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Abstract

We study the interaction between a group of agents who exert costly effort over

time to complete a project, and a manager who chooses the objectives that must be

met in order for her to sign off on it. The manager has limited commitment power

so that she can commit to the requirements only when the project is sufficiently close

to completion. This is common in projects that involve design or quality objectives,

which are difficult to define far in advance. The main result is that the manager has

incentives to extend the project as it progresses: she is time-inconsistent. This result

has two implications. First, the manager will choose a larger project if she has less

commitment power. Second, if the agents receive a fraction of the project’s worth upon

its completion, then the manager should delegate the decision rights over the project

size to the agents unless she has sufficient commitment power. In this case, the agents

will choose a smaller project that is optimal for the manager, but their preferences are

time-consistent.

1 Introduction

A key component of a project, such as the development of a new product, is choosing

the features that must be included before the decision maker deems the product ready to

market. Naturally, which features should be included must be communicated to the relevant

stakeholders. When choosing these features, the decision maker must balance the added value
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derived from a bigger or a more complex project (i.e., one that contains more features) against

the additional cost associated with designing and implementing the additional features. Such

costs include not only engineering inputs but also the implicit cost associated with delayed

cash flow.

An intrinsic challenge involved in choosing the requirements of a project is that the man-

ager may not be able to commit to them in advance. This can be due to the fact that the

requirements are difficult to describe; for example, if the project involves significant nov-

elty in quality or design. What we have in mind about the incontractibility of the project

requirements was eloquently posed by Tirole (1999):

In practice, the parties are unlikely to be able to describe precisely the specifics of an

innovation in an ex ante contract, given that the research process is precisely concerned

with finding out these specifics, although they are able to describe it ex post.

In addition, committing to specific requirements may be difficult due to an asymmetry in the

bargaining power of the parties involved. For example, if a project is undertaken in-house

where the manager can significantly influence the team members’ career paths and contracts

are typically implicit, the manager will tend to be less able to commit relative to the case in

which the project is outsourced and contracts are explicit.

Changing the requirements of a project (often referred to as moving the goal post), is common

in project management (Brenner (2001)). One prominent example is Boeing’s 787 Dream-

liner project. The original set of project goals was to develop a lightweight, fuel-efficient

aircraft that would meet the customer’s needs for lower operating costs. On top of these

original project goals, Boeing’s senior management then decided to outsource parts of the

design, engineering, and manufacturing processes to some fifty external “strategic partners”

to reduce development costs and time. From the perspective of Boeing’s engineers, a new

goal was appended to the original set of project goals: restructure the design and manufac-

turing processes by overseeing and coordinating the work performed by internal engineers

and those external strategic partners (Tang and Zimmerman (2009) and Brenner (2013)).

Anecdotal evidence from the development of Apple’s first generation iPod indicates that

Steve Jobs kept changing the requirements of the iPod as the project progressed (Wired

Magazine (2004)). This suggests that committing to a set of features and requirements

early on was infeasible in the development of an innovative new product such as the iPod

back in 2001.
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Similarly, consider the process of designing a new car. If it were possible to describe in

advance what the design must look like for management to give its approval, then there

would be far fewer delays as the new car makes its way to production and design would be

relatively easy. However, as the final product takes shape, the decision maker can better

guide the design team to fulfill her objectives.

We propose a tractable model to analyze a dynamic contribution game in which a group of

agents collaborate to complete a project. The project progresses at a rate that depends on

the agents’ costly effort, and it generates a payoff upon completion. Formally, the state of

the project qt is equal to 0 at t = 0, and it progresses according to dqt =
∑n

i=1 ai,t dt, where

ai,t denotes the effort level of agent i at time t. The project generates a payoff at the first

stopping time τ such that qτ = Q, where Q is a one-dimensional parameter that captures the

project requirements, or equivalently, the project size. The manager is the residual claimant

of the project, and she possesses the decision rights over its requirements (i.e., its size).

In Section 3, we analyze the agents’ problem and we compute the manager’s discounted

profit for a fixed project size. We characterize the (essentially) unique Markov Perfect

equilibrium, wherein at every moment, each agent’s strategy depends solely on the current

state of the project. In addition, we characterize a continuum of (non-Markovian) Public

Perfect equilibria, in which agents choose their effort by maximizing a convex combination of

their individual and the team’s discounted payoff along the equilibrium path. Motivated by

the concepts of insiders and outsiders (who act in the best interest of the team and in their

own best interest, respectively) introduced by Akerlof and Kranton (2000), the weight that

agents place on maximizing the team’s payoff can be interpreted as a measure of the team’s

cooperativeness. A key result is that the agents exert greater effort the closer the project

is to completion. Intuitively, this is because they discount time and they are compensated

upon completion, so that their incentives become stronger as the project progresses.

