Estimating Static Discrete Games

Paul B. Ellickson1

1Simon School of Business Administration
University of Rochester

August 2013
Introduction

• Marketing concerns understanding, predicting, and influencing various agent’s choices & behaviors
 • Consumers: what & how much to buy, where & when to shop, whom to emulate & interact with
 • Firms: what to sell & how much to charge, promotion, placement, positioning, when to introduce new products
• These decisions aren’t made in a vacuum, but depend on the actions of others
 • Consumers are influenced by their peers (social interactions, social media)
 • Firms are constrained by the reactions of their rivals
• Accounting for strategic *interactions* makes these strategic *games*
• These two sessions are an introduction to estimating such games
The structure of the game depends on what’s being modelled

- Decisions may be discrete or continuous
 - What car to sell vs. what price to charge
- Payoffs may be observed or latent
 - Do you have data on P, Q and C, or just choices?
- Information may be complete or incomplete
 - Do players observe everything, or is there uncertainty?
- It may be a one-shot game, or it may continue for many periods
 - Do today’s choices impact tomorrow’s payoffs?

I’ll focus on static discrete games, but consider both information structures.

Let's start with a concrete example

- Consider an entry game between Walmart and Kmart.

Entry is a discrete choice

- Let's assume they compete in local markets (e.g. small towns) where they can build at most one store (big assumption!)
- Let's also assume that these decisions are made simultaneously, once and for all
- We have data on choices, but not payoffs

We can revisit some of these assumptions later..
Working Example: Entry by Discount Stores

- Strategic entry is a static discrete game (think long run equilibrium..)
 - K & W choose either *enter* or *don’t enter*.
 - The smallest markets can’t support any stores.
 - Larger markets can support one.
 - Largest markets can support both.

- We are interested understanding who enters which markets and why.
- We might then
 - Recover structural parameters (determine what drives profit)
 - Solve for counterfactual outcomes
 - Introduce a new product
 - Start a social media campaign
Profit of firm $i = \{K, W\}$ in market m is $\pi_{im}(\theta; y_{-im}, X_m, Z_m)$ where
- y_{im} is the action (enter/don’t enter) of firm i,
- y_{-im} is the action of its rival,
- X_m is a vector of market characteristics,
- $Z_m = (Z_{Km}, Z_{Wm})$ contains firm characteristics, and
- θ is a finite-dimensional parameter vector.

Note that these are latent profits, like utility in DC models
- If these were consumers, we’d work with utilities

Let’s choose a simple functional form

$$\pi_{im} = \alpha_i' X_m + \beta_i' Z_{im} + \delta_i y_{-im} + \epsilon_{im}$$

where ϵ_{im} is a component of profits the firm sees but we don’t.
We need to decide what the players do and do not observe.

- If we assume that both firms see X_m, Z_m and $(\varepsilon_K, \varepsilon_W)$, this becomes a game of complete information.
- If, instead, we assume that firms do not see some components of these profit shifters, this becomes a game of incomplete information.

Let’s start with the complete information case, following Bresnahan and Reiss (1990, 1991) and Berry (1992) who pioneered the empirical games literature.

Then we'll discuss the incomplete information case (Rust, 1994), which segues nicely into the treatment of dynamics (session 2).
Nash Equilibrium (Simultaneous Moves)

- In equilibrium, firms maximize profits, taking rivals actions as given.
- A Nash equilibrium is characterized by

\[y_{Km} = 1 \left[\alpha'_K X_m + \beta'_K Z_{Km} + \delta_K y_{Wm} + \epsilon_{Km} \geq 0 \right] \]
\[y_{Wm} = 1 \left[\alpha'_W X_m + \beta'_W Z_{Wm} + \delta_W y_{Km} + \epsilon_{Wm} \geq 0 \right] \]

which captures each firm’s non-negative profit condition.
- Note that these could just as easily be utilities in a system of social interactions.
- An equilibrium is a configuration that satisfies both equations.
Nash Equilibrium (Simultaneous Moves)

\[y_{km} = 1 \left[\alpha'_k x_m + \beta'_k z_{km} + \delta_k y_{wm} + \varepsilon_{km} \geq 0 \right] \]
\[y_{wm} = 1 \left[\alpha'_w x_m + \beta'_w z_{wm} + \delta_w y_{km} + \varepsilon_{wm} \geq 0 \right] \]

- This is now a binary simultaneous equation system.
- This structure distinguishes a discrete game from a standard discrete choice problem.
 - The outcomes are determined via equilibrium conditions
 - The RHS of each equation contains a dummy endogenous variable
- To proceed, we must confront this endogeneity problem
Multiple Equilibrium

- Why not solve the system for its reduced form & match it to what we see in the data?

