations are as follows.  If U is linear, then r 

= w(B(E)) follows for all w(B(E)) > 0.5, providing a very tractable manner of measuring the 

nonadditive decision-theory measure W = wÎB.   

6. Measuring Beliefs through Risk Corrections 

 The next two sections, constituting the second part of the analysis of this paper, analyze 

proper scoring rules using the revealed-preference technique.  That is, we do not derive 

empirical predictions from theoretical models, but we reverse the implication.  We assume 

that empirical observations are given and derive theoretical models from these.  In particular, 

we will derive beliefs B(E) from reported probabilities rE.  Before turning to this technique, 

we discuss alternative measurements of beliefs B considered in the literature. 

 One way to measure B(E) is by eliciting W(E) and the function w from choices under 

uncertainty and risk, after which we can set  



 21 

 B(E) = w−1(W(E)).   (6.1) 

In general, such revelations of w and W are laborious.  The observed choices depend not only 

on w and W but also on the utility function U, so that complex multi-parameter estimations 

must be carried out (Tversky & Kahneman 1992, p. 311) or elaborate nonparametric 

measurements (Abdellaoui, Vossman, & Weber 2005). 

 A second way to elicit B(E) is by measuring the canonical probability p of event E, 

defined through the equivalence  

 (p:x, y) ~ (E:x, y)  (6.2) 

for some preset x > y, say x = 100 and y = 0.  Then w(B(E))(U(x)−U(y)) = w(p)(U(x)−U(y)), 

and B(E) = p follows.  Wakker (2004) discussed the interpretation of Eqs. 6.1 and 6.2 as 

belief.  Canonical probabilities were commonly used in early decision analysis (Raiffa 1968, 

§5.3; Yates 1990 pp. 25-27) under the assumption of expected utility.  A recent experimental 

measurement is in Holt (2006, Ch. 30), who also assumed expected utility.  Abdellaoui, 

Vossman, & Weber (2005) measured and analyzed them in terms of prospect theory, as does 

our paper.  A practical difficulty is that the measurement of canonical probabilities requires 

the measurement of indifferences, and these are not easily inferred from choice.  For 

example, Holt (2006) used the Becker-deGroot-Marschak mechanism, and Abdellaoui, 

Vossman, & Weber (2005) used a bisection method.  Huck & Weizsäcker (2002) compared 

the QSR to the measurement of canonical probabilities and found that the former is more 

accurate. 

 A third way to correct reported probabilities is through calibration, where many reported 

probabilities are collected over time and then are related to observed relative frequencies.  

Calibration has been studied in theoretical game theory (Sandroni, Smorodinsky, & Vohra 

2003), and has been applied to weather forecasters (Murphy & Winkler 1974).  It needs 

extensive data, which is especially difficult to obtain for rare events such as earthquakes, and 

further assumptions such as stability over time.  Clemen & Lichtendahl (2005) discussed 

these drawbacks and proposed correction techniques for probability estimates in the spirit of 

our paper, but still based these on traditional calibration techniques.  Our correction 

(“calibration”) technique is considerably more efficient than traditional ones.  It shares with 

Prelec’s (2004) method the advantage that we need not wait until the truth or untruth of 

uncertain events has been revealed for implementing it. 
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 We now use the revealed-preference technique to introduce risk corrections.  These 

combine the advantages of measuring B(E) = w−1(W(E)), of measuring canonical 

probabilities, and of calibrating reported probabilities relative to objective probabilities, while 

avoiding the problems described above, by benefiting from the efficiency of proper scoring 

rules.  The QSR does entail a restriction of the observations regarding B(E) to cases of E 

being more likely than Ec (Observation 4.3.1).   The first results do express beliefs B (or p) in 

terms of observed values r, but are not complete revealed-preference results because the 

right-hand sides of the equations still contain utilities, which are theoretical quantities that are 

not directly observable.  A “coincidental” agreement of two right-hand sides along the way 

will then lead to the main result of this paper: a complete revealed-preference result, deriving 

beliefs B entirely from observable choice. 

 We first consider expected utility of §4.2.  The following result follows from Theorem 

4.2.1 through algebraic manipulations or, for r ≠ 0.5, as a corollary of Corollary 6.2 hereafter. 

 

COROLLARY 6.1.  Under expected utility with p the (objective or subjective) probability of 

event E, and r = R(p) the optimal choice, we have 

 
p  = 

 
r

r + (1−r)U´(1−(1−r)2)
U´(1−r2)

 
  . 

(6.3)  

· 

 We next consider nonexpected utility for known probabilities as in §4.3.  An explicit 

expression of p in terms of (U and) r, i.e. of R−1(p), follows next for r > 0.5, assuming that we 

can invert the probability weighting function w.  The result follows from Theorem 4.3.3. 

 

COROLLARY 6.2.  Under nonexpected utility with given probabilities (Eq. 4.3.1), the optimal 

choice r = R(p) satisfies: 

 If r > 0.5, then p = R−1(r)  =  w–1( r

r + (1−r)U´(1−(1−r)2)
U´(1−r2)

 
 ) . (6.4)  

· 



 23 

 In general, it may not be possible to derive both w and U from R(p) without further 

assumptions, i.e. U and w may be nonidentifiable for proper scoring rules.  Under regular 

assumptions about U and w, however, they have some different implications.  The main 

difference is that, if we assume that U is differentiable (as done throughout this paper) and 

concave, then a flat part of R(p) around 0.5 must be caused by w (Observation 4.2.3). 

 We, finally, turn to nonexpected utility if no probabilities are known, as in §5.  Theorem 

5.2 implies the following results.  It illustrates once more how deviations from expected 

utility (w) and nonlinear utility (the marginal-utility ratio) distort the classical proper-scoring-

rule assumption of B(E) = r. 

 

COROLLARY 6.3.  Under nonexpected utility with unknown probabilities (Eq. 5.4), the 

optimal choice r = rE satisfies: 

 If r > 0.5, then B(E)  =  w–1( r

r + (1−r)U´(1−(1−r)2)
U´(1−r2)

 
 ) . (6.5)  

· 

 

 As a preparation for a complete revealed-preference result, note that the right-hand sides 

of Eqs. 6.4 and 6.5 are identical.  Hence, if we find a p in Eq. 6.4 with the same r value as E, 

then we can, by Eq. 6.4, immediately substitute p for the right-hand side of Eq. 6.5, getting 

B(E) = p without need to know the ingredients w and U of Eq. 6.5.  This observation (to be 

combined with Eq. 2.2 for r < 0.5) implies the following corollary, which is displayed for its 

empirical importance and which is the main result of this paper. 

 

COROLLARY 6.4.  Under nonexpected utility with unknown probabilities (Eq. 5.4), assume for 

the optimal choice r = rE that r > 0.5.  Then  

 B(E) = R−1(r).   (6.6) 

· 

 

 This corollary is useful for empirical purposes.  It is the only implication of our 

theoretical analysis that is needed for applications.  It shows how proper scoring rules can 
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allow for deviations from expected value and expected utility, and is key in filtering out risk 

attitudes.  We first infer the (for the participant) optimal R(p) for a set of exogenously given 

probabilities p that is so dense (all values p = j/20 for j ≥ 10 in our experiment) that we obtain 

a sufficiently accurate estimation of R and R−1.  Then, for all uncertain events E more likely 

than their complement, we immediately derive B(E) from the observed rE through Eq. 6.6.  