In Section 4, we examine how the manager will choose the project size to maximize her

discounted profit. The fundamental trade-off that she faces is that a larger project generates a

bigger payoff upon completion but requires more effort to complete. To model the manager’s

limited ability to commit, we assume that given the current state of the project qt, she can

commit to any Q ∈ [qt, qt + y], where y ≥ 0 captures the commitment power. Therefore,

the manager can commit to a project size Q > y only after the agents have made sufficient

progress such that qt ≥ Q−y. For example, y will tend to be larger in a construction project,
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where the requirements are typically standardized and easy to define, than in a project that

involves a significant innovation or quality component, where the requirements of the final

output cannot be contracted on until the project is at a sufficiently advanced stage.

The main result is that the manager’s incentives propel her to extend the project as it

progresses; for example, by introducing additional requirements. The manager chooses the

project size by trading off the marginal benefit of a larger project against the marginal cost

associated with a longer wait until the larger project is completed. However, because the

agents increase their effort, this marginal cost decreases as the project progresses, while the

respective marginal benefit is independent of the progress made. As the project size will be

chosen such that the two marginal values are equal, it follows that the manager’s optimal

project size increases as the project progresses.

An implication of this result is that the manager’s optimal project size decreases in her

commitment power. If the manager has sufficiently large commitment power, then she will

commit to her optimal project size at time 0. Otherwise, she can commit to a smaller than

ideal project at time 0, or else she must wait until the project is at a sufficiently advanced

stage so that she can commit to her optimal project size then. We show that the manager

always finds the latter option preferable. However, once such an advanced stage has been

reached, her optimal project size is larger than it was originally, and the manager faces the

same dilemma as at time 0. As a consequence, the manager will choose a bigger project the

smaller her commitment power.

Anticipating that the manager will choose a larger project if she has less commitment power,

the agents decrease their effort, which renders the manager worse off. To mitigate her

commitment problem, assuming that the agents receive a share of the project’s worth upon

completion (i.e., an equity contract), the manager might delegate the decision rights over

the project size to them. In this case, the agents will choose a smaller project than is optimal

for the manager, but their preferences are time-consistent. Intuitively, because (unlike the

manager) they also trade off the cost of effort when choosing the project size, their marginal

cost associated with a larger project does not decrease as the project progresses. As a result,

the manager’s discounted profit is independent of the commitment power under delegation,

while it increases in her commitment power when she retains the decision rights over the

project size. We show that there exists an interior threshold such that delegation is optimal

unless the manager has sufficient commitment power.
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Motivated by the equilibrium selection concepts proposed by Kreps (1990), in Section 5,

we consider the case in which the manager can influence the weight that each agent places

on maximizing the team’s discounted payoff, for example, by selecting the team members or

encouraging interaction among them. Given a fixed project size, a fully cooperative environ-

ment (i.e., placing all the weight on maximizing the team’s payoff) renders all parties better

off. However, when the project size is endogenous, then a fully cooperative environment

is profit-maximizing only if the manager has sufficient commitment power. Otherwise, the

degree of cooperativeness that maximizes her discounted profit is interior, and it increases

in her commitment power. Intuitively, by cultivating a lower degree of cooperativeness, the

manager can mitigate her ex-post incentives to extend the project, which are more severe

the smaller her commitment power.

Related Literature

First and foremost, this paper is related to the literature on dynamic contribution games.

The general theme of these games is that a group of agents interact repeatedly, and in every

period (or moment), each agent chooses his contribution (or effort) to a joint project at a

private cost. Contributions accumulate until they reach a certain threshold, at which point

each agent receives a lump-sum payment that is independent of his individual contributions,

and the game ends. Admati and Perry (1991) and Marx and Matthews (2000) show that

contributing little by little over multiple periods, each conditional on the previous contribu-

tions of the other agents, helps mitigate the free-rider problem.1 More recently, Yildirim

(2006) and Kessing (2007) show that in contrast to the case in which the project generates

flow payments while it is in progress as studied by Fershtman and Nitzan (1991), efforts are

strategic complements when the agents receive a payoff only upon completion. Georgiadis

(2013) examines how the incentives to contribute to a public good project depend on the

team composition, and he focuses on how a manager should choose the team composition

and the agents’ compensation scheme. A feature common to most papers in this literature is

that the size of the project is given exogenously. However, in applications (e.g., new product

development), the choice of the objectives of any given project is typically a central part of

the problem.2 Our contribution to this literature is to propose a tractable model to study

this family of dynamic contribution games, to endogenize the size of the project, and to

1As some of our equilibrium characterization results parallel those of Marx and Matthews (2000), we
discuss the similarities and differences between the two papers immediately after Proposition 2.

