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Overview: Goals of this lecture

1. Discuss the structure and theory of dynamic discrete choice models
2. Survey numerical solution methods
3. Discuss goals of statistical inference: Reduced vs structural form of

the model
4. Model estimation

I Nested fixed point (NFP) estimators
I MPEC approach
I Heterogeneity and unobserved state variables
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Elements of a Markov Decision Process

I Time: t = 0, 1, . . . (infinite horizon)
I A set of states, s 2 S

I S is the state space

I A set of actions, a 2 A(s)

I Set of feasible actions may depend on the current state, although
this is more general than what we typically need in dynamic discrete
choice
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Elements of a Markov Decision Process

I A decision maker chooses some action a 2 A(s) in period t, given
the current state s, and then receives the utility U(s, a)

I The state evolves according to a probability distribution p(·|s, a)
I If S is discrete, then Pr{s

t+1 = j|s
t

, a

t

} = p(j|s
t

, a

t

) for j 2 S
I If S is continuous, then p(·|s

t

, a

t

) is the conditional density of s
t+1
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Elements of a Markov Decision Process

I The decision process is called “Markov” because the utility function
and transition probabilities depend only on the current state and
actions, not on the whole history of the process

I Utilities, U(s, a), and transition probabilities, p(·|s, a) are stationary,
i.e., do not depend on the time period t when an action is taken

I Note: this does not imply that the time series process {s
t

}1
t=0 is

stationary, and vice versa, stationarity of {s
t

}1
t=0 is not required in

this class of models
I Example: A decision make gets tired of a product as time progresses.

Could this be captured by a Markov Decision Process? — Answer:
yes

I
U

t

(s, a) = �t is not allowed
I Instead let S = {0, 1, 2, . . . }, and for any s 2 S let p(s+ 1|s, a) = 1,

i.e. s

t+1 = s

t

+ 1. Then define

U(s, a) = �s
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Actions, decision rules, and policies

I We examine decision problems where the decision maker uses
current (and possibly past) information to choose actions in order to
maximize some overall objective function

I Decision rules: d
t

: S !
S

s2S A(s), d
t

(s) 2 A(s)

I Decision rules associate a current state with a feasible action

I Policies, strategies, or plans: ⇡ = (d0, d1, . . . ) = (d
t

)

1
t=0

I A policy is a sequence of decision rules—a plan on how to choose
actions at each point in time, given the state at that point in time, s

t
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Expected total discounted reward

I A given policy ⇡ = (d
t

)

1
t=0 induces a probability distribution on the

sequence of states and actions, (s
t

, a
t

)

1
t=0

I For a given policy ⇡, the expected total discounted reward (utility) is
given by

v⇡(s0) = E⇡

" 1X

t=0

�tU(s
t

, d
t

(s
t

))|s0

#

I Future utilities are discounted based on the discount factor
0  � < 1 (in finite horizon problems we could allow for � = 1)
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Expected total discounted reward

I We will assume that v⇡ is well-defined
I One necessary condition if the state space is discrete: The series

inside the expectation converges
I Ensured if U is bounded, because 0  � < 1

I Note, however, that boundedness is not a necessary condition for
convergence

I If the state space is continuous, certain technical conditions need to
hold for the expectation to exist (see Stokey and Lucas 1989)
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Optimal policies

I Let ⇧ be the set of all policies. ⇡⇤ 2 ⇧ is optimal if

v⇡
⇤
(s) � v⇡(s), s 2 S

for all ⇡ 2 ⇧
I The value of the Markov decision problem is given by

v⇤(s) = sup

⇡2⇧
{v⇡(s)}

I We call v⇤ the (optimal) value function
I An optimal policy ⇡⇤ is a policy such that

v⇡
⇤
(s) = v⇤(s) = max

⇡2⇧
{v⇡(s)}
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Bellman Equation

I Intuition:
I Due to the stationarity of the utilities and transition probabilities, and

given that there is always an infinite decision horizon, the (optimal)
value function should only depend on the current state, but not on t

I Hence, for any current state s, the expected total discounted reward
under optimal decision making should satisfy the relationship

v⇤(s) = sup

a2A(s)

⇢
U(s, a) + �

Z
p(s0|s, a)v⇤(s0)ds0

�
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Bellman Equation

I The equation above is called a Bellman equation

I Note that the Bellman equation is a functional equation with
potential solutions of the form v : S ! R

I More formally, let B = {f : S ! R : kvk < 1} be the metric space
of real-valued, bounded functions on S. kfk = sup

s2S |f(s)| is the
supremum-norm. Define the operator L : B ! B,

Lv(s) ⌘ sup

a2A(s)

⇢
U(s, a) + �

Z
p(s0|s, a)v(s0)ds0

�

I A solution of the Bellman equation is a fixed point of L, v = Lv
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Questions to be addressed

1. Is a solution of the Bellman equation the optimal value function?
2. Is there a solution of the Bellman equation, and how many solutions

exist in general?
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The main theorem

Theorem

If v is a solution of the Bellman equation, v = Lv, then v = v⇤.
Furthermore, under the model assumptions stated above a (unique)

solution of the Bellman equation always exists.

