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Data

I We observe the choice behavior of N individuals
I For each individual i, define a vector of states and choices for

periods t = 0, . . . , Ti : Qi = (xit, ait)
Ti
i=1

I The full data vector is Q = (Q1, . . . , QN )

I We will initially assume that all individuals are identical and that the
components of the state x are observed to us

I We will discuss the case of (permanent) heterogeneity and
unobserved state variables later
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Data-generating process

I We assume that the choice data are generated based on the
choice-specific value functions

vj(x) = uj(x) + �

Z
w(x

0
)f(x

0|x, j) dx0

I We observe action ait conditional on the state xit if and only if

vk(xit) + ✏kit � vj(xit) + ✏jit for all j 2 A, j 6= k

I The CCP �k(xit) is the probability that the inequality above holds,
given the distribution of the latent utility components g(✏)
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Static vs dynamic discrete choice models

I Using the concept of choice-specific value functions, the predictions
of a dynamic discrete choice model can be expressed in the same
manner as the predictions of a static discrete choice model

I Therefore, it appears that we can simply estimate each vj(x) by
approximating it using a flexible functional form  , e.g. a
polynomial or a linear combination of basis functions:

vj(x) ⇡  j(x; ✓)

I In a static discrete choice model, we typically start directly with a
parametric specification of each choice-specific utility function,
uj(x; ✓)

I Unlike uj(x), vj(x) is not a structural object, but the solution of a
dynamic decision process that depends on the model primitives,
uj(x), f(x

0|x, a), �, and g(✏).

I Why is this important? — Because it affects the questions that the
estimated model can answer
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Example: The storable goods demand problem

I Remember that xt ⌘ (it, Pt)

I
it 2 {0, 1, . . . , I}, and Pt 2 {P (1)

, . . . , P

(L)}
I The random utility components are Type I Extreme Value, hence the

discrete values vj(x) can be estimated just as in a standard
multinomial logit model

I Suppose we estimate vj(x) based on data generated from the
high/low promotion process discussed in the example in Part I

I We want to evaluate a policy where the price is permanently set at
the low price level

I Will knowledge of vj(x) allow us to answer this question?
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CCP’s — Pricing with promotions
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CCP’s — only low price
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Example: The storable goods demand problem

I Based on the data generated under the price promotion process, the
sales volume ratio between promoted and regular price periods is
3.782/0.358 = 10.6

I However, when we permanently lower the price the sales ratio is only
0.991/0.358 = 2.8
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Example: The storable goods demand problem

I Evaluation of a policy where the price is permanently set at the low
price level:

I We are not just changing a component of x (the price), but also the
price expectations, f(x0|x, a)

I Hence, vj(x) will also change to ṽj(x)
I Unless consumer choices under the alternative price process are

observed in our data, we cannot estimate ṽj(x)
I Instead, we must predict ṽj(x) using knowledge of the model

primitives, uj(x), f(x
0|x, a), �, and g(✏)

I The same problem does not arise in a static discrete choice model (if
the static discrete choice model accurately describes consumer
behavior)
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Structural and reduced form of the model

I
(uj(x), f(x

0|x, a),�, g(✏)) is the structural form of the dynamic
discrete choice model

I
(vj(x), g(✏)) is the reduced form of the model

I The reduced form describes the joint distribution of the data, but
typically cannot predict the causal effect of a marketing policy
intervention

I Policy predictions are therefore not only dependent on the statistical
properties of the model and model parameters, but also on the
behavioral assumptions we make about how decisions are made

I Good background reading on structural estimation and the concept
of inferring causality from data that are non-experimentally
generated: Reiss and Wolak (2007)
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Identification

I All behavioral implications of the model are given by the collection
of CCP’s {�j(x) : j 2 A, x 2 X}

I Suppose we have “infinitely many” data points, so that we can
observe the CCP’s {�j(x)}

I For example, if X is finite we can estimate �j(x) as the frequency of
observing j conditional on x

I We assume we know the distribution of the random utility
components, g(✏)

I Could we then uniquely infer the model primitives describing
behavior from the data:

uj(x), f(x
0|x, j), � ?