Summarizing: 

 

 If for event E the participant reports probability rE = r 

 and for objective probability p the participant also reports probability R(p) = r 

 then B(E) = p.   

 

We, therefore, directly measure the curve R(p) in Figure 3.1 empirically, and apply its inverse 

to rE.  For rE = 0.5, B(E) and the inverse p may not be uniquely determined because of the flat 

part of RnonEU in Figure 3.1. 

 We call the function R−1 the risk-correction (for proper scoring rules), and R−1(rE) the 

risk-corrected probability.  This value is the canonical probability, obtained without having 

measured indifferences such as through the Becker-DeGroot-Marschak mechanism, without 

having measured U and w as in decision theory, and without having measured relative 

frequencies in many repeated observations of past events with the same reported probabilities 

as in calibrations.  Obviously, if R(p) does not deviate much from p, then no risk correction is 

needed.  Then reported probabilities r directly reflect beliefs, and we have ensured that 

traditional analyses of QSRs give proper results. 

 The curves in Figure 3.1 can be reinterpreted as inverses of risk corrections.  The 

examples illustrated there were based on risk averse decision attitudes, leading to 

conservative estimations moved in the direction of 0.5.  Risk seeking will lead to the opposite 

effect, and will generate overly extreme reported probabilities, suggesting overconfidence.  

Obviously, if factors in the probability elicitation of the calibration part induce 

overconfidence and risk seeking, then our risk correction will detect those biases and correct 

for them.  If, after the risk correction, overconfidence is (still) present, then it cannot be due 

to risk seeking.  We can then conclude with more confidence that overconfidence is a genuine 

property of belief, irrespective of risk seeking. 
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7. An Illustration of Our Measurement of Belief 

 This section describes risk corrections for a participant in the experiment so as to 

illustrate how our method can be applied empirically.  We will see that Corollary 6.4 is the 

only result of the theoretical analysis needed to apply our method.  Results and curves for r < 

0.5 are derived from r > 0.5 using Eq. 2.2; we will not mention this point explicitly in what 

follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 The left side of Figure 7.1 displays the performance of stock 12 in our experiment from 

January 1 until June 1 1991 as given to the participants.  Stock 12 concerned the Begemann 

Kon. Groep (General Industries).  Further details (such as the absence of a unit on the y-axis) 

will be explained in §8.  The right side of the figure displays two disjoint intervals S and T, 

and their union I = S∪T.  For each of the intervals S,T, and I, participants reported the 

probability of the stock ending up in that interval on January 1 1992 (with some other 

questions in between these three questions).  For participant 14, the results are as follows. 

 rS = 0.35; rT = 0.55; rI = 0.65. (7.1) 

Under additivity of reported probability, rS + rT − rI (the additivity bias, defined in general in 

Eq. 8.5), should be 0, but here it is not and additivity is violated. 

 The additivity bias is 0.35 + 0.55 − 0.65  = 0.25. (7.2) 

FIGURE 7.1.  Layout of the screens 
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 Table 7.1 and Figure 7.2 (in inverted form) display the reported probabilities R(p) that 

we measured from this participant, with the curves explained later.  We use progressive 

averages (midpoints between data points) so as to reduce noise.6 

 

  TABLE 7.1. Progressive average reported probabilities R(p) of participant 14  

p .025 .075 .125 .175 .225 .275 .325 .375 .425 .475 .525 .575 .625 .675 .725 .775 .825 .875 .925 .975 

R(p) .067 .192 .267 .305 .345 .382 .422 .435 .437 .470 .530 .563 .565 .578 .618 .655 .695 .733 .808 .933 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 For simplicity of presentation, we analyze the data here using linear interpolation.  Then 

R(0.23) = 0.35.7  Using this value for R(0.23), using the values R(0.56) = 0.55 and R(0.77) = 

0.65, and, finally, using Eq. 6.6, we obtain the following risk-corrected beliefs. 

                                                
6 For each midpoint between two given probabilities p, we calculated the average report for the adjacent 

probabilities.   For instance, to compute the R(p) for p = 0.625, we averaged the reported probabilities for p = 

0.6 and those for p = 0.65. 

FIGURE 7.2.  R−1(r) of participant 14 
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 B(S) = R−1(0.35) = 0.23; B(T) = R−1(0.55) = 0.56; B(I) = R−1(0.65) = 0.77;  

  the additivity bias is 0.23 + 0.56 − 0.77 = 0.02. (7.3) 

The risk-correction has reduced the violation of additivity, which according to Bayesian 

principles can be interpreted as a desirable move towards rationality.  In the experiment 

described in the following sections we will see that this effect is statistically significant for 

single evaluations (treatment “t=ONE”), but is not significant for repeated payments and 

decisions (treatment “t=ALL”). 

 It is statistically preferable to fit data with smoother curves than resulting from linear 

interpolation.  We derived “decision-theoretic” parametric curves for R(p) from Corollary 

6.2, with further assumptions explained at the end of §9.1.8  The resulting curve for 

participant 14 is given in the figure.  The equality B = R−1(r) and this curve lead to  

  B(S) = R−1(0.35) = 0.24; B(T) = R−1(0.55) = 0.59; B(I) = R−1(0.65) = 0.76; the additivity 

bias is 0.24 + 0.59 − 0.76 = 0.07, (7.4) 

again reducing the uncorrected additivity bias.  For this participant the quadratic curve, 

explained in §11, happens to be indistinguishable from the decision theoretic curve. 

 

8. An Experimental Application of Risk Corrections: Method 

 The following four sections present the third part of this paper, being an experimental 

implementation of our new measurement method. 

 

Participants.  N = 93 students from a wide range of disciplines (45 economics; 13 

psychology, 35 other disciplines) participated in the experiment.  They were self-selected 

from a mailing list of approximately 1100 people. 

                                                                                                                                                  
7 We have 0.23 = 0.865×0.225 + 0.135×0.275, R(0.225) = 0.345, and R(0.275) = 0.382, so that R(0.23) = 

R(0.865×0.225 + 0.135×0.275) = 0.865 × R(0.225) + 0.135 × R(0.275) = 0.865 × 0.345 + 0.135 × 0.382 = 0.35. 

8 The decision-theoretic curve in the figure is the function p = B(E)  =  
r

r + (1−r)
0.26(1−(1−r)2)-1.26

0.26(1−r2) -1.26  

 , in 

agreement with Corollaries 6.2 and 6.4, where we estimated w(p) = p and found ρ = −0.26 as optimal value for 

U(x) in Eq. 8.1. 
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Procedure.  Participants were seated in front of personal computers in 6 groups of 

approximately 16 participants each.  They first received an explanation of the QSR, given in 

Appendix C.  Then, for each uncertain event, participants could first report a probability (in 

percentages) by typing in an integer from 0 to 100.  Subsequently, the confirmation screen 

displayed a list box with probabilities and the corresponding score when the event was (not) 

true, illustrated in Figure 8.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

All figures (including Figure 7.1) are reproduced here in black and white; in the experiment 

we used colors to further clarify the figures.  The entered probability and the corresponding 

score were preselected in this list box.  The participant could confirm the decision or change 

to another probability by using the up or down arrow or by scrolling to another probability 

using the mouse.  The event itself was also visible on the confirmation screen.  Thus, the 

reported probability r finally resulted for the uncertain event. 