I The proof of this theorem is based on the property that L is a
contraction mapping. According to the Banach fixed-point theorem,
a contraction mapping (defined on a complete metric space) has a
unique fixed point. The contraction mapping property crucially
depends on the additive separability of the total discounted reward
function, and in particular on discounting, � < 1
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Optimal policies

I Assume that the supremum in the Bellman equation can be
attained, and define the decision rule

d⇤(s) 2 argmax

a2A(s)

⇢
U(s, a) + �

Z
p(s0|s, a)v⇤(s0)

�

I Let ⇡⇤
= (d⇤, d⇤, . . . ) be a corresponding policy

Theorem

Let ⇡⇤
be as defined above. Then ⇡⇤

is an optimal policy, such that

v⇡
⇤
= v⇤
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Optimal policies

I Note that the theorem on the previous slide shows us how to find an
optimal policy

I In particular, note that the theorem shows that if the supremum in
the Bellman equation can be attained, then there is a stationary

optimal policy
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Optimal Policies: Notes

I A sufficient condition for the existence of an optimal policy is
I A(s) is finite
I Satisfied (by definition) in dynamic discrete choice problems

I Decision rules that depend on the past history of states and actions
do not improve the total expected reward

I Hence, basing decisions only on current, not past information, is not
restrictive in Markov decision processes
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Kellogg’s Raisin Bran, 20 oz pack size
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Overview: Sales promotions

I Many CPG products are sold at both regular (base) prices and at
promotional prices

I We often observe sales spikes during a promotion
I Could be due to brand switching or increased consumption
I Could be due to stockpiling if the good is storable

I Develop a simple model of stockpiling—storable goods demand
I Goal: predict how demand is affected by the distribution of prices at

which the storable good can be bought
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Model outline

I At the beginning of each period a consumer goes to a store and
chooses among K different pack sizes of a storable good

I Pack size k contains n

k

units of the product (n
k

2 {1, 2, . . . })
I No purchase: n0 = 0

I The choice in period t is a
t

2 A = {0, 1, . . . ,K}
I i

t

is the number of units in the consumer’s inventory at the
beginning of period t

I After the shopping trip, if a
t

= k the consumer has i
t

+ n
k

units of
the product at her disposal

I The consumer has a consumption need of one unit in each period
I Will consume one unit if i

t

+ n

k

� 1, and will not consume otherwise
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Evolution of inventory

I Consumer can store at most I units
I Conditional on i

t

and a
t

= k, inventory evolves as

i
t+1 =

8
<

:

0 if i
t

+ n
k

= 0

i
t

+ n
k

� 1 if 1  i
t

+ n
k

 I
I if i

t

+ n
k

> I

I Note: Units in excess of I + 1 can neither be consumed nor stored

I The evolution of inventory is deterministic, and we can write
i
t+1 = �(i

t

, a
t

)
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Utilities and disutilities

I The purchase utility (rather: disutility) from buying pack size k is
�↵P

kt

� ⌧(n
k

)

I
P

kt

is the price of pack size k and ↵ is the price sensitivity parameter
I

⌧(n

k

) is the hassle cost of purchasing (or transporting) pack size k

I Outside option: P0t = 0, ⌧(n0) = ⌧(0) = 0

I The consumption utility, given that there is at least one unit to
consume (i

t

+ n
k

� 1) is �, and 0 otherwise
I Inventory holding cost: c(i

t+1)

I
c(0) = 0
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Notation

I Define x
t

⌘ (i
t

, P
t

), where P
t

= (P1t, . . . , PKt

)

I Define utility as a function of x
t

and as a function of the chosen
pack size a

t

= k :

u
k

(x
t

) =

8
<

:

�↵P
kt

� ⌧(n
k

) + � � c(i
t+1) if k 6= 0

� � c(i
t+1) if k = 0 and i

t

� 1

0 if k = 0 and i
t

= 0
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Distribution of prices

I The price vectors P
t

are drawn from a discrete distribution
I P

t

can take one of L values {P (1), . . . , P (L)} with probability
Pr{P

t

= P (l)} = ⇡
l

I In this specification prices are i.i.d. over time
I Generalization: Prices be drawn from a Markov process where

current prices depend on past price realizations
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State vector and utility function

I A random utility term enters the consumer’s preferences over each
pack size choice

I ✏
t

= (✏0t, . . . , ✏Kt

), where ✏
kt

is iid Type I Extreme Value distributed
I

g(✏) is the pdf of ✏
t

I The state of this decision process is s
t

= (x
t

, ✏
t

)

I The (full) utility function of the consumer:

U(s
t

, a
t

= k) = u
k

(x
t

) + ✏
kt
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State evolution

I The evolution of x
t

is given by the pmf f :

f(i, P (l)|x
t

, a
t

) ⌘ Pr{i
t+1 = i, P

t+1 = P (l)|x
t

, a
t

}
= I{i = �(i

t

, a
t

)} · ⇡
l

I
Defined for 0  i  I, 1  l  L

I Then the evolution of the state, s = (x, ✏), is given by

p(s
t+1|st, at) = f(x

t+1|xt

, a
t

) · g(✏
t+1)
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Discussion

I The storable goods demand model has a specific structure due to
the way the random utility terms ✏

kt

enter the problem:
I The state has two separate components, x

t

and ✏

t

I The utility function has the additive form

U(s

t

, a

t

= k) = u

k

(x

t

) + ✏

kt

I The transition probability factors into two separate components:

p(s

t+1|st, at

) = f(x

t+1|xt

, a

t

) · g(✏
t+1)

I In the next section we will discuss Markov decision processes with
this special structure
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Structure of the decision problem

I A decision maker (typically a consumer or household) chooses
among K + 1 alternatives (goods or services),
a 2 A = {0, 1, . . . ,K}, in each period t = 0, 1, . . .