- Unfortunately, in many cases, the reduced form won’t be unique
 - This is a direct result of this being a game → games may admit more than one equilibria!

- For example, if the \(\delta \)'s are \(< 0 \) (competition reduces profits), multiple equilibria arise in the region of \(\epsilon \) space for which

 \[
 - (\alpha_i' X + \beta_i' Z_i) \leq \epsilon_i \leq - (\alpha_i' X + \beta_i' Z_i) - \delta_{3-i} \quad \text{for } i = 1, 2
 \]

- Let’s look at a picture from Bresnahan & Reiss...

- Thus, for a given set of parameters there may be more than one possible vector of equilibrium outcomes \((y) \).
Multiple Equilibrium

Model Predicts (0,1)

Model Predicts (1,1)

(-α₁X₁ - δ₂, -α₂X₂ - δ₁)

Model Predicts (0,1) or (1,0)

Model Predicts (0,0)

(-α₁X₁, -α₂X₂)

Model Predicts (1,0)
Incompleteness due to multiplicity

- The center (shaded) box is the problem region
 - The model does not yield a unique prediction

- Multiplicity makes the econometric model **incomplete**
 - A **complete** econometric response model asserts that a random variable y is a *function* of a random pair (x, ε) where x is observable and ε is not. (Manski, 1988)
 - An **incomplete** econometric model is one where the relationship from (x, ε) to y is a *correspondence*. (Tamer, 2003)
 - Other examples: selection, censoring

- Key issue: incompleteness makes it difficult to define (simple) probability statements about players’ actions.
 - To proceed, we must complete the model somehow (or forgo simple probability statements).
What are our options for completing the model?

There are four main approaches in the literature:

1. Aggregate to a prediction which is unique (e.g. the number of entrants)
2. Impose additional assumptions to guarantee uniqueness (e.g. sequential moves)
3. Specify an equilibrium selection rule (e.g. most profitable)
4. Employ a method that can handle non-uniqueness (e.g. set inference)

I’ll discuss the first 3

- Option 4 is a frontier technique (beyond our scope)
- To start, see Tamer (2003)

The original papers to read are Bresnahan & Reiss (1990, 1991), Berry (1992), and Bjorn & Vuong (1985)
Let's go through option 1 in detail, and then sketch out options 2 & 3. To fix ideas, consider Walmart & Kmart again, letting profits be just

\[\pi_{im} = \alpha'X_m - \delta y_{-im} + \varepsilon_{im} \]

\(X_m \) might include things like population, income & retail sales.

We are ignoring the firm characteristics (\(Z \)'s) in this case.

- This raises problems for (non-parametric) identification
 - Ideally, we'd like exclusion restrictions: covariates that shift around each firm's profits separately from its rivals
 - If not, we are relying on functional form
- The \(\varepsilon_{im} \)'s are i.i.d. shocks, distributed \(N(0,1) \) perhaps.
 - We can relax this later..
Likelihood Function (Aggregation)

- For option 1, we aggregate to a unique prediction.
 - We predict *how many* firms enter, not *who* enters.
- Given this structure, the likelihood of observing n_m firms in a given market m can be computed in closed form

 \[
 \Pr(n_m = 2) = \prod_i \Pr(\alpha' X_m - \delta y_{-im} + \varepsilon_{im} \geq 0)
 \]
 \[
 \Pr(n_m = 0) = \prod_i \Pr(\alpha' X_m - \delta y_{-im} + \varepsilon_{im} < 0)
 \]
 \[
 \Pr(n_m = 1) = 1 - \Pr(n_m = 2) - \Pr(n_m = 0)
 \]

- The sample log-likelihood is then

 \[
 \ln \mathcal{L} = \sum_{m=1}^{M} \sum_{l=0}^{2} \mathcal{I}(n_m = l) \ln \Pr(n_m = l) .
 \]
Multiple Equilibrium

Model Predicts
(0,1)

Model Predicts
(1,1)

\(-\alpha_1 x_1 - \delta_2, -\alpha_2 x_2 - \delta_1\)

Model Predicts
(0,1) or (1,0)

\(-\alpha_1 x_1, -\alpha_2 x_2\)