 

Stimuli 

The participants provided 100 reported probabilities r for events with unknown probabilities 

in the stock-price part of the experiment.  For these events, we fixed June 1, 1991, as the 

“evaluation date.”  The uncertain events always concerned the question whether or not the 

price of a stock would lie in a target-interval seven months after the evaluation date.  For each 

stock, the participants received a graph depicting the price of the stock on 0, 1, 2, 3, 4, and 5 

months prior to the evaluation date, as well as an upper and lower bound to the price of the 

FIGURE 8.1. 
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stock on the evaluation date.  Figure 7.1, without the braces and letters, gives an example of 

the layout.  We used 32 different stocks, all real-world stock market data from the 1991 

Amsterdam Stock Exchange.  After 4 practice questions, the graph of each stock-price was 

displayed once in the questions 5-36, once in the questions 37-68, and once in the questions 

69-100.  We, thus, obtained three probabilistic judgments of the performance of each stock, 

once for a large target-interval and twice for small target-intervals that partitioned the large 

target-interval (see Figure 7.1).  We partially randomized the order of presentation of the 

elicitations.  Each stock was presented at the same place in the first, second, and third 32-

tuple of elicitations, so as to ensure that questions pertaining to the same stock were always 

far apart.  The order of presentation of the two small and one large interval for each stock 

were not randomized stochastically, but were varied systematically, so that all orders of big 

and small intervals occurred equally often.  We also maximized the variation of whether 

small intervals were both very small, both moderately small, or one very small and one 

moderately small. 

 

In the calibration part of the experiment, participants made essentially the same decisions as 

in the stock-price part, but now for 20 events with objective probabilities.  Thus, participants 

simply made choices between risky prospects with objective probabilities.  We used two 10-

sided dice to determine the outcome of the different prospects and obtained measurements of 

the reported probabilities corresponding to the objective probabilities 0.05, 0.10, 0.15, …, 

0.85, 0.90, and 0.95 (we measured the objective probability 0.95 twice).  The event with 

probability 0.25 was, for instance, described as “The outcome of the roll with two 10-sided 

dice is in the range 01−25.”  The decision screen was very similar to Figure 8.1, except for 

the fact that we wrote “row-percentage” instead of “probability” and “your score if the roll of 

the die is 01-25” instead of “your score if statement is true;” etc. 

 

Motivating participants.  Depending on whether the uncertain event obtained or not and on 

the reported probability for the uncertain event, a number of points was determined for each 

question through the QSR (Eq. 2.1), using 10000 points as unit of payment so as to have 

integer scores with four digits of precision.  Thus, the maximum score for one question was 

10000, the minimum score was 0, and the certain score resulting from reported probability 

0.5 was 7500 points.   
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 In treatment t=ALL, the sum of all points for all questions was calculated for each 

participant and converted to money through an exchange rate of 60000 points = €1, yielding 

an average payment of €15.05 per participant.  For the calibration part we then used a box 

with twenty separate compartments containing pairs of 10-sided dice to determine the 

outcome of each of the twenty prospects at the same time for the treatment t=ALL.   

 In treatment t=ONE, the random-lottery incentive system was used.  That is, at the end of 

the experiment, one out of the 120 questions that they answered was selected at random for 

each participant and the points obtained for this question were converted to money through an 

exchange rate of 500 points = €1, yielding an average payment of €15.30 per participant.   

 All payments were done privately at the end of the experiment. 

 

Analysis.  For the calibration part we only need to analyze probabilities of 0.5 or higher, by 

Observation 4.3.2.  Indeed, by Eq. 3.2, every observation for p < 0.5 amounts to an 

observation for p´ = 1−p > 0.5.  It implies that we have two observations for all p > 0.5 (and 

three for p = 0.95). 

 We first analyze the data at the group level, assuming homogeneous participants.  We 

start from the general model of Eq. 4.3.1.  Notice that this equation can be estimated using a 

non-parametric procedure.  If the agent is willing to go through a large series of correction 

questions, it is possible to measure the corresponding reported probability of each objective 

probability repeatedly.  In this way an accurate estimate of the whole correction curve can be 

obtained without making assumptions about the utility function or the weighting function.  

This procedure seems the appropriate one if the goal is to correct an expert, e.g., correct the 

reports provided by a weatherman.  In applications of experimental economics where subjects 

participate for a limited amount of time, the researcher will only be able to collect a limited 

number of observations of the correction curve.  Then it is more appropriate to follow a 

parametric approach to elicit the curve that fits the observations best.  In this paper, we used 

parametric fittings.  For U we used the power utility with parameter ρ, also known as the 

family of constant relative risk aversion (CRRA)9, and the most popular parametric family for 

fitting utility, which is defined as follows: 

                                                
9 We avoid the latter term because in nonexpected utility models as relevant for this paper, risk aversion depends 

not only on utility. 



 31 

 For ρ>0: U(x) = xρ; 

  for ρ=0: U(x) = ln(x); 

  for ρ<0: U(x) = −xρ. (8.1) 

It is well-known that the unit of payment is immaterial for this family.  The most general 

family that we consider for w(p) is Prelec's (1998) two-parameter family 

 w(p) = (exp(−β(−ln(p))α)), (8.2) 

chosen for its analytic tractability and good empirical performance.  We will mostly use the 

one-parameter subfamily with β=1, as in Eq. 4.3.4, for reasons explained later.  Substituting 

the above functions yields 

 B(E)  =  exp(−(
 −ln(

r(2r–r2)1−ρ

 (1−r)(1−r2)1−ρ +  r(2r–r2)1−ρ)

β  )
1/α

). 

for Eq. 6.5. 

 The model we estimate is as follows.  

 Rs,t,k(j/20) = h(j/20,αt, ρt) + εs,t,k(j/20,σ2
t
) . (8.3) 

Here Rs,t,k(j/20) is the reported probability of participant s for known probability p=j/20 (10 ≤ 

j ≤ 19) in treatment t (t = ALL or t = ONE) for the kth measurement for this probability, with 

only k=1 for j = 10, k = 1,2 for 11 ≤ k ≤ 18, and k = 1,2,3 for j = 19.  With β set equal to 1, αt 

is the remaining probability-weighting parameter (Eq. 8.2), and ρt is the power of utility (Eq. 

8.1).  The function h is the inverse of Eq. 6.4.  Although we have no analytic expression for 

this inverse, we could calculate it numerically in the analyses.  The error terms εs,t,k(j/20) are 

drawn from a truncated normal distribution with mean 0 and treatment dependent variance 

σ2
t
.  The distribution of the error terms is truncated because reported probabilities below 0 and 

above 1 are excluded by design.  Error terms are identically and independently distributed 

across participants and choices.  We employed maximum likelihood to estimate the 

parameters of Eq. 8.3.  We also carried out an analysis at the individual level of the 

calibration part, with αs,t and ρs,t instead of αt and ρt, i.e. with these parameters depending on 

the participant.   
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 In the stock-price part, violations of additivity were tested.  With I the large interval of a 

stock, being the union S∪T of the two small intervals S and T, additivity of the uncorrected 

reported probabilities implies 

 rS + rT = rI. (8.4) 

Hence, rS + rT − rI is an index of deviation from additivity, which we call the additivity bias 

of r.  For the special case of S the universal event with r a decision-weighting function, Dow 

& Werlang (1992) interpreted this quantitative index of nonadditivity as an index of 

uncertainty aversion. 