I I.e., is the structural form of the model identified (in a
non-parametric sense)?
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Identification

I Hotz and Miller (1993): If ✏ has a density with respect to the
Lebesgue measure on RK+1 and is strictly positive, then we can
invert the observed CCP’s to infer the choice-specific value function
differences:

vj(x)� v0(x) =  
�1
j (�(x)) for all j 2 A

I If ✏j is Type I Extreme Value distributed, this inversion has a closed
form:

vj(x)� v0(x) = log(�j(x))� log(�0(x))

I We see that � = 0, u0(x) ⌘ 0, and

uj(x) ⌘ log(�j(x))� log(�0(x))

completely rationalize the data!
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Identification

Theorem

Suppose we know the distribution of the random utility components,

g(✏), the consumers’ beliefs about the evolution of the state vector,

f(x

0|x, j), and the discount factor �. Assume that u0(x) ⌘ 0. Let the

CCP’s, �j(x), be given for all x and j 2 A. Then:

(i) We can infer the unique choice-specific value functions, vj(x),

consistent with the consumer decision model.

(ii) The utilities uj(x) are identified for all states x and choices j.
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(Non)identification proof

I Define the difference in choice-specific value functions:

ṽj(x) ⌘ vj(x)� v0(x)

I Hotz-Miller (1993) inversion theorem:

ṽj(x) =  
�1
j (�(x)) for all j 2 A

I The expected value function can be expressed as a function of the
data and the reference alternative:

w(x) =

Z
max

k2A
{vk(x) + ✏k}g(✏)d✏

=

Z
max

k2A
{ṽk(x) + ✏k}g(✏)d✏+ v0(x)
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(Non)identification proof
I Choice-specific value of reference alternative:

v0(x) = u0(x) + �

Z
w(x

0
)f(x

0|x, 0)dx0

= �

Z
max

k2A
{ṽk(x0

) + ✏k}g(✏)f(x0|x, 0)d✏dx0

+ �

Z
v0(x

0
)f(x

0|x, 0)dx0

I Defines a contraction mapping and hence has a unique solution

I Recover all choice-specific value functions:

vj(x) =  j(�(x)) + v0(x)

I Recover the utility functions:

uj(x) = vj(x)� �

Z
w(x

0
)f(x

0|x, j)dx
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(Non)identification

I The proof of the proposition shows how to calculate the utilities,
uj(x), from the data and knowledge of � and f(x

0|x, j)
I Proof shows that if �0 6= � or f 0

(x

0|x, j) 6= f(x

0|x, j) )
u

0
j(x) 6= uj(x) in general

I Implications
I If either the discount factor or the consumer’s belief about the state

evolution is unknown, the utility function is not identified
I I.e., the model primitives uj(x), �, f(x

0|x, j) are non-parametrically
unidentified
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Implications of (non)identification result

I In practice: Researchers assume a given discount factor calibrated
from some “overall” interest rate r, such that � = 1/(1 + r)

u

0
(ct) = �Et [(1 + r)u

0
(ct+1)]

I Typically, discount factor corresponding to 5%-10% interest rate is
used

I Assume rational expectations: the consumer’s subjective belief
f(x

0|x, j) coincides with the actual transition process of xt

I Allows us to estimate f(x0|x, j) from the data
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Identifying � based on exclusion restrictions

I A “folk theorem”: � is identified if there are states that do not affect
the current utility but the transition probability of x

I More formally: Suppose there are two states x1 and x2 such that
uj(x1) = uj(x2) but f(x0|x1, j) 6= f(x

0|x2, j)

I Intuition: Variation in x does not change the current utility but the
future expected value, and thus � is identified:

vj(x) = uj(x) + �

Z
w(x

0
)f(x

0|x, j) dx0
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Identifying � based on exclusion restrictions

I The “folk theorem” above is usually attributed to Magnac and
Thesmar (2002), but the actual statement provided in their paper is
more complicated

I Define the current value function, the expected difference between
(i) choosing action j today, action 0 tomorrow, and then behaving
optimally afterwards, and (ii) choosing action 0 today and tomorrow
and behaving optimally afterwards

Uj(x) ⌘
✓
uj(x) + �

Z
v0(x

0
)p(x

0|x, j)dx0
◆

�
✓
u0(x) + �

Z
v0(x

0
)p(x

0|x, 0)dx0
◆

I Also, define

Vj(x) ⌘
Z

(w(x

0
)� v0(x

0
)) p(x

0|x, j)dx0
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Identifying � based on exclusion restrictions

I The proposition proved in Magnac and Thesmar (2002):

Theorem

Suppose there are states x1 and x2, x1 6= x2, such that Uj(x1) = Uj(x2)

for some action j. Furthermore, suppose that

(Vj(x1)� V0(x1))� (Vj(x2) + V0(x2)) 6= 0.