2One exception is Yildirim (2004), who studies the optimal piecewise procurement of a large-scale project.
By using a repeated procurement auction to allocate each subproject to the agent with the lowest cost, he
examines the effect of the project size to the agents’ bidding behavior. In contrast, information is symmetric
in our model, and we focus on the moral hazard problem and the manager’s commitment problem.
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examine how the optimal project size depends on who has the decision rights and on the

magnitude of the decision maker’s commitment power.

A second strand of related literature is that on incomplete contracting. In particular, our

paper is closely related to the papers that study how ex-ante contracting limitations generate

incentives to renegotiate the initial contract ex-post (Grossman and Hart (1986), Hart and

Moore (1990), Aghion and Tirole (1994), Tirole (1999), and Al-Najjar, Anderlini and

Felli (2006)). A subset of this literature focuses on situations wherein the involved parties

have asymmetric information. Here, ratchet effects have been shown to arise in principal-

agent models in which the principal learns about the agent’s ability over time, and the agent

reduces his effort to manipulate the principal’s beliefs about his ability (Freixas, Guesnerie

and Tirole (1985) and Laffont and Tirole (1988)). Another thread of this strand includes

papers that consider the case in which the agent is better informed than the principal, or he

has better access to valuable information. A common result is that delegating the decision

rights to the agent is beneficial as long as the he is sufficiently better informed and the

incentive conflict is not too large (Aghion and Tirole (1997) and Dessein (2002)). In our

model however, all parties have full and symmetric information, so that ratchet effects and

the incentives to delegate the decision rights to the agents arise purely out of moral hazard.

This paper is organized as follows. We introduce the model in Section 2, and in Section 3

we analyze the agents’ as well as the manager’s problem for a fixed project size. In Section

4, we study the manager’s optimal choice of the project size, and we examine her option to

delegate the decision rights over the project size to the agents. Section 5 examines the issue

of equilibrium selection, and Section 6 concludes. In Appendix A, we extend our model to

test the robustness of our results. All proofs are provided in Appendix B.

2 The Model

A group of n identical agents contracts with a manager to undertake a project. The agents

exert (costly) effort over time to complete the project, they receive a lump-sum compensation

upon completing the project, and they are protected by limited liability.3 The manager is

the residual claimant of the project, and she possesses the decision rights over its size. A

project of size Q ≥ 0 generates a payoff equal to Q upon completion. This payoff is split

3We assume that the agents are compensated only upon completing the project for tractability. In
Appendix A.4, we consider the case in which, in addition to a lump-sum payment upon completion, they
also receive a per unit of time compensation while the project is ongoing. All main results continue to hold.
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between the parties as follows: each agent receives βQ
n

, and the manager receives (1− β)Q.4

Time t ∈ [0,∞) is continuous; all parties are risk neutral and they discount time at rate

r > 0. The project starts at state q0 = 0. At every moment t, each agent observes the state

qt of the project, and exerts costly effort to influence the process

dqt =

(
n∑
i=1

ai,t

)
dt ,

where ai,t denotes the (unverifiable) effort level of agent i at time t.5 Each agent’s flow cost

of exerting effort level a is a2

2
, while his outside option is equal to 0. The project is completed

at the first stopping time τ such that qτ = Q.

3 Results

In Section 3.1, we study the agents’ problem, and we characterize the unique project-

completing Markov Perfect equilibrium (hereafter MPE) wherein each agent conditions his

strategy at t only on the current state of the project qt, as well as a continuum of Public

Perfect equilibria (hereafter PPE) wherein each agent’s strategy at t is conditioned on the

entire evolution path of the project {qs}s≤t. Then in Section 3.2 we determine the manager’s

discounted profit. Throughout this Section we take the project size Q as given, and we

endogenize it in Section 4.

3.1 Agents’ Problem

Given a project of size Q and the current state qt of the project, agent i’s expected discounted

payoff function satisfies

Πi,t (q ;Q) = max
{ai,s}s≥t

[
e−r(τ−t)

βQ

n
−
ˆ τ

t

e−r(s−t)
a2i,s
2
ds | {a−i,s}s≥t

]
, (1)

4This is essentially an equity contract. In Appendix A.2, we consider the case in which each agent receives
a flat payment upon completion of the project that is independent of the project size Q. The main results
continue to hold, but such contract is shown to aggravate the manager’s commitment problem.