Model Predicts
(0,0)

Model Predicts
(1,0)
Limitations

- Aggregation clearly involves the loss of some information (Tamer, 2003)
- It can also require strong assumptions to generalize (e.g. to many players and/or player types).
- Not clear how to apply it to mixed strategies or the incomplete information case.
- Also, trickier to see where identification comes from.
- However, it’s closest in spirit to the set inference approach...
Alternatives (Options 2 & 3)

- Berry (1992) completes the model by assuming sequential entry.
 - Assigns all “contested” outcomes to a single firm (e.g. Walmart)
 - Has the advantage of being scalable (Berry allows up to 26 entrants) via simulation
 - Mazzeo (2002) is a nice example

- The third option is to provide a selection rule: a way to “select” amongst many equilibria
 - Proposed by Bjorn & Vuong (1985), extended/formalized by Bajari, Hong & Ryan (2010).
 - Simple example: assign probability π and $1 - \pi$ to the two monopoly outcomes and estimate π as part of overall likelihood (mixture).
 - Issues: finding all equilibria, somewhat ad hoc..

- EM (MS, 2011) provide sample code for options 1 and 2...
Extensions

- Heterogeneity & Bayesian approaches
 - ‘Full information’ structure facilitates both

- “Post-entry” data
 - Can bring in data on prices, quantities, etc.
 - Key challenge: accounting for selection

- Multiple discreteness/networks
 - High dimensional structure yields small probabilities (& steep computational burden)
 - Can exploit ‘profit inequalities’ instead
 - Jia (2008), Pakes et al. (2005), Ellickson et al. (2013)
So far, we’ve assumed firms know everything about everyone

- Realistic if the market is in *long run* equilibrium

A second class of models instead assumes that firms have some private information

- They can no longer perfectly predict each other’s actions
 - They must form *expectations* over what their rivals will do
 - They may then have “regret” (if they predict wrong)

Whether this is a more or less reasonable assumption than complete information is a matter of debate, but it does ease the computational burden considerably

- Might test using Grieco (2013)
Incomplete information allows us to recast decision problem as a collection of ‘games against nature’

- Similar role to conditional independence in DDC setting...
- ...or IPVs in auction setting

This simplifies estimation and provides an additional option for dealing with multiplicity: two-step estimation

It also readily extends to dynamic games, where the uncertainty is more intuitive

Let’s see how the information assumption changes the set up...
Incomplete Information Setting

- Under incomplete information, player’s no longer observe everything about their rivals.
- To fix ideas, let’s assume that each player observes its own ε_i, but only knows the distribution of ε_j for its rivals.
 - Suppose we also know the distribution, but don’t see actual draws.
- Each firm now forms expectations about its rivals’ behavior, choosing the action that maximizes expected profits given those beliefs.
 - The equilibrium concept is now Bayes Nash.
- This yields a new system of equations

$$
\begin{align*}
y_{Km} &= 1 \left[\alpha'_K X_m + \beta'_K Z_{Km} + \delta_K p_W + \varepsilon_{Km} \geq 0 \right] \\
y_{Wm} &= 1 \left[\alpha'_W X_m + \beta'_W Z_{Wm} + \delta_W p_K + \varepsilon_{Wm} \geq 0 \right]
\end{align*}
$$

where $p_i \equiv E_i (y_{-i})$ captures firm i’s beliefs.
The BNE satisfies the following set of equalities

\[p_K = \Phi_K (\alpha'_K X_m + \beta'_K Z_{Km} + \delta_K p_W) \]
\[p_W = \Phi_W (\alpha'_W X_m + \beta'_W Z_{Km} + \delta_W p_K) \]

where the form of \(\Phi \) depends on the distribution of \(\varepsilon \).

- For example, if \(\varepsilon \)'s are \(N(0, 1) \), it’s the standard Normal CDF.
- The \(\Phi (\cdot) \)'s are best response probability functions, mapping expected profits (conditional on beliefs \(p \)) into (ex ante) choice probabilities.
 - An equilibrium is a fixed point of these equations
 - Existence follows directly from Brouwer’s FPT
 - Once again, it will likely be non-unique
 - Simple example: coordination game
Multiplicity Again

- Incompleteness arise here as well (there can still be more than one outcome associated with a given set of parameters)
 - Options 2 and 3 still apply
 - See, e.g., Einav (2010) or Sweeting (2009)
 - However, there is now a new “solution”
 - Use two-step estimation to ‘condition on the equilibrium that’s played in the data’
- To see how it works, let’s start with a simpler case that’s closer to what we’ve already seen...
Nested Fixed Point Approach