Then the discount factor � is identified.

I Note: The assumptions of the theorem require knowledge of the
solution of the decision process and are thus difficult to verify
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Identifying � based on exclusion restrictions

I Is the “folk theorem” true?
I Although widely credited to Magnac and Thesmar (2002), I believe

this attribution is false
I However, a recent paper by Fang and Wang (2013), “Estimating

Dynamic Discrete Choice Models with Hyperbolic Discounting, with
an Application to Mammography Decisions,” seems to prove the
claim in the “folk theorem”
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Identification of � from data on static and dynamic decisions

I Yao et al. (2012)
I Observe consumer choice data across two scenarios

I Static: Current choice does not affect future payoffs
I Dynamic

I Examples:
I Cell phone customers are initially on a linear usage plan, and are

then switched to a three-part tariff
I Under the three-part tariff current cell phone usage affects future

per-minute rate

I Any finite horizon problem

I Yao et al. prove identification of � for continuous controls
I No proof provided for discrete choices, but (my guess) statement is

true more generally
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Identification of � using stated choice data

I Dubé, Hitsch, and Jindal (2013)
I Conjoint design to infer product adoption choices

I Present subjects with forecasts of future states (e.g. prices)
I Collect stated choice data on adoption timing

I Identification assumption:
I Subjects take the forecast of future states as given

I Allows identification of discount factor �, or more generally a
discount function ⇢(t)

I Intuition
I Treatments: Manipulations of states that change current period

utilities by the same amount in period t = 0 and t > 0
I Relative effect on choice probabilities and hence choice-specific value

differences at t > 0 versus t = 0 identifies ⇢(t)
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Goal of estimation

I We would like to recover the structural form of the dynamic discrete
choice model, (uj(x), f(x

0|x, a),�, g(✏))
I We assume:

I
g(✏) is known

I The decision makers have rational expectations, and thus f(x0|x, a)
is the true transition density of the data

I Typically we also assume that � is “known”

I Assume that the utility functions and transition densities are
parametric functions indexed by ✓ : uj(x; ✓) and f(x

0|x, a; ✓)
I Goal: Develop an estimator for ✓
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Likelihood function

I The likelihood contribution of individual i is

li(Qi; ✓) =

 
TiY

t=0

Pr{ait|xit; ✓} · f(xit|xi,t�1, ai,t�1; ✓)

!
⇥ . . .

· · ·⇥ Pr{ai0|xi0; ✓} · �(xi0; ✓)

I The likelihood function is

l(Q; ✓) =

NY

i=1

li(Qi; ✓)

I Define the maximum likelihood estimator,

✓

NFP
= argmax

✓2⇥
{log(l(Q; ✓))}
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The nested fixed point estimator

I
✓

NFP is a nested fixed point estimator

I We employ a maximization algorithm that searches over possible
values of ✓

I Given ✓, we first solve for w(x; ✓) as the fixed point of the integrated
Bellman equation

I Given w(x; ✓), we calculate the choice-specific value functions and
then the CCP’s �j(x; ✓)

I Allows us to assemble l(Q; ✓)

I The solution of the fixed point w(x; ✓) is nested in the maximization
algorithm

I This estimator is computationally intensive, as we need to solve for
the expected value function at each ✓!
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Estimating ✓ in two steps

I Separate ✓ = (✓u, ✓f ) into components that affect the utility
functions, uj(x; ✓u), and the transition densities f(x

0|x, a; ✓f )
I Note the log-likelihood contribution of individual i:

log(li(Qi; ✓)) =

TiX

t=1

log(Pr{ait|xit; ✓u, ✓f}) + . . .