I Alternative 0 typically denotes the no-purchase option

I The state vector, s 2 S, has the following structure:

s = (x, ✏), where x 2 X, ✏ 2 RK+1

I The transition probability is p(s
t+1|st, at)
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Main assumptions

1. Additive separability. The utility from choosing action a
t

= j in
state s

t

= (x
t

, ✏
t

) has the following additive structure:

U(s
t

, a
t

) = u
j

(x
t

) + ✏
jt

2. Conditional independence. Given x
t

and a
t

, current realizations of ✏
t

do not influence the realizations of future states x
t+1. Hence, the

transition probability of x can be written as f(x
t+1|xt

, a
t

)

3. iid ✏
jt

. ✏
jt

is iid across actions and time periods.
I

g(✏) is the pdf of ✏ = (✏0, . . . , ✏K), and we typically assume that the
support of ✏

j

is R
I We could allow for g(✏|x), although this more general specification is

rarely used in practice
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Discussion of model structure

I While x can contain both observed and unobserved components, ✏ is
assumed to be unobservable to the researcher

I
✏

j

is an unobserved state variable

I Additive separability and the assumptions on ✏
j

will allow us to
rationalize any observed choice, and thus ensure that the likelihood
function is positive on the whole parameter space

I Given the conditional independence and iid assumptions, the
transition probability can be written as follows:

p(s
t+1|st, at) = f(x

t+1|xt

, a
t

) · g(✏
t+1)
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Decision rules and rewards

I In each period, the decision maker chooses an action according to a
decision rule d : X⇥ RK+1 ! A, a

t

= d(x
t

, ✏
t

).

I The expected present discounted value of utilities under the policy
⇡ = (d, d, . . . ) is

v⇡(x0, ✏0) = E
" 1X

t=0

�tU(x
t

, ✏
t

, d(x
t

, ✏
t

))|x0, ✏0

#
.
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Optimal behavior and the Bellman Equation

I Given that A is finite, there is an optimal decision rule d⇤(x, ✏)

I The associated value function satisfies

v(x, ✏) = max

j2A
{u

j

(x) + ✏
j

+ �E [v(x0, ✏0)|x, a = j]}

= max

j2A

⇢
u
j

(x) + ✏
j

+ �

Z
v(x0, ✏0)f(x0|x, j)g(✏0) dx0d✏0

�
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The expected value function

I Goal:
I Characterize optimality condition as a function of x only
I ) faster computation of model solution

I Define the expected or integrated value function,

w(x) =

Z
v(x, ✏)g(✏)d✏

I w(x) is the value that the decision maker expects to receive before
the unobserved states, ✏, are realized

I Using the definition of w, we can re-write the value function:

v(x, ✏) = max

j2A

⇢
u
j

(x) + ✏
j

+ �

Z
w(x0

)f(x0|x, j) dx0
�
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The expected value function

I Taking the expectation on both sides of the previous (last slide)
equation with respect to ✏, we obtain the integrated Bellman

equation

w(x) =

Z
max

j2A

⇢
u
j

(x) + ✏
j

+ �

Z
w(x0

)f(x0|x, j) dx0
�
g(✏)d✏

I The right-hand side of this equation defines a contraction mapping,
� : B ! B, on the space of bounded functions, B

I Thus, the equation has a unique solution which must equal the
expected value function, w = �(w)

I Note the role of the conditional independence and iid ✏ assumptions
in the derivation of this equation
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Blackwell’s sufficient conditions for a contraction

Theorem

Let B = {f : S ! R : kfk < 1} be the metric space of real-valued,

bounded functions on S. Suppose the operator L : B ! B satisfies the

following two conditions:

(1) Monotonicity: If f, g 2 B and f(x)  g(x) for all x 2 S, then

(Lf)(x)  (Lg)(x) for all x 2 S.

(2) Discounting: There is a number � 2 (0, 1) such that

(L(f + a))(x)  (Lf)(x) + �a for all f 2 B, a > 0, and x 2 S.

Then L is a contraction mapping with modulus �.
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� is a contraction mapping

Proof.

If g  h, then
Z

g(x0
)f(x0|x, j) dx0 

Z
h(x0

)f(x0|x, j) dx0

for all x 2 X and j 2 A. It follows that �f  �h. Let a � 0. Then

�

Z
(g(x0

) + a)f(x0|x, j) dx0
= �

Z
g(x0

)f(x0|x, j) dx0
+ �a.

Hence
(�(g + a))(x) = (�g)(x) + �a.
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Choice-specific value functions

I Using the definition of the expected value function, w(x), define the
choice-specific value functions

v
j

(x) = u
j

(x) + �

Z
w(x0

)f(x0|x, j) dx0

I The full expected PDV of utilities from choosing j is v
j

(x) + ✏
j

40 / 113



Choice-Specific value functions

I The choice-specific value functions characterize the model solution

I The value function can be expressed in terms of these choice-specific
value functions,

v(x, ✏) = max

j2A
{v

j

(x) + ✏
j

}

I Therefore, w(x) =

R
v(x, ✏)g(✏)d✏ is sometimes also called the

EMAX function:

w(x) =

Z
v(x, ✏)g(✏)d✏ =

Z
max

j2A
{v

j

(x) + ✏

j

} g(✏)d✏

I Furthermore, the optimal decision rule satisfies

d⇤(x, ✏) = k , v
k

(x) + ✏
k

� v
j

(x) + ✏
j

for all j 2 A, j 6= k
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Recap

I The previous slides show how the solution of this class of dynamic
decision problems can be simplified:

1. Solve for the expected value function, w(x)

2. Calculate the choice-specific value functions, v
j

(x)

3. Calculate the value function and optimal policy from the
choice-specific value functions

I The key step here is 1: By “integrating out” ✏, we can reduce the
dimensionality of the problem by K + 1. This saves huge amounts of
computing time!
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Conditional choice probabilities (CCP’s)

I The additive separability assumption on the utility function U(s, a)
implies that the expected PDV of choosing j is additively separable
in v

j

(x) and the unobserved state, ✏
j

I Thus, once v
j

(x) is known, the model predictions—choice
probabilities—can be derived just as the model predictions of a
static discrete choice model:

Pr{a = k|x} = Pr{v
k

(x) + ✏
k

� v
j

(x) + ✏
j

8j 6= k}

I We call these the conditional (on the state x) choice probabilities
(CCP’s)

I Frequently, we assume that ✏
j

has the Type I Extreme Value
distribution. Then, choice probabilities have the logit form

Pr{a = k|x} =

exp(v
k

(x))
P

K

j=0 exp(vj(x))
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Technical note

I Let �1, . . . , �N be some numbers and let each of the N random
variables ✏

j

be i.i.d. Type I Extreme Value (Gumbel) distributed
I The cdf of each ✏

j

is G(✏

j

) = exp(� exp(�(✏

j

� µ)))

I E(✏
j

) = µ+ �, where � ⇡ 0.57722 is Euler’s constant
I In many applications, ✏

j

is assumed to be drawn from the standard
Gumbel distribution, µ = 0

I If g(✏) =
Q

N

j=1 g(✏j), we obtain the closed-form expression

Z ✓
max

j=1,...,N
{�

j

+ ✏
j

}
◆
g(✏)d✏ = µ+ � + log

0

@
NX

j=1

exp(�
j

)

1

A
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Technical note

I Hence if ✏
j

is i.i.d. Type I Extreme value distributed, then the
expected value function can be expressed as

w(x) = µ+ � + log

0

@
X

j2A
exp

✓
u
j

(x) + �

Z
w(x0

)f(x0|x, j) dx0
◆1

A

I Hence, the integration over ✏ can be performed analytically
I To get rid of the constant term µ+ � in the equation above, simply

assume µ = ��, in which case ✏
j

is centered at 0
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Computing the expected value function w

I Use a form of value function iteration
I The algorithm works because of the contraction mapping property of

the operator �
I Note:

I Policy iteration or modified policy iteration are better algorithms to
obtain the value function corresponding to a Markov decision process

I However, these algorithms are not applicable here because we
calculate the expected value function, w, not the value function v
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Computing w : The algorithm

1. Start with some w(0) 2 B
2. For each x 2 X, calculate

w(n+1)
(x) =

Z
max

j2A

⇢
u
j

(x) + ✏
j

+ �

Z
w(n)

(x0
)f(x0|x, j) dx0

�
g(✏)d✏

3. If
��w(n+1) � w(n)

�� < "
w

, then proceed to 4. Otherwise, return to 2.
4. Calculate the (approximate) choice-specific value functions

v
(n+1)
j

(x) = u
j

(x) + �

Z
w(n+1)

(x0
)f(x0|x, j) dx0
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Computing w : Speed of convergence

I For any starting value w(0) 2 B, w(n) ! w in the sup-norm (k·k)
I The rate of convergence is O(�n

) :

lim sup

n!1

��w(n) � w
��

�n

< 1

I That is, w(n) converges geometrically at the rate �
I Correspondingly, in marketing applications problems with short time

intervals (daily or weekly decision making) the algorithm requires a
larger number of iterations to find a solution with a given accuracy,
because � will be close to 1
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Literature background

I The model structure discussed above closely follows John Rust’s
(1987) “Optimal Replacement of GMC Bus Engines: An Empirical
Model of Harold Zurcher” paper

I Harold Zurcher was the superintendent of maintenance at the
Madison Metropolitan Bus Company

I Other early key contributions
I Choice of occupations — Miller (1984)
I Fertility choice (number and timing of children) — Wolpin (1984)
I Option value of patents — Pakes (1986)
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Model solution code

I Remember that x
t

⌘ (i
t

, P
t

)

I
i

t

2 {0, 1, . . . , I}
I The price vector P

t

can take one of L values, {P (1)
, . . . , P

(L)}
I Hence, the state space X is discrete and finite, and we can associate

each state x with two indices, (i, l), where i 2 {0, . . . , I} and
l 2 {1, . . . , L}

I Allows us to store the expected value function, w, in an array with
dimensions (I + 1)⇥ L
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Code documentation

I The example is coded in MATLAB
I Run the code by calling Main.m

I Defines the model settings, such as the size of the state space and
the model parameters

I Calls the value function iteration algorithm, simulates the model
predictions, and creates graphs displaying the CCP’s for each state

I The main model information is contained in three MATLAB
structures:

I settings — main model settings
I param — model parameters
I price — price distribution
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Code documentation

I value_function_iteration.m: Algorithm to solve for the
expected value function, w

I Bellman_operator.m: Calculates the right-hand side of the
expected value function equation given a guess of w

I Model_simulation.m: Simulates product choices and inventories
for given choice-specific value functions (v_choice) and model
settings
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Example