 Under the null hypothesis of additivity for risk-corrected reported probabilities B, binary 

additivity holds, and we can obtain B(S) = 1 − B(Sc) for small intervals S in the experiment 

(cf. Eq. 2.2).  Thus, under additivity of B, we have  

 B(S) + B(T)  =  B(I). (8.5) 

Hence, B(S) + B(T) − B(I) is an index of deviation from additivity of B, and is B’s additivity 

bias. 

 We next discuss tests of the additivity bias.  For each individual stock, and also for the 

average over all stocks, we tested for both treatments t=ONE and t=ALL: (a) whether the 

additivity bias was zero or not, both with and without risk correction; (b) whether the average 

additivity bias, as relevant for aggregated group behavior and expert opinions, was enlarged 

or reduced by correction; (c) whether the absolute value of the additivity bias, as relevant for 

additivity at the individual level, was enlarged or reduced by correction.  We report only the 

tests for averages over all stocks. 

 

9. Results of the Calibration Part 

Risk-corrections and, in general, QSR measurements, do not make sense for participants who 

are hardly responsive to probabilities, so that R(p) is almost flat on its entire domain.  Hence 

we kept only those participants for whom the correlation between reported probability and 

objective probability exceeded 0.2.  We thus dropped 4 participants.  The following analyses 

are based on the remaining 89 participants.   
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9.1. Group Averages 

 

 We did several tests using Eq. 8.2 with β as a free (treatment-dependent or -independent) 

variable, but β’s estimates added little extra explanatory power to the other parameters and 

usually were close to 1.  Hence, we chose to focus on a more parsimonious model in which 

the restriction βONE = βALL  = 1 is employed.  Table 9.1 lists the estimates for the model of Eq. 

8.3 for β=1 (Eq. 4.3.4 instead of Eq. 8.2) together with the estimates of some models with 

additional restrictions.  We first give results for group averages, assuming homogeneous 

participants.   

 

TABLE 9.1.  Estimation results at the aggregate level 

Standard errors in parentheses, * denotes significance at the 1% level.  

 

Row Restrictions σONE αONE ρONE 
 

σALL αALL ρALL 
 

-LogL 

1 NA 
11.16* 
(0.30) 

0.91* 
(0.06) 

0.89* 
(0.14) 

 10.63* 
(0.30) 

0.85* 
(0.04) 

1.41* 
(0.07) 

 
6513.84 

2 
αONE = αALL 

= ρONE = ρALL= 1 
12.14* 
(0.31) – – 

 10.30* 
(0.26) – – 

 
6554.55 

3 αONE = ρONE = 1 
12.14* 
(0.31) – – 

 10.63* 
(0.30) 

0.85* 
(0.04) 

1.41* 
(0.07) 

 
6539.04 

4 αALL  = ρALL= 1 
11.16* 
(0.30) 

0.91* 
(0.06) 

0.89* 
(0.14) 

 10.30* 
(0.27) – – 

 
6529.36 

5 αONE = αALL 
11.21* 
(0.30) 

0.87* 
(0.03) 

0.99* 
(0.08) 

 10.60* 
(0.29) – 

1.37* 
(0.06) 

 
6514.31 

6 ρONE = ρALL 
11.40* 
(0.31) 

0.79* 
(0.03) 

1.19* 
(0.07) 

 10.47* 
(0.28) 

0.96* 
(0.04) – 

 
6520.51 

7 αONE = αALL= 1 
11.12* 
(0.29) – 

0.70* 
(0.04) 

 10.52* 
(0.29) – 

1.14* 
(0.03) 

 
6519.68 

8 ρONE = ρALL= 1 
11.23* 
(0.29) 

0.87* 
(0.02) – 

 10.43* 
(0.28) 

1.07* 
(0.02) – 

 
6522.46 

9 
αONE = αALL=  
ρONE = 1 

12.14* 
(0.31) – – 

 10.52* 
(0.29) – 

1.14* 
(0.03) 

 
6544.09 

10 
αONE = αALL=  
ρALL = 1 

11.12* 
(0.29) – 

0.70* 
(0.04) 

 10.30* 
(0.27) – – 

 
6530.14 

11 
αONE = αALL= 1, 
ρONE = ρALL 

12.05* 
(0.34) – 

0.98* 
(0.03) 

 10.30* 
(0.27) – – 

 
6554.33 
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Overall need for risk-correction.  The 1st row of Table 9.1 shows the results for the most 

general model.  The 2nd row presents the results without any correction.  The likelihood 

reduces significantly (Likelihood Ratio test, p = 0.01) and substantially, so that risk-

correction is called for.  Risk-correction is also called for in both treatments in isolation, as 

the 3rd and 4th rows show, which significantly improve the likelihood relative to the 2nd row 

(Likelihood Ratio test; p = 0.01 for t=ALL, comparing 3rd to 2nd row; p = 0.01 for t=ONE, 

comparing 4th to 2nd row).   

 

Comparing the two treatments.  The likelihood for correcting only t=ALL (3rd row) is worse 

than for correcting only t=ONE (4th row), suggesting that there is more need for risk-

correction for treatment t=ONE than for t=ALL.  This difference does not seem to be caused 

by different probability weighting.  The coefficients for probability weighting (αONE, αALL) in 

the 1st row are close to each other and are both smaller than 1.  Apparently, probability 

weighting does not differ between t=ONE and t=ALL.  Indeed, adding the restriction αONE = 

αALL  (5th row) does not decrease the likelihood of the data significantly (Likelihood Ratio 

test; p > 0.05). 

 The difference between the two treatments is apparently caused by curvature of utility, 

captured by ρONE and ρALL .  We obtain ρONE < ρALL : when only one decision is paid out then 

participants exhibit more concave curvature of utility than when all decisions are paid out.  

Given same probability weighting, it implies more risk aversion for t=ONE than for t=ALL 

(and R closer to 0.5).  The finding is supported by comparing the 6th row of Table 9.1, with 

the restriction ρONE  = ρALL , to the 1st row.  This restriction significantly reduces the 

likelihood of observing the data (Likelihood Ratio test, p = 0.01). 

 

Comparing utility and probability weighting.  Correcting only for utility curvature (7th row, 

αONE  = αALL = 1) has a somewhat better likelihood than correcting only for probability 

weighting (8th row, ρONE  = ρALL = 1). 
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Discussion of comparison of utility curvature and probability weighting for group-averages.  

In deterministic choice, α could be determined through the flat part of R around 0.5, after 

which ρ could serve to improve the fit elsewhere.  Statistically, however, α and ρ have much 

overlap, with risk aversion enhanced and R(p) moved towards 0.5 by increasing α and 

decreasing ρ, and one does not add much explanatory power to the other.  It is, therefore, 

better to use only one of these parameters.  Another reason to use only one parameter 

concerns the individual analysis reported in the following subsection.  Because we only have 

20 choices per participant it is important to economize on the number of free parameters 

there. 