We assume that β is independent of Q; otherwise, the assumption that the manager has limited ability
to commit to a project size would be violated. However, we defer a detailed justification until after we have
formalized the notion of limited commitment in Section 3.1.2.

5Efforts are perfect substitutes. The case in which efforts are complementary is examined in Appendix
A.1, and we show that all results continue to hold.

The assumption that the project progresses deterministically is made for tractability. In Appendix A.5,
we consider the case in which the project progresses stochastically and we illustrate that all main results
continue to hold.
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where τ denotes the completion time of the project and it depends on the agents’ strategies.

Note that the first term captures the agent’s net discounted payoff upon completion of

the project, while the second term captures his discounted cost of effort for the remaining

duration of the project. Because payoffs depend solely on the state of the project (i.e., q) and

not on the time t, this problem is stationary, and hence the subscript t can be dropped. Using

standard arguments (Dixit (1999)), one can derive the Hamilton-Jacobi-Bellman equation

for the expected discounted payoff function for agent i

rΠi (q ;Q) = max
ai

{
−a

2
i

2
+

(
n∑
j=1

aj

)
Π′i (q ;Q)

}
(2)

subject to the boundary conditions

Πi (q ;Q) ≥ 0 for all q and Πi (Q ;Q) =
βQ

n
. (3)

The first boundary condition captures the fact that each agent’s discounted payoff must be

non-negative since he can guarantee himself a payoff of 0 by exerting no effort and hence

incurring no effort cost. The second boundary condition states that upon completing the

project, each agent receives his reward and exerts no further effort.

3.1.1 Markov Perfect Equilibrium (MPE)

In a MPE, at every moment t, each agent i observes the state of the project q, and chooses his

effort ai to maximize his expected discounted payoff while accounting for the effort strategies

of the other team members. It follows from (2) that the first order condition for agent i’s

problem yields that ai (q ;Q) = Π′i (q ;Q): at every moment, he chooses his effort to equate

the marginal cost of effort to the marginal benefit of bringing the project closer to completion.

By noting that the second order condition is satisfied and that the first order condition is

necessary and sufficient, it follows that in any differentiable, project-completing MPE, the

discounted payoff for agent i satisfies

rΠi (q ;Q) = −1

2
[Π′i (q ;Q)]

2
+

[
n∑
j=1

Π′j (q ;Q)

]
Π′i (q ;Q) (4)

subject to the boundary conditions (3). The following Proposition characterizes the MPE,

and establishes conditions under which it is unique.

Proposition 1. For any given project size Q, there exists a Markov Perfect equilibrium

(MPE) for the game defined by (1). This equilibrium is symmetric, each agent’s effort
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strategy satisfies

a (q ;Q) =
r

2n− 1
[q − C (Q)]+ , where C (Q) = Q−

√
2βQ

r

2n− 1

n
,

and the project is completed at τ = 2n−1
rn

ln
[
1− Q

C(Q)

]
.6 In equilibrium, each agent’s dis-

counted payoff is given by

Π (q ;Q) =
r

2

(
[q − C (Q)]+

)2
2n− 1

.

If Q < 2β
r

, then this equilibrium is unique, and the project is completed in finite time.

Otherwise, there also exists an equilibrium in which no agent ever exerts any effort and the

project is never completed.

First note that if the project is too far from completion (i.e., q < C (Q)), then the discounted

cost to complete it exceeds its discounted net payoff, and hence the agents are better off not

exerting any effort, in which the project is never completed. Because the project starts at

q0 = 0, this implies that the project is never completed if C (Q) ≥ 0, or equivalently if

Q ≥ 2β
r

2n−1
n

. On the other hand, if Q < 2β
r

2n−1
n

, then each agent’s effort level increases in the

state of the project q. This is due to the facts that agents are impatient and they incur the

cost of effort at the time it is exerted, while they are compensated only when the project is

completed. As a result, their incentives are stronger, the closer the project is to completion.

Second, it is worth emphasizing that because the agents’ effort costs are convex, the MPE is

always symmetric. Finally, while the MPE need not be unique, it turns out that when the

project size Q is endogenous, the manager will always choose it such that the equilibrium

is unique (see Remark 1 in Section 4). As such, we shall restrict attention to the project-

completing equilibrium characterized in Proposition 1.

3.1.2 Public Perfect Equilibria (PPE)

While the restriction to MPE is reasonable when teams are large and members cannot

monitor each other, there typically exist other PPE with history-dependent strategies; i.e.,

strategies that at time t depend on the entire evolution path of the project {qs}s≤t. In this

Section, we characterize a continuum of such equilibria in which at every moment, each agent

chooses his effort to maximize a convex combination of his individual and the entire team’s

discounted payoff along the equilibrium path.