TiX

t=2

log(f(xit|xi,t�1, ai,t�1; ✓f ))

I This expression suggests that we can estimate ✓ in two steps:
1. Find a consistent estimator for ✓f (need not be a ML estimator)
2. Conditional on ✓̂f , maximize the sum in the first row above to find

✓̂u (adjust standard errors to account for sampling error in first step)
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Bayesian learning models in marketing

I Large literature on demand for experience goods
I Following Erdem and Keane (1996)
I Product (or service) needs to be consumed or used to fully ascertain

its utility
I Examples

I Product with unknown flavor or texture
I Pharmaceutical drug with unknown match value, e.g. effectiveness or

side effects

I Importance: Consumer learning may cause inertia in brand choices
I Inertia = state dependence in a purely statistical sense
I If true, has implications for pricing and other marketing actions

I Optimal sequential learning about demand
I Hitsch (2006)
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Bayesian learning: General model structure

I Learning about an unknown parameter vector # 2 RN

I Information acquisition: Sampling (choosing) j 2 A yields a signal
⇠j ⇠ fj(·|#)

I Knowledge: Prior ⇡t(#)
I Knowledge about # before any additional information in period t is

sampled

I Learning through Bayesian updating:

⇡t+1(#) ⌘ ⇡t(#|⇠jt) / fj(⇠jt|#) · ⇡t(#)

I Posterior at end of period t is prior at the beginning of period t+ 1
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General model structure

I Notation: ⇡t ⌘ ⇡t(#)

I State vector xt = (⇡t, zt)

I Ignore for now that ⇡t is infinite-dimensional in general

I Utility:

uj(xt) = E(uj(zt, ⇠jt,#)|xt) =

Z
uj(zt, ⇠,#)fj(⇠|#)⇡t(#) d⇠d#

I Expected utility given zt and the agents’ belief ⇡t(#) about #
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General model structure

I We assume the decision maker is able to anticipate how her
knowledge evolves, conditional on the potential information that she
may receive in this period

I Allows to define a corresponding Markov transition probability

f(⇡t+1|⇡t, at)
I ) learning model is a special case of the dynamic discrete choice

framework
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Review: Normal linear regression model with conjugate
priors

I Sample y ⇠ N(X�,⌦), y 2 Rm
,� 2 Rk

I Suppose ⌦ is known
I Can be generalized with inverse-Wishart prior on ⌦, but rarely

(never?) used in extant consumer learning literature

I Goal: Inference about �
I Prior: � ⇠ N(�0,⌃0),

I Then the posterior is also normal:

p(�|y,X,⌦) = N(�n,⌃n)

⌃n = (⌃�1
0 +XT⌦�1X)

�1

�n = (⌃�1
0 +XT⌦�1X)

�1
(⌃�1

0 �0 +XT⌦�1y)
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The Erdem and Keane (1996) learning model

I Consumers make purchase (= consumption) decisions over time,
t = 0, 1, . . .

I
#j is the mean attribute level (quality) of product j

I Affects utility
I Consumers face uncertainty over #j

I Realized utility from consumption in period t affected by realized
attribute level:

⇠jt = #j + ⌫jt, ⌫jt ⇠ N(0,�

2
⌫)

I Inherent variability in attribute level
I Variability in consumer’s perception of attribute level

I Utility:
uj(zt, ⇠jt) = �

�
⇠jt � r⇠

2
jt

�� ↵Pjt

I
r > 0 : risk aversion

38 / 83



Information sources

I Assume for notational simplicity that there is only one product with
unknown attribute level, and hence we can drop the j index

I Learning from consumption:

⇠t = #+ ⌫t, ⌫t ⇠ N(0,�

2
⌫)

I Let t1, t2, . . . denote the time periods when a consumer receives a
consumption signal

I Let Ht = {tk : tk < t} be the time periods prior to t when a
consumption signal was received, and Nt = |Ht| be the
corresponding number of signals

I Mean consumption signal prior to t :

¯

⇠t =
1

Nt

X

⌧2Ht

⇠⌧
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Prior

I Prior in the first decision period: ⇡0(#) = N(µ0,�
2
0) = N(

¯

#,�

2
0)

I
#̄ is the “product class mean attribute level”

I Refer back to the slide on the normal linear regression model with
conjugate priors, and define:

� = #

X = (1, . . . , 1) (vector of length Nt)

⌦ = diagonal matrix with elements �2
⌫

�0 =

¯

#

⌃0 = �

2
0

I Elements in ⌦ correspond to the consumption and advertising
signals in Ht (order does not matter)
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Posterior
I Results on normal linear regression model show that prior ⇡t =

posterior given the signals ⇠⌧ for ⌧ < t is also normal:

⇡t(#) = N(µt,�
2
t )

�

2
t = ⌃n =

✓
1

�

2
0

+

Nt

�

2
⌫

◆�1

µt = �n =

✓
1

�

2
0

+

Nt

�

2
⌫

◆�1✓
1

�

2
0

µ0 +
Nt

�

2
⌫

¯

⇠t

◆

I Remember: Inverse of covariance matrix also called the “precision
matrix”