- Let’s consider a ‘full-solution’ approach like we’ve seen so far
 - Suppose we *know* there is only one equilibrium!
 - The fixed point representation provides a direct method of solving for it: successive approximation
 - Or you can make it a constraint (MPEC)...
 - ...see Su & Judd (2012)
 - This fixed point calculation yields “reduced form” choice probabilities (CCPs) which you can then match to the data

- This estimation approach is called nested fixed point (NFXP)
 - The fixed point (equilibrium) calculation is nested inside the likelihood
 - Developed for DDC problems by Rust (1987)
 - Applied to discrete games by Seim (2006)
Implementation (NFXP)

- **NFXP approach**: Consider the same profit function as before
 \[\pi_{im} = \alpha' X_m - \delta y_{-im} + \varepsilon_{im} \]
 and include the same covariates.
- The \(\varepsilon \)'s are still iid \(N(0, 1) \), but private information now.
- The estimation routine requires solving the fixed point problem
 \[p_{im}^* = \Phi(\alpha' X_m - \delta p_{-im}^*) \]
 for a given guess of the parameter vector.
- The resulting probabilities feed into a binomial log likelihood
 \[\ln \mathcal{L} = \sum_{m=1}^{M} \sum_{i \in \{W, K\}} y_{im} \ln(p_{im}^*) + (1 - y_{im}) \ln(1 - p_{im}^*) \]
 which is then maximized to obtain parameter estimates.
A problem with the NFXP approach is that it *assumes* uniqueness.

- If there's more than one equilibrium, it's mis-specified.

To complete the model: either assume an order of entry (ensuring uniqueness) or find all the equilibria and impose a selection rule.

- However, there is now another option.

Suppose we have *estimates* of each player's beliefs $\hat{p}_i \equiv \hat{E}_i (y_{-i})$.

- Can either get (non-parametrically) from data or (potentially) from an auxiliary survey...

Two-step Estimation

- Simply plug these estimates into the RHS of

\[p_{im}^* = \Phi(\alpha' X_m - \delta p_{-im}^*) \]

revealing a standard discrete choice problem!
- This could be done in Excel!!
- We have also “solved” the multiplicity problem by selecting the equilibrium that was played in the data.
 - Assuming there is only one...
 - ...most realistic if we see the same market over time...
- If we have collected ‘expectations’ data (e.g. a survey), we can even relax the (implicit) rational expectations assumption...
Back to the rational expectations case...

In principal, the first stage must be done non-parametrically

- Why? The “descriptive” CCPs are not economic primitives!
 - We cannot impose structure on them

- Also makes Bayesian approaches more challenging here...

In practice, nonparametric models will be noisy (or infeasible) and parametric models will be mis-specified (& thus inconsistent).
Nested Pseudo Likelihood

- A clever fix is to use an iterative approach: treat the fitted probabilities from the second stage as new first stage beliefs
 - Continue (iterate!) until the probabilities no longer change
- This is called the Nested Pseudo Likelihood approach
 - Developed by Aguirregabiria & Mira (2002, 2007) in DDC context
 - It reduces small sample bias and eliminates the need for a consistent first stage
 - Can also allow unobserved heterogeneity...
 - ...but it’s not guaranteed to converge
- EM provide code for three incomplete information approaches
Extensions

- Unobserved heterogeneity
 - Simplest with NPL or NFXP (imposes structure)
 - Ellickson & Misra (2008), Sweeting (2009), Orhun (2013)
- Bayesian methods
 - Misra (2013)
- Post-entry data (e.g. revenues, prices)
 - Draganska et al. (2009), Ellickson & Misra (2013)
Looking forward to dynamics...

- The (two-step) incomplete information setting provides a natural segue to dynamic games.
 - Dynamic games pose a doubly nested fixed point problem!
 - A dynamic programming problem coupled with the overall game
- Earlier, by estimating beliefs in a first stage, we reduced a complex strategic interaction to a collection of games against nature.
 - This bypassed the fixed point problem associated with the game
- A similar trick can be used to handle the ‘future’: invert CCPs to recover (differenced) choice specific value functions
 - This eliminates the other fixed point problem (from DP problem)
- There are several methods for doing so, which Sanjog will discuss next!