6To simplify notation, because the equilibrium is symmetric and unique, the subscript i is dropped
throughout the remainder of this paper. Moreover, [·]+ = max {·, 0}.
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Building upon the concepts introduced in the seminal paper on social identity by Tajfel and

Turner (1979), Akerlof and Kranton (2000) argue that depending on the work environment,

employees may behave as insiders who act in the best interest of the organization or as

outsiders who act in their individual best interest. Therefore, the weight that an agent

places on maximizing the team’s discounted payoff can be interpreted as the degree to which

he feels an insider, and we shall refer to an equilibrium as more cooperative the more weight

each agent places on maximizing the team’s discounted payoff.

We model this by assuming that given the current state of the project q, each agent chooses

his effort to maximize the expected discounted payoff of k ∈ [1, n] agents; i.e., he solves

a (q ;Q, k) ∈ arg max
a

{
a kΠ′ (q ;Q, k)− a2

2

}
. (5)

Note that k = 1 (k = n) corresponds to the case in which each agent places all the weight

on maximizing his individual (the team’s) discounted payoff, while k ∈ (1, n) corresponds to

intermediate cooperation levels in which each agent maximizes a convex combination of his

individual and the team’s discounted payoff. The following Proposition establishes that for

all k ∈ [1, n] there exists a PPE in which at every moment along the equilibrium path, each

agent chooses his effort by solving (5).7

Proposition 2. For any given k ∈ [1, n] and project size Q, there exists a Public Perfect

equilibrium (PPE) in which each agent’s effort strategy satisfies

a (q ;Q, k) =
r

2n− k
[q − C (Q ; k)]+ (6)

along the equilibrium path, where C (Q ; k) = Q−
√

2βQ
r

(2n−k)k
n

, and the project is completed

at τ = 2n−k
rn

ln
[
1− Q

C(Q ;k)

]
. After any deviation from the equilibrium path, all agents revert

to the Markov Perfect equilibrium (i.e., k = 1) for the remaining duration of the project. In

equilibrium, each agent’s discounted payoff is given by

Π (q ;Q, k) =
r

2k

(
[q − C (Q ; k)]+

)2
2n− k

,

7There also exist PPE where each agent’s cooperation level varies as the project progresses, and the
cooperation level differs across team members. However, we restrict attention to the case in which the
cooperation level is constant throughout the duration of the project and identical across all agents (i) for
tractability, and (ii) because we interpret k as part of the organization’s corporate culture that is persistent
over time.
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and it increases in k for all q and Q.

The intuition behind the existence of cooperative PPE is as follows. First, if all agents choose

their effort by solving (5) for some k > 1, then each agent is strictly better off relative to the

case in which k = 1. Second, k = 1 corresponds to the MPE, so that the threat of punishment

is credible.8 Third, by examining the progress made until time t, each agent can infer whether

all agents followed the equilibrium strategy; i.e., if qt corresponds to the progress that should

occur if all agents follow (6). Because a deviation from the equilibrium path is detectable

(and punishable) arbitrarily quickly, the gain from a deviation is infinitesimally small. As

a result, no agent has an incentive to deviate from the strategy dictated by (6), so that it

constitutes a PPE.9

Because our model is related to that of Marx and Matthews (2000) (hereafter MM), it is

instructive to relate our results (i.e., Propositions 1 and 2) to theirs. The main modeling

differences are that time is continuous and effort costs are convex in our model, whereas

time is discrete and effort costs are linear in MM. The two papers share the existence of

completing and non-completing equilibria, and similar to MM, a completing equilibrium

exists in our model if the agents are sufficiently patient; i.e., if C (Q ; k) < 0 or equivalently

if r < 2β
Q

(2n−k)k
n

. However, in MM, if the project generates a payoff only upon completion,

then the game reduces to a static one (see their footnote 7): because effort costs are linear,

agents cannot benefit by spreading their effort over time (unlike the case in which they are

convex as in our model).

The following result establishes some comparative statics about how each agent’s effort level

depends on the parameters of the problem.

Result 1. Other things equal, each agent’s effort level a (q ;Q, k):

(i) increases in k (and β) ;

(ii) there exists a threshold Θr such that it increases in r if and only if q ≥ Θr ; and

(iii) there exists a threshold Θn such that it increases in n if and only if q ≥ Θn.

To see the intuition behind statement (i), note that the free-rider problem is mitigated as the

agents’ cooperation level k increases. As a result, the agents’ incentives become stronger in

8Note that punishment is never inflicted along the equilibrium path. Therefore, the results will not change
even if the agents use a more severe punishment after detecting a deviation.