I Number of different pack sizes: K = 2

I Units contained in each pack size: n1 = 2, n2 = 5

I Prices: P
low

= (1.2, 3.0), P
high

= (2.0, 5.0). Pr{P = P
low

} = 0.16

I State dimensions: I = 20, L = 2 — 21 · 2 = 42 states
I Consumption utility: � = 4

I Price sensitivity: ↵ = 4

I Inventory holding cost: c(i) = 0.05 · i
I Purchase cost: ⌧(n

k

) ⌘ 0
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CCP’s — pricing with promotions
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CCP’s — only low price
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Inventory distribution — pricing with promotions
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Inventory distribution — only low price
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Simulated purchase frequencies and sales levels

Purchase frequency Average sales units
Average

price
P
low

P
high

Average
price

P
low

P
high

Promotions
Small 0.187 0.251 0.175 0.900 3.782 0.358
Large 0.105 0.656 0.001
No purchase 0.708 0.093 0.823

Only low price
Small 0.374 0.991
Large 0.049
No purchase 0.577
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Overview

I Durable goods adoption decisions are inherently dynamic if
consumers consider the trade-off between adopting a product now or
in future

I Prices of consumer durables typically fall over time
I Product qualities improve
I Uncertainty, for example about standards, is resolved over time
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Model outline

I In each period t = 0, 1, . . . , a consumer decides whether to adopt
one of K products

I Choice k = 0: no purchase/waiting

I State vector: x
t

= (P1t, . . . , Pkt

, z
t

)

I
P

kt

is the price of product k

I
z

t

= 1 indicates that the consumer already adopted the product in
some period prior to t (z

t

= 0 otherwise)

I Prices follow the log-normal process

log(P
jt

) = �
j

log(P
j,t�1) + ⌘

jt

,

⌘
t

= (⌘1t, . . . , ⌘Kt

) ⇠ N(0,⌃)
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Model outline

I Utility from adopting k is

u
k

(x
t

) = �
k

+ ↵P
kt

if z
t

= 0

I �
k

includes the present discounted utility from the product, hence we
can assume that payoffs are ⌘ 0 after product adoption (z

t

= 1)

I Hence, we focus exclusively on the case z

t

= 0 and drop z

t

from the
state vector

I Utility from waiting: u0(xt

) = 0

I The total payoff from choice k also includes an iid Type I Extreme
Value distributed random utility component, ✏

kt

I ) model fits into the dynamic discrete choice framework discussed
before
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State space

I The state vector, x
t

= (P1t, . . . , Pkt

), is an element of X = RK

+

I X is continuous
I How can we calculate the expected value function w and the

choice-specific value functions v
k

on a computer if X is not discrete
(finite)?
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Numerical solution of v or w

I A value function is a mapping v : S ! R
I In the storable goods demand problem the state space was discrete

(finite), but in the durable goods adoption problem the state space
is continuous

I Numerical issues that we need to address:
1. How do we store v, an infinite-dimensional object, in computer

memory?
2. How do we evaluate v(x)?

3. How do we calculate the integral
R
v(x

0
)p(s

0|s, a)ds0?
I These issues are addressed in Numerical Analysis
I 1. and 2. are issues of approximation and interpolation, 3. deals

with numerical integration
I Note: Issues 1.-3. are the same with regard to the expected value

function, w : X ! R
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Discretization

I One strategy is to discretize the state space into a finite number of
points

I For example, for a D-dimensional state space, we can choose a grid
for each axis, G

i

= {x1i, . . . , xNi,i}, xki

< x
k+1,i, and approximate

S by G = G1 ⇥ · · ·⇥ G
D

= {s1, . . . , sL} (note that
L = |S| = N1 ·N2 · · ·ND

)
I v then becomes a finite-dimensional object, v(s

i

) = v
i

, and can be
stored in computer memory using L floating-point numbers
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Discretization

I One way to proceed is to also discretize the transition probability:

p
i

(s, a) = Pr{s0 = s
i

|s, a} =

Z

Bi

p(s0|s, a)ds0,

or: p
i

(s, a) =
p(s

i

|s, a)
P

L

l=1 p(sl|s, a)

I Here, B
i

is an appropriately chosen partition of the state space and
s
i

2 B
i

I For a given a, the evolution of the state can now be described by a
stochastic matrix, P a with (k, i)-element p

i

(s
k

, a)

I One can also discretize the set of actions,
S

s2S A(s)
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Discussion

I Although conceptually straightforward, the discretization discussed
on the previous slide may neither deliver a fast algorithm nor an
accurate solution

I Note that taking the expectation can involve up to L = |S|
multiplications, which can be much larger than the number of
multiplications using alternative methods, such as quadrature and
interpolation
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Interpolation

I Interpolation methods record the function values at a finite number
of points (the table values), and use some algorithm to evaluate the
function for any point that is not in the table:

1. Discretize the state space into a grid G, as before, and record the
values of v at each point s

i

2 G
2. Instead of assuming that the state can only take on values in G, we

now try to find a method to evaluate v(s) at some arbitrary point
s 2 S
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Interpolation

I Linear interpolation in one dimension (D = 1) :

1. Find the index i such that x

i

 s < x

i+1

2. Calculate ! = (s� x

i

)/(x

i+1 � x

i

)

3. The interpolated value is

bv(s) = v

i

+ !(v

i+1 � v

i

)
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Interpolation: Example
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Bilinear interpolation