I Precisions add up in the normal linear regression model with
conjugate priors

I Shows that we can equate the prior in period t with the mean and
variance of a normal distribution:

⇡t = (µt,�
2
t )
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Transition of prior

I Conditional on the current prior ⇡t = (µt,�
2
t ), and only in periods t

when the consumer receives a consumption signal ⇠t :

�

2
t+1 =

✓
1

�

2
t

+

1

�

2
⌫

◆�1

µt+1 =

✓
1

�

2
t

+

1

�

2
⌫

◆�1✓
1

�

2
t

µt +
1

�

2
⌫

⇠t

◆

I Can correspondingly derive the Markov transition density
f(⇡t+1|⇡t, at)

I
�

2
t evolves deterministically

I
µt+1 is normally distributed with mean E(µt+1|⇡t, at) = µt

I Note that var(µt+1|⇡t, at) 6= �2
t+1
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Model solution

I Reintroduce j subscript
I Priors are independent, and ⇡t = (⇡1t, . . . ,⇡Jt)

I Recall that ⇠jt = #j + ⌫jt

I Expected utility:

uj(xt) = E(uj(zt, ⇠jt)|⇡t, zt) = �µjt � �rµ

2
jt � �r(�

2
jt + �

2
⌫)� ↵Pjt

I State transition:

f(xt+1|xt, at) = f(zt+1|zt, at) ·
JY

j=1

f(⇡j,t+1|⇡jt, at)

I ) well-defined dynamic discrete choice model with unique
choice-specific value functions characterizing optimal decisions
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Estimation

I Conditional on xt = (zt,⇡t) we can calculate the CCP’s
Pr{at = j|zt,⇡t} = �j(zt,⇡t)

I Data
I

Qt = at, Qt = (Q0, . . . , Qt), and Q = (Q0, . . . , QT )
I zt = (z0, . . . , zt) and z = (z0, . . . , zT )

I Assume f(zt+1|zt, at) is known
I Estimated from data in a preliminary estimation step

I Difficulty in constructing the likelihood: ⇡t is an unobserved state
I Need to integrate out the unobserved states from the likelihood

function
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Constructing the priors

I Define ⌫t = (⌫1t, . . . , ⌫Jt) and ⌫ = (⌫0, . . . , ⌫T�1)

I Conditional on #j (an estimated parameter) and ⌫, we know the
signals ⇠jt = #j + ⌫jt

I By assumption ⇡j0(#j) = N(µj0,�
2
j0) = N(

¯

#,�

2
0)

I Given ⌫ we can then infer the sequence of priors ⇡0,⇡1, . . . ,⇡T�1:

�

2
j,t+1 =

 
1

�

2
jt

+

1

�

2
⌫

!�1

µj,t+1 =

 
1

�

2
jt

+

1

�

2
⌫

!�1 
1

�

2
jt

µjt +
1

�

2
⌫

⇠jt

!
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Likelihood function
I
✓ 2 ⇥ is a vector of model parameters

I We know from the discussion above that
Pr{at = j|zt,⇡t; ✓} = Pr{at = j|Qt�1, zt,⌫; ✓}

I Define

l(✓|Q, z) ⌘f(Q|z; ✓) =
Z  TY

t=0

Pr{Qt|Qt�1, zt,⌫; ✓}
!
f(⌫; ✓)d⌫

I High-dimensional integral
I Simulation estimator

I Draw ⌫(r)

I Average over draws to simulate the likelihood

I
l(✓|Q, z) = li(✓|Qi, zi) is the likelihood contribution for one
household i

I Likelihood components conditionally independent across households
given ✓ ) joint likelihood is l(✓|Q, z) =

Q
i
li(✓|Qi, zi)
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Recap: Unobserved states and the likelihood function

I General approach
1. Find a vector of random variables ⌫ with density p(⌫; ✓) that allows

to reconstruct the sequence of unobserved states
2. Formulate the likelihood conditional on ⌫
3. Integrate over ⌫ to calculate the likelihood conditional on data and ✓

only

I Note
I Requires that numerical integration with respect to ⌫ or simulation

from p(⌫; ✓) is possible
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Initial conditions

I Assumption so far: The first sample period is the first period when
the consumers start buying the products

I What if the consumers made product choices before the sample
period?

I Would ⇡j0(✓) = N(#̄,�2
0) be a valid assumption?