9There is a well known problem associated with defining a trigger strategy in continuous-time games. To
see why, suppose that a deviation occurs at some t′, and agents revert to the MPE at t′′. However, because
there is no first time after t′, there always exists some t ∈ (t′, t′′) such that the agents are better off reverting
to the MPE at that t; i.e., subgame perfection fails. To resolve this problem, we use the concept of inertia
strategies proposed by Bergin and MacLeod (1993).
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k (and it is eliminated when k = n). The intuition behind the second part of statement (i) is

straightforward: if the agents receive a larger reward upon completion, then their incentives

are stronger. The threshold results in statements (ii) and (iii) are similar to Georgiadis

(2013) who studies a stochastic version of this model with a fixed project size.10

Before we proceed to analyze the manager’s problem, it is instructive to characterize the first

best outcome of this game.

Result 2. Consider a social planner whose objective it is to maximize the total surplus of

the team. For any given project size Q, the discounted payoff and the optimal strategy for

each agent is given by

ΠFB (q ;Q) =
r

2n

([
q −Q+

√
2Qn

r

]+)2

and aFB (q ;Q) =
r

n

[
q −Q+

√
2Qn

r

]+
,

respectively, and the project is completed at τFB = 1
r

ln
( √

2βn√
2βn−

√
rQ

)
.

To see why this is the first best discounted payoff and effort path, respectively, recall that

at every moment, the social planner chooses the agents’ effort levels to maximize the total

discounted payoff of the team. Therefore, the socially efficient effort function satisfies (6)

after substituting β = 1 and k = n. It follows that ΠFB (q ;Q) = Π (q ;Q, n)|β=1.

3.2 Manager’s Problem

Given a project of size Q, the agents’ belief Q̃ about the manager’s choice of the project

size, and the agents’ cooperation level k, the manager’s discounted profit can be written as

W
(
q ;Q, Q̃, k

)
=
[
e−rτ (1− β)Q |Q, Q̃

]
, where the project’s completion time τ depends

on the current state q and the agents’ strategies, which in turn depend on Q̃ and k.11 Of

course, in equilibrium beliefs must be correct; i.e., Q = Q̃. Using standard arguments, one

can derive the HJB equation for the manager’s discounted profit

rW
(
q ;Q, Q̃, k

)
= n a

(
q ; Q̃, k

)
W ′
(
q ;Q, Q̃, k

)
10Note that when examining how each agent’s effort level depends on the team size, one must first consider

how the agents’ cooperation level k depends on n. Statement (iii) holds for any fixed k as well as for k = n.
11The manager’s discounted payoff depends on the agents’ beliefs about her choice of Q because this belief

influences their effort strategy. In addition, note that because the equilibrium is symmetric for any given Q,
all agents will have the same belief Q̃.

12



subject to the boundary conditions

W
(
q ;Q, Q̃, k

)
≥ 0 for all q and W

(
Q ;Q, Q̃, k

)
= (1− β)Q .

To interpret these conditions, note that manager’s discounted profit is non-negative at every

state of the project, because she does not incur any cost or disburse any payments to the

agents while the project is in progress. On the other hand, she receives her net profit

(1− β)Q, and the game ends as soon as the state of the project hits Q for the first time. It

is straightforward to show that this ODE has the following solution

W
(
q ;Q, Q̃, k

)
= (1− β)Q


[
q − C

(
Q̃ ; k

)]+
Q− C

(
Q̃ ; k

)


2n−k
n

. (7)

Note that (1− β)Q represents the manager’s net profit upon completion of the project,

while the next term can be interpreted as the present discounted value of the project, which

depends on the current state q, the agents’ beliefs about the project size and their cooperation

level k, which in turn influence their strategies characterized in Proposition 1.

Before we proceed with the analysis of the optimal project size, one assumption that deserves

discussion is that the agents’ compensations are independent of the completion time of the

project; i.e., that the manager does not use deadlines to incentivize the agents.12 This

assumption is made primarily for tractability, as it enables us to characterize the agents’ and

the manager’s payoff functions in closed form by solving two ordinary differential equations

(hereafter ODE). In addition, one drawback of deadlines is that they are not renegotiation

proof: if the agents fail to make the pre-specified amount of progress by the deadline (and

assuming that neither party receives a reward unless the project is completed), the manager

has incentives to renegotiate it. Because the agents will anticipate this behavior, deadlines

may be useful only if the manager can credibly commit to not renegotiate them.