I We can extend the linear interpolation algorithm to more than one
dimension

1. In two dimensions, s = (s1, s2), find the indices i and j such that
x

i1  s1 < x

i+1,1 and x

j2  s2 < x

j+1,2

2. Calculate !1 = (s1 � x

i1)/(xi+1,1 � x

i1) and

!2 = (s2 � x

j2)/(xj+1,2 � x

j2)

3. The interpolated value is

bv(s) = y0 + !1(y1 � y0)

y0 = v

ij

+ !2(vi,j+1 � v

ij

)

y1 = v

i+1,j + !2(vi+1,j+1 � v

i+1,j)

I This procedure is called bilinear interpolation

I Note that bilinear interpolation does not yield a linear function
surface!
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Bilinear interpolation: Example
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Other interpolation methods: Simplicial interpolation

I Partition the state space into triangles
I Interpolate using linear surfaces
I Example for D = 2

1. Partition the state space into rectangles as before
2. Further subdivide each rectangle into two triangles
3. Interpolate using the unique linear function that coincides with v

i

at
each of the three vertices of the triangle
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Other interpolation methods: Splines

I A spline of order N is a function  that is a polynomial of degree
N � 1 on each interval (or rectangle) defined by the grid

I Furthermore, we require that  is CN�2 on all of the grid, not just
within each interval or rectangle

I That is, we require that  is smooth not only within, but also at the
boundary of each interval or rectangle

I Example: A cubic spline is of order N = 4. It has continuous first
and second derivatives everywhere. For D = 1, it can be represented
as

 (s) = a0i + a1is+ a2is
2
+ a3is

3

within each interval [x
i

, x
i+1]

I The requirement that  is CN�2 imposes coefficient restrictions for
the polynomials across intervals/rectangles
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Splines

I Advantage of splines: allows for continuous or smooth derivatives
I This can be important in games with continuous controls to ensure

continuity of best-reply functions and thus existence of a
pure-strategy equilibrium
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Approximation using orthogonal polynomials

I Instead of first discretizing the state space and then approximating
v(s) using interpolation, we try to approximate v(s) globally using a
linear combination of easy-to-evaluate functions

I We start with a set of basis functions, �
i

: S ! R, i = 1, . . . ,K.
Here, S ⇢ RD

I Each �
i

is a polynomial (polynomials are easy to evaluate)
I To simplify the exposition, let D = 1 and consider approximations

on the interval [�1, 1]
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Approximation using orthogonal polynomials

I We will only discuss Chebyshev polynomials, which are particularly
useful in many applications

I The Chebyshev polynomial of degree n is defined as

T
n

(x) = cos(n · cos�1
(x))

I Even though this doesn’t look like a polynomial, it is. An easier way
to calculate T

n

(x) is to set T0(x) = 1, T1(x) = x, and then for
n � 2 recursively calculate

T
n

(x) = 2xT
n�1(x)� T

n�2(x)
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Chebyshev polynomials, degree n = 0, . . . , 5
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Approximation using orthogonal polynomials

I Define the inner product hf, gi between two functions f and g on
[�1, 1] as

hf, gi =
Z 1

�1

f(x)g(x)p
1� x2

dx

I We say that f and g are orthogonal to each other if hf, gi = 0

I One can verify that Chebyshev polynomials are mutually orthogonal,
hT

n

, T
m

i = 0 for n 6= m

I Goal: Choose a linear combination of Chebyshev polynomials to
approximate some arbitrary function,

v(s) ⇡
KX

i=0

✓
i

T
i

(s)
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Chebyshev regression algorithm

I An algorithm to find a good approximation for f on some interval
[a, b] is as follows:

1. Choose the degree N of the polynomial and the number of
interpolation nodes M � N + 1

2. Compute each interpolation node:

⌫

i

= � cos

✓
2i� 1

2M

⇡

◆
, i = 1, . . . ,M

3. Adjust these nodes to the interval [a, b] :

⇠

i

= (⌫

i

+ 1)

(b� a)

2

+ a

4. Calculate the Chebyshev coefficients:

✓

k

=

P
M

i=1 f(⇠i)Tk

(⌫

i

)

P
M

i=1 Tk

(⌫

i

)

2
k = 0, . . . , N
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Regression with orthogonal regressors

I Consider the regression y = X� + ✏, where x
j

denotes the jth

column of X
I Suppose the regressors are orthogonal:

hx
j

, x
k

i = x0
j

x
k

= 0

I Then

XTX =

2

6664

x0
1x1 0 · · · 0

0 x0
2x2

...
. . .

...
0 · · · x0

N

x
N

3

7775
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Regression with orthogonal regressors

I Let b = (XTX)

�1XT y

I Then
b
k

=

x0
k

y

x0
k

x
k

=

P
i

x
ik

y
iP

i

x
ik

x
ik

I Note the form of the Chebyshev coefficients:

✓
k

=

P
i

v(⇠
i

)T
k

(⌫
i

)P
i

T
k

(⌫
i

)

2

I Hence the name “Chebyshev regression”!
I Difference to regular regression: the Chebyshev regression algorithm

chooses the values of the regressors/nodes (in a smart fashion, to
minimize approximation error)
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Approximation using orthogonal polynomials