I Solution in Erdem and Keane (1996)
I Split the sample periods into two parts, t = 0, . . . , T0 � 1 and

t = T0, . . . , T

I Make some assumption about the prior in period t = 0
I Simulate the evolution of the priors conditional on the observed

product choices and ✓ for periods t  T0

I Conditional on the simulated draw of ⇡j0(✓) formulate the likelihood
using data from periods t = T0, . . . , T

I Note
I The underlying assumption is that T0 is large enough such that the

effect of the initial condition in t = 0 vanishes
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Unobserved heterogeneity

I The most common methods to incorporate unobserved heterogeneity
in dynamic discrete choice models are based on a finite mixture or
latent class approach

I Assume there is a finite number of M consumer/household types,
each characterized by a parameter ✓m

I Let ⇡m be the fraction of consumers of type m in the population
I If there is no correlation between a consumer’s type and the initial

state, we can define the likelihood contribution for i as

li(Qi; ✓,⇡) =

MX

m=1

li(Qi; ✓m)⇡m

I Here, ⇡ = (⇡1, . . . ,⇡M�1)

I Obviously, the computational overhead increases in M
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Unobserved heterogeneity

I Matters are more complicated if individuals are systematically in
specific states depending on their type

I For example, preference for a brand may be correlated with product
experience or stockpiling of that brand

I In that case, ⇡m(xi1) = Pr(i is of type m|xi1) 6= ⇡m

I An easy solution (Heckman 1981) is to form an “auxiliary model” for
this probability, i.e. make ⇡m(xi1; ⌧) a parametrically specified
function with ⌧ to be estimated

I Example:

⇡m(xi1; ⌧) =
exp(xi1⌧m)

1 +

PM�1
n=1 exp(xi1⌧n)

for m = 1, . . . ,M � 1

50 / 83



Continuous types

I We now consider a more general form of consumer heterogeneity,
which allows for a continuous distribution of types

I Consumer i’s parameter vector #i is a function of a common
component ✓ and some idiosyncratic component !i, which is drawn
from a distribution with density �(·)

I
� is known, i.e., does not depend on any parameters that are
estimated

I Example: ✓ = (µ,L), and #i = µ+ L!i, !i ⇠ N(0, I)
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Continuous types

I Given (!i, ✓), we can compute the choice specific value functions,
calculate the CCP’s Pr{ait|xit;!i, ✓}, and then obtain the likelihood
contribution for individual i :

li(Qi; ✓) =

Z
li(Qi;!, ✓)�(!)d!

I If the integral is high-dimensional, we need to calculate it by
simulation (!(r) ⇠ �)

li(Qi; ✓) ⇡ 1

R

RX

r=1

li(Qi;!
(r)

, ✓)

I The problem with this approach: instead of just re-solving for the
value functions once when we change ✓, we need to re-solve for the
value function R times
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Change of variables and importance sampling

I Ackerberg (2009) proposes a method based on a change of variables
and importance sampling to overcome this computational challenge
(see Hartmann 2006 for an application)

I Assume #i = ⇢(!i, ✓) (could additionally allow parameters to be a
function of household characteristics)

I
#i fully summarizes the behavior (choice-specific value functions) of
household i

I Let p(#i|✓) be the density of #i
I The support of p must be the same for each ✓

I In our example, #i ⇠ N(µ,LL

T
)
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Change of variables and importance sampling

I Let g(·) be a density that is positive on the support of p
I For example, we could choose g(·) = p(·|✓0) where ✓0 is some

arbitrary parameter

I Then

li(Qi; ✓) =

Z
li(Qi;!, ✓)�(!)d!

=

Z
li(Qi;#)p(#|✓)d#

=

Z
li(Qi;#)

p(#|✓)
g(#)

g(#)d#

I In the second line we use a change of variables
I In the third line we use importance sampling
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Change of variables and importance sampling

I We can now simulate the integral as follows:

li(Qi; ✓) ⇡ 1

R

RX

r=1

li(Qi;#
(r)

)

p(#

(r)|✓)
g(#

(r)
)

I Note that #(r) is drawn from g, a distribution that does not depend
on the parameter vector ✓

I Hence, as we change ✓, only the weights p(#

(r)|✓)/g(#(r)) change,
but not li!