 We found that ρ has a slightly better explanatory power than α.  For this reason, and for 

reasons of convenience (see discussion section), we will only use the parameter ρ, and 

assume α = 1 henceforth.  Figure 9.1 displays the resulting average risk-correction for the 

two treatments separately. 

 

Comparing the two treatments when there is no probability weighting.  The average effect of 

correction for utility curvature is not strong, especially for t=ALL.  Yet this correction has a 
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significant effect, as can be seen from comparing the 7th row (general ρ) in Table 9.1 to its 9th 

row (ρALL  = 1) (Likelihood Ratio test, p = 0.01). 

 

9.2. Individual Analyses 

 

Need for risk-correction at the individual level.  There is considerable heterogeneity in each 

treatment.  Whereas the corrections required were significant but small at the level of group 

averages, they are big at the individual level.  This appears from Figure 9.2, which displays 

the cumulative distribution of the (per-subject) estimated ρ-coefficients for each treatment, 

assuming α = β = 1.  There are wide deviations from the value ρ=1 (i.e., no correction) on 

both sides.  As seen from the group-average analysis, there are more deviations at the risk-

averse side of ρ < 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparing the two treatments.  The ρ-coefficient distribution of treatment t=ONE dominates 

the ρ-coefficient distribution of treatment t=ALL.  A two-sided Mann-Whitney test rejects 

the null-hypothesis that the ranks of ρ-coefficients are equal across the treatments in favor of 

the hypothesis that the ρ-coefficients for t=ONE are lower than for t=ALL (p=0.001).  It 

confirms that for group averages there is more risk aversion, moving R in the direction of 0.5, 

for t=ONE than for t=ALL.  The figure also shows that in an absolute sense there is more 
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deviation from ρ=1 for t=ONE than for t=ALL, implying that there are more deviations from 

expected value and more risk corrections for t=ONE than for t=ALL. 

 

Unlike the median ρ-coefficients that are fairly close to each other for the two treatments 

(0.92 for t=ONE versus 1.04 for t=ALL), the mean ρ-coefficients are substantially different 

(0.24 for t=ONE versus 0.91 for t=ALL), which is caused by skewedness to the left for 

t=ONE.  That is, there is a relatively high number of strongly risk-averse participants for 

t=ONE.  Analyses of the individual ρ parameters (two-sided Wilcoxon signed rank sum tests) 

confirm findings of group-average analyses in the sense that the ρ-coefficients are 

significantly smaller than 1 for t=ONE  (z = −3.50, p = 0.0005), but not for t=ALL (z = 1.42, 

p = 0.16).  

10. Results for the Stock-Price Part: Risk-Correction and 

Additivity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 10.1. Empirical density of additivity bias for the two treatments 

For each interval [
j−2.5
100 ,  

j+2.5
100 ] of length 0.05 around 

j
100 , we counted the number of 

additivity biases in the interval, aggregated over 32 stocks and 89 individuals, for both 
treatments.  With risk-correction, there were 65 additivity biases between 0.375 and 0.425 in 
the treatment t=ONE, and without risk-correction there were 95 such; etc. 

−0.6 
0 

20 

40 

60 

80 

100 

120 

140 

160 

−0.4 −0.2 0 0.2 0.4 0.6 

FIG. a.  Treatment t=ONE 

corrected 

uncorrected 

additivity bias 

FIG. b.  Treatment t=ALL 

0 

20 

40 

60 

80 

100 

120 

140 

160 

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 

corrected 

uncorrected 

additivity bias 



 38 

 All comparisons hereafter are based on two-sided Wilcoxon signed rank sum tests. 

Figure 10.1 displays data, aggregated over both stocks and individuals, of the additivity 

biases for t=ONE and for t=ALL.  The figures show that the additivity bias is more often 

positive than negative, in agreement with common findings in the literature (Tversky & 

Koehler 1994; Bateman et al. 1997).  Indeed, for virtually all stocks the additivity bias is 

significantly positive for both treatments, showing in particular that additivity does not hold.  

This also holds when taking the average additivity bias over all stocks as one data point per 

participant (z = 5.27, p < 0.001 for t=ONE, z = 4.35, p < 0.001 for t=ALL).  We next consider 

whether risk corrections reduce the violations of additivity. 

 Let us first consider t=ONE.  Here the risk corrections reduce the average additivity bias 

significantly for 27 of the 32 stocks, and enlarge it for none.  We only report the statistics for 

the average additivity bias over all stocks per individual, which has overall averages 0.163 

(uncorrected) and 0.120 (corrected), with the latter significantly smaller (z = 3.21, p = 0.001).  

For assessing the degree of irrationality (additivity-violation) at the individual level, the 

absolute values of the additivity bias are interesting.  For t=ONE, Figure 10.1 suggests that 

these are smaller after correction, because on average the corrected curve is closer to 0 on the 

x-axis.  These absolute values were significantly reduced for 9 stocks and enlarged for none.  

Again, we only report the statistics for the average absolute value of the additivity bias over 

all stocks per individual, which has overall averages 0.239 (uncorrected) and 0.228 

(corrected), with the latter significantly smaller (z = 2.26, p = 0.02).   

 For t=ALL, risk corrections did not significantly alter the average additivity bias.  More 

precisely, it gave a significant increase for 3 stocks and a significant decrease for 1 stock, 

which, for 32 stocks, suggests no systematic effect.  The latter was confirmed when we took 

the average additivity bias over all stocks for each individual, with no significant differences 

generated by correction (average 0.128 uncorrected and average 0.136 corrected; z = −1.64, p 

= 0.1).  Similar results hold for absolute values of additivity biases, which gave a significant 

increase for 1 stock and a significant decrease for no stock.  Taking the average additivity 

bias over all stocks for each individual (average 0.237 uncorrected and average 0.239 

corrected; z = −0.36, p = 0.7) also gave no significant difference.   

 Classifications of individuals according to whether they exhibited more positive or more 

negative additivity biases, and to whether risk corrections improved or worsened the 

additivity bias more often, confirmed the patterns obtained above through stockwise analyses, 

and will not be reported. 
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 Risk correction reduces the additivity bias for treatment t=ONE to a level similar to that 

observed for t=ALL (averages 0.120 and 0.136).  The overall pattern is that beliefs for 

t=ONE after correction, and for t=ALL both before and after correction, exhibit a similar 

degree of violation of additivity, which is clearly different from zero.  The additivity bias is 

not completely caused by nonlinear risk attitudes when participants report probabilities, but 

has a genuine basis in beliefs. 

 

11. Discussion of Experiment 

Methods. We chose the evaluation date (June 1, 1991) sufficiently long ago to ensure that 

participants would be unlikely to recognize the stocks or have private information about 

them.  In addition, no numbers were displayed on the vertical axis, making it extra hard for 

participants to recognize specific stocks.  We, thus, ensured that participants based their 

probability judgments entirely on the prior information about past performance of the stocks 

given by us.  Given the large number of questions it is unlikely that participants noticed that 

the graphs were presented more than once (three times) for each stock.  Indeed, in informal 

discussions after the experiment no participant showed awareness of this point.   