I Given the Chebyshev coefficients calculated in the Chebyshev
regression algorithm, we can approximate v(x), x 2 [a, b] by

v̂(x) =

NX

k=0

✓
k

T
k

✓
2

x� a

b� a
� 1

◆

I If v is Ck, k � 1, and v̂
N

(x) is a degree N Chebyshev
approximation, then

lim

N!1
sup

x

|v̂
N

(x)� v(x)| = 0

I
v̂

N

converges uniformly to v if v is (at least) continuously
differentiable

I For non-differentiable v’s, Chebyshev regression will generally not
provide a good approximation
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Multidimensional approximation

I Suppose we have basis functions T
id

(x
d

), i = 1, . . .K
d

, for each of
d = 1, . . . , D dimensions

I Goal: construct a basis for functions of (x1, . . . , xD

)

I Collect all functions of the form

 (x1, . . . , xD

) =

DY

d=1

T
idd(xd

), 1  i
d

 K
d

I The collection of all these N =

Q
D

d=1 Kd

functions is called the
D-fold tensor product basis

I Important application: D-dimensional Chebyshev approximation
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Discussion

I What are the relative merits of approximations using orthogonal
polynomials versus interpolation methods such as bilinear
interpolation?

I Chebyshev coefficients are easy to compute if there is only a small
number of nodes M , while finding values for each grid point s

i

2 G
can be very time-intensive

I If the true function v is not smooth or displays a lot of curvature,
then a Chebyshev approximation will be poor unless N and M are
large, in which case there is no more speed advantage over
interpolation

I Note that approximation using grids and interpolation is essentially a
non-parametric method, while approximation using polynomials of
fixed degree N is a parametric method
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Discussion: The curse of dimensionality

I In practice, the biggest problem when we try to find a solution of a
Markov decision problem involves computation time

I If we discretize each axis of the space into M points, then the total
number of grid points is MD

I Hence, the number of points at which the value function has to be
calculated rises exponentially in D

I Even worse, the number of floating point operations to evaluate V

also rises exponentially for many methods
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Newton-Cotes formulas

I Easy to understand, but ineffective compared to Gaussian
quadrature or Monte Carlo methods

I Example: Midpoint rule
I Consider the interval [a, b], choose N and define the step-size

h = (b� a)/N

I Let x

i

= a+ ih� h/2. x

i

is the midpoint in the interval
[a+ (i� 1)h, a+ ih]

I Approximate the integral of f :

Z
b

a

f(x)dx ⇡ h

NX

i=1

f(x

i

)

I In practice, we can typically calculate the integral with much higher
accuracy given the same number of operations using alternative
methods
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Gaussian quadrature

I Gaussian quadrature rules are formulas for integrals of the function
W (x)f(x) for some specific W (x) :

Z
b

a

W (x)f(x)dx ⇡
NX

i=1

w
i

f(x
i

)

I The w
i

’s are weights, and the x
i

’s are called nodes or abscissas
I This looks exactly like a Newton-Cotes formula, however, the main

idea of Gaussian quadrature is to choose the weights and nodes such
that the approximation is very close to the true integral even if N is
small

I Weights and nodes are chosen so that the approximation is exact for
low-order polynomials
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Gaussian quadrature

I Given a function W (x) and a choice of N, there are algorithms to
compute the quadrature nodes x

i

and the corresponding weights w
i

I There are different quadrature rules, distinguished by the choice of
the function W (x)

I Each rule makes use of the fact that the integrand can be factored
as W (x)f(x) with W (x) known
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Gaussian quadrature

I Consider the important case of Gauss-Hermite quadrature:

W (x) = exp

�
�x2

�

I For the corresponding nodes x
i

and weights w
i

,

Z 1

�1
exp

�
�x2

�
f(x)dx ⇡

NX

i=1

w
i

f(x
i

)

I Hence,

Z 1

�1

1p
2⇡�

exp

 
�1

2

✓
x� µ

�

◆2
!
f(x)dx

⇡ 1p
⇡

NX

i=1

w
i

f(µ+

p
2�x

i

)
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Gaussian quadrature

I Gauss-Hermite quadrature yields a very accurate approximation to
integrals involving a normal pdf for a small number of quadrature
nodes N

I Gaussian quadrature can be extended to higher dimensions, D > 1

I Unfortunately, there is a curse of dimensionality in D

I For large D, Monte Carlo integration is the only feasible integration
method
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Monte Carlo integration

I Basic idea: Let (X
n

)

n�0 be a sequence of random variables with
density p(x)

I Then we can simulate the integral

Z
f(x)p(x)dx ⇡ 1

N

NX

n=1

f(X
i

)

I In fact,
1

N

NX

n=1

f(X
i

)

a.s.�!
Z

f(x)p(x)dx

I Methods such as importance sampling improve on the efficiency of
this crude simulator
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Code documentation

I The solution algorithm is coded in MATLAB
I Run Main.m to compute and display the solution of the durable

goods adoption problem
I Solutions are obtained using both bilinear interpolation and

Chebyshev regression
I All information (grid points, table values, Chebyshev coefficients, ...)

is contained in MATLAB structures (w_interp, w_cheb, etc.)
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Main.m

1. Sets values for the model parameters
2. Calls Gauss_Hermite_multidim to calculate Gauss-Hermite

quadrature weights and nodes
3. Defines and initializes the bilinear and Chebyshev approximation

routines
4. Calls value_function_iteration to solve the model using both

methods
5. Calls calculate_choice_probabilities to predict the CCP’s
6. Defines a grid on which to graph the solutions and calls

transfer_representation to evaluate the model solutions on this
grid

7. Plots the expected value functions, conditional choice probabilities,
and differences in the CCP’s predicted by the interpolation and
Chebyshev approximation solutions
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value_function_iteration