I We only need to calculate the value functions R times

I Intuition behind this approach: Change only the weights on different
possible household types, not directly the households as we search
for an optimal ✓

I Based on the simulated likelihood function, we can define an SML
(simulated maximum likelihood) estimator for ✓
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Understanding sequential, forward-looking learning

I Example: A firm launches a product, but is uncertain about its
profitability

I Firm’s profits from the product given by #
I
# 2 {#L,#H} could be either negative, #L < 0, or positive, #H > 0

I
⇡t: prior probability that profits are negative, ⇡t = Pr{# = #L}

I Firm decisions at 2 {0, 1}
I

at = 0 denotes that the firm scraps the product, and receives the
payoff 0

I
at = 1 denotes that the firm stays in the market, and receives the
payoff #

I Assumption: If the firm stays in the market it observes profits and
immediately learns the true value of #
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I Expected profit:

u0(⇡t) = 0

u1(⇡t) = E(#|⇡t) = ⇡t#L + (1� ⇡t)#H

I No latent payoff terms ✏jt in this model

I Suppose that the firm has information that the product is not
profitable, that is

E(#|⇡t) = ⇡t#L + (1� ⇡t)#H < 0

I What action should the firm take—scrap or stay in the market?
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Myopic vs. forward-looking decision making

I If the firm only cares about current profits, � = 0, then it should
scrap the product:

u1(⇡t) < 0 = u0(⇡t)

I But what if � > 0?
I Let’s approach this considering the impact of the current decision on

future information, and the optimal decision that the firm can take
based on future information
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Choice-specific value functions
I If the firm stays in the market and sells the product, it learns the

true level of profits
I Hence, in the next period, t+ 1, either ⇡t+1 = 0 or ⇡t+1 = 1
I No more uncertainty about the profit level

I For the case of certainty we can easily calculate the value function:

v(1) = 0

v(0) =

1

1� �

· #H

I Choice-specific value functions for arbitrary ⇡t:

v0(⇡t) = 0

v1(⇡t) = u1(⇡t) + �E (v(⇡t+1)|⇡t, a1 = 1)

= (⇡t#L + (1� ⇡t)#H) + �

✓
⇡t · 0 + (1� ⇡t) · 1

1� �

· #H
◆

= ⇡t#L + (1� ⇡t) · 1

1� �

· #H
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Optimal forward-looking decision making under learning

I Keep the product in the market if and only if

v1(⇡t) = ⇡t#L + (1� ⇡t) · 1

1� �

· #H > 0 = v0(⇡t)

I Reduces to myopic decision rule if � = 0

I Example
I
#L = �1 and #H = 1

I Static decision making: Product will be scrapped iff ⇡t � 0.5
I Suppose the firm is forward-looking, � = 0.9. Then the product will

be scrapped iff ⇡t � 10/11 ⇡ 0.909
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Overview

I Su and Judd (2012) propose an alternative approach to obtain the
ML estimator for a dynamic decision process

I Their method also works and has additional advantages for games

I They note that the nested fixed point approach is really only a
special way of finding the solution of a more general constrained
optimization problem

I MPEC (mathematical programming with equilibrium constraints)
approach

I There will often be better algorithms to solve an MPEC problem,
which allows for faster and/or more robust computation of the ML
estimate compared to the NFP approach
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Implementation details

I Let’s be precise on the computational steps we take to calculate the
likelihood function

I We calculate the expected value function, w(x; ✓), in order to derive
the choice probabilities which allow us to “match” model predictions
and observations

I On our computer, we will use some interpolation or approximation
method to represent w

I Representation will depend on a set of parameters, �
I
� represents the value of w at specific state points (interpolation), or
coefficients on basis functions (approximation)

I On our computer, � completely defines w, w , �
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Implementation details

I The expected value function satisfies w = �(w; ✓)

I We can alternatively express this relationship as � = �(�; ✓)

I Value function iteration on our computer proceeds by computing the
sequence �(n+1) = �(�(n); ✓), given some starting value �(0)

I For each parameter vector ✓, there is a unique � that satisfies
� = �(�; ✓)

I Denote this relationship as � =  (✓)
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Implementation details

I Recall how we calculate the likelihood function:
I Using the expected value function, w , �, calculate the

choice-specific values,

vj(x; ✓) = uj(x; ✓) + �

Z
w(x0; ✓)f(x0|x, j; ✓) dx0

I Then calculate the CCP’s

I The equation above presumes that we use w = �(w; ✓) to calculate
the choice-specific values