 In some studies in the literature, the properness of scoring rules is explained to 

participants by stating that it is in their best interest to state their true beliefs, either without 

further explanation, or with the claim added that they will thus maximize their “expected” 

money.  A drawback of this explanation is that expected value maximization is empirically 

violated, which is the central topic of this paper (§3), so that the recommendation is 

debatable.  We, therefore, used an alternative explanation that relates properness for one-off 

events to observed frequencies of repeated events (Appendix C).  

 

Optimal Incentive Scheme.  After some theoretical debates about the random-lottery incentive 

system (Holt 1986), as in our treatment t=ONE, the system was tested empirically and found 

to be incentive-compatible (Starmer & Sugden 1991).  It is today the almost exclusively used 

incentive system for measurements of individual preferences (Holt & Laury 2002; Harrison et 

al. 2002).  Unlike repeated payments it avoids income effects such as Thaler & Johnson's 

(1990) house money effect, and the drift towards expected value and linear utility that is 
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commonly generated by repeated choice.10  For the purpose of measuring individual 

preference, the treatment t=ONE is, therefore, preferable.  When the purpose is, however, to 

derive subjective probabilities from proper scoring rules, and no risk-correction is possible, 

then a drift towards expected value is actually an advantage, because uncorrected proper 

scoring rules assume expected value.  This point agrees with our findings, where less risk-

correction was required for the t=ALL treatment.  Li (2007) discusses other arguments for 

and against repeated rewarding when events are not verifiable and when binary rewards have 

to be used. 

 For some applications group averages of probability estimates are most relevant, such as 

when aggregating expert judgments or predicting group behavior.  Then our statistical results 

regarding “non-absolute” values of reported probabilities are most relevant.  For the 

assessment of rationality at the individual level, absolute values of the additivity biases are 

most relevant. 

 

Choice of Parameters.  The lack of extra explanatory power of parameter β in Eq. 8.2 should 

come as no surprise because β and α behave similarly on [0.5,1], increasing risk aversion 

there.  They mainly deviate from one another on [0,0.5], where β continues to enhance risk 

aversion but α enhances the inverse-S shape that is mostly found empirically.  The domain 

[0,0.5] is, however, not relevant to our study (Observation 4.3.2). 

 We found that the risk correction through the utility curvature parameter ρ fitted the data 

somewhat better than the correction through the probability-weighting parameter α.  This 

finding may be interpreted as some descriptive support for expected utility.  Another reason 

that we used ρ and not α in our main analysis is that ρ, and utility curvature, are more well-

known in the economic literature than probability weighting, and are more analytically 

tractable with R−1 defined everywhere.  Although ρ indeed reflects the power of utility if 

expected utility is assumed, we caution against unqualified interpretations here, as in any 

study of risk aversion.  The parameter ρ may also capture risk aversion generated by 

probability weighting, and possibly by other factors. 

 

                                                
10 It is required that the repeated choices are perceived as sufficiently uncorrelated.  Correlation can enhance the 

perception of and aversion to ambiguity (Halevy & Feltkamp 2005). 
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Pragmatic applications.  More tractable families can be used to fit the reported probabilities 

than the decision-theory-based curves that we used.  For example, in Figure 7.2 we also used 

quadratic regression to find the curve p = a + br + cr2 that best fits the data.  For most 

participants, the curve is virtually indistinguishable from the decision-theoretic curve.  This 

observation, together with Corollary 6.4 demonstrating that we only need the readily 

observable reported probabilities and not the actual utility function or probability weighting 

function to apply our method, shows that applications of our method are easy.  The 

theoretical analysis of this paper, and the decision-theory based curve-fitting that we adopted, 

served to prove that our method is in agreement with modern decision theories.  If this thesis 

is accepted, and the only goal is to obtain risk-corrected reported probabilities, then one may 

choose the pragmatic shortcuts just described. 

 

General Discussion.  Under proper scoring rules, beliefs are derived solely from decisions, 

and Eq. 2.1 is taken purely as a decision problem, where the only goal of the agent is to 

optimize the prospect received.  Thus, this paper has analyzed proper scoring rules purely 

from the decision-theoretic perspective supported with real incentives, and has corrected only 

for biases resulting therefrom.  Many studies have investigated direct judgments of belief 

without real incentives, and then many other aspects play a role, leading for instance to the 

often found overconfidence.  Such introspective effects are beyond the scope of this paper. 

 The experimental data show that for a subset of the subjects a substantial correction of 

reported probabilities needs to be made.  The fraction of the population that needs substantial 

corrections is larger when only one big decision is paid than when repeated small decisions 

are paid.  Our conclusion is that it is desirable to correct agents’ reported probabilities elicited 

with scoring rules, especially if only a single large decision is paid.  If it is not possible to 

obtain individual measurements of the correction curve, then it will be useful to use best-

guess corrections, for instance through averages obtained from individuals as similar as 

possible.  Thus, at least, the systematic error for the group average to risk attitude has been 

corrected for as good as is possible without requiring extra measurements.  In this respect the 

average curves in our Figure 9.1 are reassuring for existing studies, because these curves 

suggest that only small corrections were called for regarding the group averages in our 

context. 

 Allen (1987) proposed to avoid biases of the QSR resulting from nonlinear utility by 

paying in terms of the probability of winning a prize instead of in terms of money, and this 

procedure was implemented by McKelvey & Page (1990).  The procedure, however, only 
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works if expected utility holds, and there is much evidence against this assumption.  Indeed, 

Selten, Sadrieh, & Abbink (1999) showed empirically that payment in probability does 

enhance the desired risk neutral behavior. 

12. Conclusion 

 This paper has applied modern theories of risk and ambiguity to proper scoring rules.  

Mutual benefits have resulted for practitioners of proper scoring rules and for the study of 

risk and ambiguity.  For the former we have shown which distortions affect their common 

measurements and how large these distortions are, using theories that are descriptively better 

than the expected value hypothesis still common for proper scoring rules today.  We have 

provided a procedure to correct for the aforementioned distortions, and a theoretical 

foundation has been given for interpretations of the resulting measurements as (possibly non-

Bayesian) beliefs and/or ambiguity attitudes.  For studies of risk and ambiguity we have 

shown how the remarkable efficiency of proper scoring rules can be used to measure and 

analyze subjective beliefs and ambiguity attitudes in ways more tractable than is possible 

through the binary preferences traditionally used. 

 We have demonstrated the feasibility and tractability of our method in an experiment, 

where we used it to investigate some properties of beliefs and quadratic proper scoring rules.  

We found, for instance, that our correction method reduces the violations of additivity in 

subjective beliefs but does not eliminate them.  It confirms that beliefs are genuinely non-

Bayesian and that ambiguity attitudes play a central role in proper scoring rules. 

 

Appendix A. Proofs and Technical Remarks 

 In Eqs. 4.3.1 and 4.3.2, probability p has a different decision weight when it yields the 

best outcome of the prospect ( r > 0.5) than when it yields the worst (r < 0.5).  Similarly, in 

Eqs. 5.4 and 5.5, E has a different decision weight when it yields the highest outcome (r > 

0.5) than when it yields the lowest outcome (r < 0.5).  Such a dependency of decision weights 

on the ranking position of the outcome is called rank-dependence in the literature.   