4 Project Design and the Commitment Problem

In this Section we endogenize the project size Q. The manager has the decision rights over

the choice of the project size, but she may not be able to commit to a specific Q until the

12Because the completion time of the project is deterministic along any equilibrium path, it suffices to
consider the case in which each agent receives βQ

n as long as τ ≤ T and his reward drops to 0 otherwise,
where T is a pre-specified deadline.
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project is sufficiently close to that Q. Formally, we assume that given the current state of

the project q, the manager can only commit to a project size in the interval [q, q + y], where

y ≥ 0 is common knowledge, and it can be thought of as capturing the describability (or

verifiability) of the project requirements.

The extreme case y = ∞ represents the situation in which the requirements are perfectly

describable. Therefore, the manager can (and will) commit to her optimal project size at

time 0. On the other hand, if y = 0, then the requirements are completely indescribable, and

the manager only knows that the project is complete when she sees it. In this case, at every

moment the manager observes the current state of the project q, and decides whether it is

good enough (in which case its size will be Q = q), or whether to let the agents continue to

work and re-evaluate the completion decision an instant later. Therefore, y can be interpreted

as the manager’s commitment power, where a larger y indicates greater commitment power.

For example, y is likely to be large in a construction project where the requirements are

relatively standardized and easy to define. On the other hand, in a project that involves

a significant innovation or quality component, y is likely to be small, because the manager

cannot contract on the requirements of the final output until the project is at a sufficiently

advanced stage. Similarly, y is typically small in design-related projects such as automotive

design, as the requirements are difficult to describe. Alternatively, if the project is outsourced

and contracts are explicit, then y will tend to be larger than the case in which the project is

undertaken in-house so that the manager can influence the team members’ career paths and

contracts are typically implicit.

4.1 Optimal Project Size

To examine the manager’s optimal project size, we first consider the case in which she has

full commitment power (i.e., y =∞), so that she can commit to any project size before the

agents begin to work. Second, we consider the opposite extreme case in which she has no

commitment power (i.e., y = 0), so that at every moment she observes the current state of

the project q and decides whether to complete it immediately, or to let the agents continue

working and re-evaluate her option to complete it a moment later. Finally, we consider the

case in which she has intermediate commitment power (i.e., 0 < y < ∞), and we examine

how her optimal project size depends on y. Throughout this Section, we take the agents’

cooperation level k ∈ [1, n] as given. As such, we suppress k for notational convenience.
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4.1.1 Full Commitment Power (y =∞)

If the manager has full commitment power, then she can commit to a project size before the

agents begin to work. Therefore, at q0 = 0, the manager leads a Stackelberg game in which

she chooses the project size that maximizes her discounted profit and the agents follow by

adopting the equilibrium strategy characterized in Proposition 2. As a result, her optimal

project size with full commitment (FC ) satisfies QM
FC ∈ arg maxQW (0 ;Q,Q).13 Noting

from (7) that W (0 ;Q,Q) is concave in Q, differentiating it with respect to Q yields

QM
FC =

β

r

k (2n− k)

2n

(
4n

4n− k

)2

.

Note that the concavity of her discounted profit function implies that she commits to QM
FC

at q = 0 for any commitment power y ≥ QM
FC .

4.1.2 No Commitment Power (y = 0)

On the other hand, if the manager has no commitment power, then at every moment she

observes the current state of the project q, and she decides whether to stop work and collect

the net profit (1− β) q or to let the agents continue working and re-evaluate her decision

to complete the project a moment later. In this case, the manager and the agents engage

in a simultaneous-action game, where the manager chooses Q to maximize her discounted

profit given the agents’ belief Q̃ and the corresponding strategies, and the agents form their

beliefs by anticipating the manager’s choice Q. Therefore, her optimal project size with

no commitment (NC ) satisfies QM
NC (k) ∈ arg maxQ

{
W
(
q ;Q, Q̃

)}
, where in equilibrium

beliefs must be correct; i.e., Q = Q̃. By solving
∂W(q ;Q,Q̃)

∂Q

∣∣∣∣
q=Q̃=Q

= 0, we have

QM
NC =

β

r

2kn

2n− k
.

Observe that if y = 0, then the manager will choose a strictly larger project relative to the

case in which she has full commitment power: QM
NC > QM

FC . We shall discuss the intuition

behind this result in Section 4.1.3 after we determine the manager’s optimal project size for

intermediate levels of commitment power.

This case raises the question of what happens to the agents’ beliefs off the equilibrium

13Because the manager leads the agents in a Stackelberg game, given any choice Q, the agents will choose
their strategy based on that Q, and the agent’s belief Q̃ will coincide with Q ex-ante.
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path if the manager does not complete the project at QM
NC . Suppose that the manager did

not complete the project at QM
NC so that q > QM

NC . Clearly, Q and Q̃ > QM
NC , and it is

straightforward to verify that
∂W(q ;Q,Q̃)

∂Q
< 0 for all q, Q and Q̃ > QM

NC , which implies that

the manager would be better off had she completed the project at QM
NC irrespective of the

agents’ beliefs..