I But we could alternatively use some arbitrary guess for w
I Let � be the parameter vector that summarizes some arbitrary w

I Let vj(x; ✓, �) be the corresponding choice-specific value function
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MPEC approach

I We can use vj(x; ✓, �) to calculate the CCP’s and then the
augmented likelihood function,

l(Q; ✓, �)

I This expressions clearly shows what the likelihood function depends
on:

I Parameter values ✓
I The expected value function w , � describing how the decision

maker behaves

I Our assumption of rational behavior imposes that the decision maker
does not follow some arbitrary decision rule, but rather the rule
corresponding to � = �(�; ✓), denoted by � =  (✓)
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MPEC approach

I We can thus express the likelihood estimation problem in its general
form:

max

(✓,�)
log(l(Q; ✓, �))

s.t. � � �(�; ✓) = 0

I Solve for the parameter vector (✓, �)
I The constraint is an equilibrium constraint, thus the term “MPEC”

I The nested fixed point algorithm is a special way of formulating this
problem:

max

✓
log(l(Q; ✓)) ⌘ log(l(Q; ✓, (✓)))

I Note that both problem formulations define the same ML estimator
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Discussion

I Benefits of MPEC estimation:
I Avoid having to find an exact solution of the value function,
� = �(�; ✓), for each ✓ ) speed advantage

I The MPEC formulation allows for more robust convergence to the
solution, because derivatives (of the objective and constraint) are
easier to compute than in the NFP approach
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Discussion

I Isn’t a large state space ) � with many elements (say 100,000) an
obvious obstacle to using the MPEC approach?

I Good solvers, such as SNOPT or KNITRO can handle such problems
I Will require a sparse Jacobian of the constraint, i.e. r �(�; ✓) needs

to be sparse
I Will require that we are able to compute the Jacobian, r �(�; ✓),

which is an L⇥ L matrix, where L is the number of elements in �
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Discussion

I How to calculate the Jacobian of the constraint?
I Analytic derivatives ! can be cumbersome and error-prone
I Automatic differentiation (AD), available in C, C++, FORTRAN,

and MATLAB ! virtually no extra programming effort
I Works fine for small-medium scale problems
I May be difficult to implement (computer speed/memory

requirements) given currently available AD software for large-scale
problems
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Overview

I Data are generated from the durable goods adoption model with two
products discussed in Part I of the lecture

I We solve for w using bilinear interpolation
I Exercise: Re-write the code using Chebyshev approximation, which is

much more efficient in this example
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Code documentation

I
Main.m

I Defines model parameters and price process parameters
I Sets values for interpolator and initializes Gauss-Hermite quadrature

information
I If create_data=1, solves the decision process given parameters and

simulates a new data set. Call to simulate_price_process to
simulate prices and simulate_adoptions to simulate the
corresponding adoption decisions. Plots aggregate adoption data
based on the output of calculate_sales

I Use script display_DP_solution to show choice probabilities and
relative choice-specific value functions, vj(x)� v0(x)
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Code documentation

I Main.m contains three estimation approaches:
1. Use NFP estimator and MATLAB’s built-in Nelder-Meade simplex

search algorithm
2. Use the TOMLAB package to find the NFP estimator. Numerical

gradients are used
3. Use TOMLAB and the MPEC approach

I Allows for use of automatic differentiation using the TOMLAB/MAD
module

I TOMLAB can be obtained at http://tomopt.com/tomlab/ (ask
for trial license)
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Code documentation

I Solution of the optimal decision rule
I Based on iteration on the integrated value function to solve for the

expect value function
I

Bellman_equation_rhs updates the current guess of the expected
value function

I
Bellman_equation_rhs uses interpolate_2D when taking the
expectation of the future value
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Code documentation

I NFP algorithm
I Calls log_likelihood, which solves for the expected value function

to calculate the CCP’s

I MPEC algorithm
I Calls log_likelihood_augmented with � , w supplied as

parameters
I

Bellman_equation_constraint implements the equilibrium
constraint, � � �(�; ✓) = 0
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Omitted topics

I This lecture omits two recent estimation approaches:

1. Two-step estimators: Attempt to alleviate the computational burden
inherent in NFP and MPEC estimation approaches (e.g. Pesendorfer
and Schmidt-Dengler 2008)

2. Bayesian estimation using a new algorithm combining MCMC and
value function iteration (Imai, Jain, and Ching 2009; Norets 2009)
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