 Under rank-dependence, the sum of the decision weights in the evaluation of a prospect 

are 1 even though w(B(E)) is not additive in E.  This property is necessary for the functional 
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that evaluates prospects to satisfy natural conditions such as stochastic dominance, which 

explains why theoretically sound nonexpected utility models could only be developed after 

the discovery of rank dependence, a discovery that was made independently by Quiggin 

(1982) for the special case of risk and by Schmeidler (1989, first version 1982) for the 

general context of uncertainty.   

 For qsr-prospects in Eq. 2.1, every choice r < 0 is inferior to r = 0, and r > 1 is inferior to 

r = 1.  The optimization problem does not change if we allow all real r, instead of 0 ≤ r ≤ 1.  

Hence, solutions r = 0 or r = 1 hereafter can be treated as interior solutions, and they satisfy 

the first-order optimality conditions. 

 

PROOF OF OBSERVATION 4.2.3.  If r = 0.5 then the marginal utility ratio in Eq. 4.2.2 is 1, and p 

= 0.5 follows.  For the reversed implication, assume risk aversion.  Then r > 0.5 is not 

possible for p = 0.5 because then the marginal utility ratio in Eq. 4.2.2 would be at least 1 so 

that the right-hand side of Eq. 4.2.2 would at most be 0.5, contradiction r > 0.5.  Applying 

this finding to Ec and using Eq. 2.2, r < 0.5 is not possible either, and r = 0.5 follows.   

 Under strong risk seeking, r may differ from 0.5 for p = 0.5.  For example, if U(x) = e2.5x, 

then r = 0.14 and r = 0.86 are optimal, and r = 0.5 is a local infimum, as calculations can 

show.  The same optimal values of r result under nonexpected utility with linear U, and with 

w(0.5) = 0.86.  Such large w-values also generate risk seeking. 

 

PROOF OF THEOREM 5.2.  We write π for the decision weight W(E).  For optimality of interior 

solutions r, the first-order optimality condition for Eq. 5.4 is that 

πU´(a–b(1–r)2)2b(1−r) − (1−π)U´(a–br2)2br = 0,  

implying 

 π(1−r)U´(a–b(1–r)2) = (1−π)rU´(a–br2) (A.1) 

or πU´(a–b(1–r)2) = r × (πU´(a–b(1–r)2) + (1−π)U´(a–br2)), and Eq. 5.8 follows. 

  ·  

 

PROOF OF COROLLARY 6.3.  Let r > 0.5 be optimal, and write π = W(E).  Then Eq. A.1 

implies  

π × ((1−r)U´(a–b(1–r)2) + rU´(a–br2)) = rU´(a–br2), implying 
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 π   =   
r

r + (1−r)
U´(a−b(1−r)2)

U´(a−br2)
 
  (A.2) 

Applying w−1 to both sides yields the theorem.  ·  

 

 In measurements of belief one first observes r, and then derives B(E) from it.  Corollary 

6.3 gave an explicit expression.  In general, it does not seem to be possible to write r as an 

explicit expression of B(E) or, in the case of objective probabilities with B(E) = p, of the 

probability p. 

 

PROOF OF COROLLARY 6.4.  Theorem 5.2 implies that the right-hand side of Eq. 5.8 is r both 

as is, and with p substituted for B(E).  Because Eq. 5.8 is strictly increasing in w(B(E)), and 

w is strictly increasing too, p = B(E) follows.  · 

 

Appendix B. Models for Decision under Risk and Uncertainty 

 For binary (two-outcome) prospects with both outcomes nonnegative, as considered in 

QSRs, Eqs. 5.4 and 5.5 have appeared many times in the literature.  Early references include 

Allais (1953, Eq. 19.1), Edwards (1954 Figure 3), and Mosteller & Nogee (1951, p. 398).  

The convenient feature that binary prospects suffice to identify utility U and the nonadditive 

wÎB = W was pointed out by Ghirardato & Marinacci (2001), Gonzalez & Wu (2003), Luce 

(1991, 2000), Miyamoto (1988), and Wakker & Deneffe (1996, p. 1143 and pp.1144-1145). 

 The convenient feature that most  decision theories agree on the evaluation of binary 

prospects was pointed out by Miyamoto (1988), calling Eqs. 5.4 and 5.5 generic utility, and 

Luce (1991), calling these equations  binary rank-dependent utility.  It was most clearly 

analyzed by Ghirardato & Marinacci (2001), who called the equations the biseparable model.  

These three works also axiomatized the model.  The agreement for binary prospects was also 

central in many works by Luce (e.g., Luce, 2000, Ch. 3) and in Gonzalez & Wu (2003).  Only 

for more than two outcomes, the theories diverge (Mosteller & Nogee 1951 p. 398; Luce 

2000, introductions to Chs. 3 and 5).  Theories that also deviate for two outcomes include 

betweenness models (Chew & Tan 2005), the variational model (Maccheroni, Marinacci, & 

Rustichini (2006), and models with underlying multistage decompositions (Halevy & 



 45 

Feltkamp 2005; Halevy & Ozdenoren 2007; Klibanoff, Marinacchi, & Mukerji 2005; Nau 

2006; Olszewski 2007). 

 We next describe some of the agreeing decision theories.  Because we consider only 

nonnegative outcomes, losses play no role, and we describe prospect theory only for gains 

hereafter. 

 We begin with decision under risk, with known objective probabilities P(E).  Expected 

utility (von Neumann & Morgenstern, 1944) is the special case where w is the identity and 

B(E) = P(E).  Kahneman & Tversky’s (1979) original prospect theory, Quiggin’s (1982) 

rank-dependent utility, and Tversky & Kahneman’s (1992) new prospect theory concern the 

special case of B(E) = P(E), where w now can be nonlinear.  The case B(E) = P(E) also 

includes Gul’s (1991) disappointment aversion theory.   

 We next consider the more general case where no objective probabilities need to be 

given for all events E.  Expected utility is the special case where B is an additive, now 

“subjective,” probability and w is the identity.  Choquet expected utility (Schmeidler 1989) 

and cumulative prospect theory (Tversky & Kahneman 1992) start from the general 

weighting function W, from which B obviously results as w−1(W), with w the probability 

weighting function for risk.  The multiple priors model (Gilboa & Schmeidler 1989; Wald 

1950) results with W(E) the infimum value P(E) over all priors P.  Under Machina & 

Schmeidler’s (1992) probabilistic sophistication, B is an additive probability measure. 

 

Appendix C. Experimental Instructions 

This appendix will appear on internet after publication, and is not meant to be incorporated in 

the publication. 

 

[Instructions are translated from Dutch and concern the instructions of Treatment t=ONE 

only] 

This experiment is about statements of which you do not know whether they are true or not.  

An example is the statement that snow did fall in Amsterdam in March 1861.  You do not 

know for sure whether this statement is true or not.  We will ask you to indicate how likely it 

is for you that such a statement is true, using probability judgments expressed in percentages.   
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Perhaps you will, for example, attach a probability of 30% to the statement that it snowed in 

March 1861 in Amsterdam.  We will then determine a score for you with the help of the 

added table on paper. 

 According to the table, for a probability judgment of 30% you get score 5100 if the 

statement is true (snow did fall in Amsterdam in March 1861).  You get score 9100 if the 

statement is not true (snow did not fall in Amsterdam in March 1861).  If you give a different 

probability judgment, you get different scores, as shown in the table.  For example, if you 

give a probability judgment of 100%, your score is 10000 if the statement is true (snow did 

fall), and 0 if the statement is not true (snow did not fall).  We now like to check whether the 

table with the scores is clear. 