I Uses value function iteration to calculate the expected value
function w

I Works for both bilinear interpolation and Chebyshev approximation
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Bellman_operator

1. Bilinear interpolation:
I Iterates through the state space and calculates the expected value

function for each state
I The expected future value is obtained using quadrature and bilinear

interpolation

2. Chebyshev approximation:
I Algorithm can be efficiently expressed using matrix operations
I Utilize linearity of quadrature and Chebyshev approximation to

pre-compute many terms needed to update the expected value
function

I See details below
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calculate_choice_probabilities and
Gauss_Hermite_multidim

I calculate_choice_probabilities
I Input: Array of bilinear interpolation structures, Pr_list, and a

structure containing the solution of w
I Output: Pr_list, containing the CCP’s

I Gauss_Hermite_multidim
I Routine to calculate Gauss-Hermite quadrature weights and nodes

for a given dimension and number quadrature nodes
I Needs to be called only once
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Bilinear interpolation utilities

I The interpolation structure is initialized using
initialize_interpolator_2D

I interpolate_2D uses bilinear interpolation to find a function value
for a list (array) of state vectors

I display_interpolator_2D graphs the interpolated function

101 / 113

Chebyshev approximation utilities

I The Chebyshev approximation structure is initialized using
initialize_Chebyshev_2D

I calculate_Chebyshev_coefficients_2D calculates the
Chebyshev regression coefficients ✓

I evaluate_Chebyshev_2D uses the current Chebyshev coefficients
to evaluate the function approximation

I return_evaluation_T_Chebyshev_2D computes and returns the
polynomial terms involved in evaluating the Chebyshev
approximation

I calculate_Chebyshev_polynomials is a utility used by some of
the previous routines
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Details on the Chebyshev regression algorithm

I Goal: Approximate w on the rectangle [a1, b1]⇥ [a2, b2]

I Preliminary steps and definitions:
1. Choose the degree N of the polynomial and the number of

interpolation nodes M � N + 1

2. Compute each interpolation node:

⌫

i

= � cos

✓
2i� 1

2M

⇡

◆
, i = 1, . . . ,M

3. Adjust these nodes to the interval [a
k

, b

k

] , k = 1, 2:

⇠

ik

= (⌫

i

+ 1)

(b

k

� a

k

)

2

+ a

k

4. Let B = {f : [�1, 1]

2 ! R : f(x1, x2) ⌘ T

i1(x1)Ti2(x2) for 0 
i1, i2  N} be the two-fold tensor product basis. We denote the
J = (N + 1)

2 elements of B by �

j

, B = {�1, . . . ,�J

}
5. Let Z = {z = (x1, x2) : xk

= ⇠

ik

for i = 1, . . . ,M and k = 1, 2}. Z
has L = M

2 elements, Z = {z1, . . . , zL}
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Details on the Chebyshev regression algorithm

I To find the Chebyshev regression approximation of some function
f : [a1, b1]⇥ [a2, b2] ! R:

1. Calculate y = (y1, . . . , yL), where y

l

= f(z

l

), z

l

2 Z
2. Calculate the L⇥ J matrix X, where element X

lj

= �

j

(z

l

)

3. Find the Chebyshev coefficient vector ✓ from the regression model

y = X✓,

✓ = (X

T

X)

�1
X

T

y = Ay, A = (X

T

X)

�1
X

T

I Note that X and hence A can be pre-computed before running the
value function iteration algorithm

I Hence, given y, finding the Chebyshev regression coefficients only
requires the matrix multiplication Ay
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Details on the Chebyshev regression algorithm
I To calculate y

l

we need to compute the choice-specific value
functions

v
k

(z
l

) = u
k

(z
l

) + �

Z
w(x0

)f(x0|z
l

, k) dx0

I The expectation in the expression above can be calculated using
Chebyshev approximation and quadrature (x

ql

and !
q

denote the
respective quadrature nodes and weights):

Z
w(x0

)f(x0|z
l

, k) dx0 t
QX

q=1

!
q

0

@
JX

j=1

✓
j

�
j

(x
ql

)

1

A

=

JX

j=1

✓
j

 
QX

q=1

!
q

�
j

(x
ql

)

!

t
JX

j=1

✓
j

Z
�
j

(x0
)f(x0|z

l

, k) dx0
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Details on the Chebyshev regression algorithm

I Define a L⇥ J matrix T with elements T
lj

=

P
Q

q=1 !q

�
j

(x
ql

)

I T can be pre-computed before running the value function algorithm
I Calculate e = T✓

I Then e

l

t
R
w(x

0
)f(x

0|z
l

, k) dx

0

I Note
I The calculation of T exploits the linearity in quadrature and

Chebyshev approximation (hence, a similar method does not work for
non-linear approximation or interpolation methods, such as bilinear
interpolation)

I Pre-computing T saves enormous amounts of computing time
I Pre-computing T would not be possible for continuous actions a

t

I Also, note that in the durable goods adoption example the transition
density does not depend on k
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Example: CCP’s from model solution
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Overview

Review: Infinite Horizon, Discounted Markov Decision Processes

The Storable Goods Demand Problem

Dynamic Discrete Choice Models

The Storable Goods Demand Problem (Cont.)

The Durable Goods Adoption Problem

Numerical Solution of a Dynamic Decision Process
Approximation and Interpolation
Numerical Integration

The Durable Goods Adoption Problem (Cont.)
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