[Practice questions using the table] 

 Your answers were right.  We will now explain some further features of the table.  If you 

are certain that the statement is true, then it is best for you to give the maximum probability 

judgment of 100% because that gives the maximum score 10000 for a true statement.  Every 

other answer then surely yields a lower score.  If you are certain that the statement is not true, 

then it is similarly best to give the minimum probability judgment of 0%, because that gives 

the maximum score 10000 for a false statement.  In many cases you do not know for certain 

whether a statement is true or not.  We will now explain an important feature of the table on 

the basis of a thought experiment.  

 

Thought experiment about repeated statements 

 The properties of the table can be well illustrated with the help of repeated statements.  

Imagine, as a thought experiment, that you first have to give your probability judgment about 

a particular statement (for example, snow in Amsterdam in a particular year, say 1861).  

Imagine that you give judgment 30%, which means that you earn 5100 points in case of snow 

and 9100 points in case of no snow.  Next however, various repetitions of that statement are 

being considered (snow in Amsterdam in March 1862, snow in Amsterdam in March 1863, 

…., snow in Amsterdam in March 1960), leading to a total of 100 of such statements.  For all 

100 statements (thus every year between 1861 and 1960) your score will be determined 

according to the table and your probability judgment (that is the same for every 100 

statements).  Your total score is then equal the sum of those 100 scores.  For example, if it did 

snow in Amsterdam in March 35 times in those 100 years, and it did not snow 65 times, a 

probability judgment of 30% yields the following total score: 

35 x 5100 + 65 x 9100 = 770000 
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We can also calculate this for other probability judgments, suppose that your probability 

judgment was 35%, then your total score was: 

35 x 5775 + 65 x 8775 = 772500 

On the next page we show that your total-score is optimal if your probability judgment is 

exactly equal to that percentage.  Put differently, if for example 35 of the 100 (35%) 

statements are true, then it is best for you to choose probability judgment 35% because it will 

give you the highest total-score.  

 

Now suppose that 35 of the 100 statements are true 

We will determine what your total-score would have been at different judgments.  

[Table showing the total score for all possible probability judgments] 

It looks like judgment 35 is best.  We conclude that if 35% of the statements are true, 

probability judgment 35 is optimal.  Something similar holds for every percentage. 

CONCLUSION .  For every percentage of true statements your total-score is optimal if you 

choose your probability judgment to be equal to that percentage.  Check this for another 

number by clicking on continue. 

 

Now suppose that [entered number] of the 100 statements are true 

We will determine what your total-score would have been at different judgments.  

[Table showing the total score for all possible probability judgments] 

It looks like judgment [entered number] is best.  Thus we conclude that for [entered number] 

% true statements, probability judgment [entered number] is optimal.  Something similar 

holds for every percentage. 

CONFIRMATION OF THE CONCLUSION .  For every percentage of true statements 

your total-score is optimal if you choose your probability judgment to be equal to that 

percentage.  If you want, you can check the conclusion again for another number than 

[entered number] by clicking on the link below.   

 

The experiment for non-repeated statements 

The experiment we will perform concerns unique, and not repeated, statements.  The various 

unique statements we consider are all different.  For every single one of them you can give a 

different probability judgment. 

 There is a big difference between the real experiment and the thought-experiment with 

repetition.  In the thought experiment there was an objective-optimal probability judgment, 
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based on the percentage of true statements.  In the real experiment, there are no repetitions 

and for every probability judgment you get only one score.  

 The thought experiment does give a guide for your probability judgment in the real 

experiment, with the percentage true statements as reference point.  It is now based on your 

own subjective judgment however, and not on objective calculations.  In the real experiment, 

there is no right or wrong answer.  You purely choose what you like best. 

 In the experiment, you will encounter all different sorts of statements, more or less 

probable ones, and you can choose all probability judgments ranging from 0% till 100%.   

You can only choose whole percentages. 

 

Payoff 

This experiment consists of two parts.  In both parts you will be asked to give probability 

judgments, 100 in part 1 and 20 in part 2.  At the end of the experiment, one out of 120 

statements considered during the experiment will be randomly (with equal probability) 

selected and on the basis of your score at this statement you will be paid out in euros, where 

500 points is equal to 1 euro.  Click on continue to read the instructions of the first part of the 

experiment.    

 

Instructions part 1 

In the graph below you see the price of a stock from January till June in a year in the past.  

We used real stock prices of the Amsterdam Exchange when we made the graphs.  The graph 

is scaled in such a way that the price of the stock always stays between the upper and lower 

axis.  The same holds for the other graphs you will see later in this experiment.  We consider 

the following statement: on the 31st of December in that particular year, the price of the stock 

in the graph was in the purple area.  We ask you to give a probability judgment about the 

truth of this statement without any further information about the stock or the year.  You can 

only base this on the course of the graph in the first half of the year.   

[Figure showing an example of graph of stock price] 

Your score at this question depends on your probability judgment and whether the statement 

is true or not, according to the table.  

[Figure showing the same graph but with three different end prices at 31st of December] 

The input of your probability judgment takes place in two phases: first you type in an integer 

number between 0 and 100, next you will be shown a menu in which your choice is 

reproduced with the corresponding scores from the table.  At that moment you can still alter 
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your choice and choose any other integer between 0 and 100.  You can do this by selecting 

the up or down arrow, or by clicking the mouse in the menu and scroll to another probability 

judgment.  Next, when you click on OK your choice is final and you continue with the next 

statement.  If you have any questions at this moment, raise your hand.  The experimenter will 

come to you.    

 

Instructions part 2 

Part 1 of the experiment is now over.  The second part of the experiment consists of 20 

statements.  Also in this part of the experiment you will be asked to give probability 

judgments.  The difference is that it does not concern the prediction of stock prices now, but 

rolls with two 10-sided dice.  On one of the dice are the values 00, 10, 20, 30, 40, 50, 60, 70, 

80, 90 and on the other die are the values 1, 2, 3, 4, 5, 6, 7, 8, 9.  Both dice will be rolled.  

The sum of the outcomes has the values 1-100 (we consider the roll 00-0 as if it is 100), 

where all values have the same probability.  

[Picture showing the two ten sided dice] 

An example of a statement is “the outcome is in the range 01-25.”  This statement is true 

when the outcome of the dice is indeed between 1 and 25 (including 25), and not true when 

the outcome is higher than 25.  The input of your probability judgment again takes place in 

two phases: first you type in an integer number between 0 and 100, next you will be shown a 

menu in which your choice is replicated with the corresponding scores from the table.  At that 

moment you can still alter your choice and choose any other integer number between 0 and 

100.  You can do this by selecting the up or down arrow, or by clicking the mouse in the 

menu and scroll to another probability judgment.  Next, when you click on OK your choice is 

final and you continue with the next statement.  Also in this part there is no right or wrong 

answer; you again choose what you want best.  At the end of the experiment one statement 

will be selected and paid out.  In case that this is a statement from part 2 of the experiment, 

you will be asked to roll the two ten sided dice once. 

 This is the end of part 2.  Please raise your hand.  The experimenter will come by so that 

it can be determined which round will be paid out.  
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