Conceptually, this commitment problem could be resolved by allowing β to be contingent on

the project size. In particular, suppose that the manager can fix β, and let β̂ (Q) equal β if

Q = QM
FC , and 1 otherwise. Then, her optimal project size is equal to QM

FC regardless of her

commitment power because any other project size will yield her a net profit of 0. However,

this implicitly assumes that QM
FC is contractible at q = 0, which is clearly not true for any

y < QM
FC . Therefore, we rule out this possibility by assuming that β is independent of Q.

4.1.3 Partial Commitment Power (0 < y <∞)

Recall that for any given cooperation level k, the manager’s optimal project size is equal to

QM
FC for all y ≥ QM

FC , and it is equal to QM
NC if y = 0. To determine her optimal project size

when y ∈
(
0, QM

FC

)
, we solve an auxiliary problem, and we show that there is a one-to-one

correspondence between this auxiliary problem and the original problem.

Suppose that the manager can credibly commit to her optimal project size as soon as

the project hits (some exogenously given) x. In this case, the manager leads a Stackel-

berg game, where she chooses QM
x to maximize her discounted profit at x, so that QM

x ∈
arg maxQ≥x {W (x ;Q,Q)}, and the agents follow by choosing their strategies based on QM

x .

We then show that for all y ∈
(
0, QM

FC

)
, there exists a unique x (y) ∈

(
0, QM

NC

)
, such that

the manager will commit to the project size QM
x(y) as soon as the project hits x (y).

Proposition 3. Suppose that given the current state q, the manager can commit to any

project size Q ∈ [q, q + y]. Then at x (y) the manager will commit to QM
x(y), where

QM
x(y) =

(
2n

4n− k

)2
(√

β

r

k (2n− k)

2n
+

√
β

r

k (2n− k)

2n
+
k (4n− k)

4n2
x (y)

)2

, (8)

x (y) is the unique solution to max
{
QM
x(y) − y, 0

}
= x (y), and it decreases in y.

Therefore, the manager’s optimal project size decreases in her commitment power: QM
x(y)

decreases in y.

The first part of this Proposition asserts that the manager has incentives to extend the project
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as it progresses: QM
x increases in x. Intuitively, the manager trades off a larger project that

yields a larger net profit upon completion against having to wait longer until that profit is

realized, but she ignores the additional effort cost associated with a larger project. Moreover,

recall that the agents raise their effort, and hence the manager’s marginal cost associated

with choosing a larger project decreases as the project progresses. On the other hand, her

marginal benefit from choosing a larger project is independent of the progress made. Since

the project size will be chosen such that the two marginal values are equal, it follows that

the manager’s optimal project size increases as the project progresses.14

After re-arranging terms in (8), it is possible to write the manager’s optimal project size

explicitly as a function of her commitment power y as

QM (y) =
1

2

(√
β

r

kn

2n− k
+

√
β

r

kn

2n− k
− k

2n− k
min {y,QM

FC}

)2

.

Remark 1. Recall that (i) the MPE is unique if Q < 2β
r

, (ii) QM
NC < 2β

r
for all n ≥ 2, ,

and (iii) QM (y) ≤ QM
NC for all y. Therefore, the game has a unique MPE for any level of

commitment power when the project size is chosen by the manager.

The implication of Proposition 3 is that if the manager has less commitment power, then

she will commit at a later state and to a larger project; i.e., x (y) and QM (y) decrease

in y. By noting that the extreme cases in which the manager has full (no) commitment

power correspond to y = 0 (y = ∞), this intuition also explains why QM
NC > QM

FC . Figure

1 illustrates an example. In addition, Proposition 3 together with the expression for the

completion time of the project computed in Proposition 2 imply that the duration of the

project will be larger if the manager has less commitment power.

It is important to emphasize that the agents internalize the manager’s limited ability to

commit, and they choose their effort strategy appropriately. In particular, each agent’s

effort increases in the manager’s commitment power (i.e., a
(
q ;QM (y)

)
increases in y) since

C (Q ; k) increases in Q for all Q > β
r
(2n−k)k

2n
and QM (y) > β

r
(2n−k)k

2n
for all y and k. This

implies that the manager’s ability to commit induces a ratchet effect: anticipating that she

14To reinforce this intuition, suppose that each agent exerts constant effort a > 0 throughout the duration
of the project. Given the current state q, the project will be completed in Q−q

na units of time so that the

manager’s discounted profit is equal to (1− β)Qe−
r(Q−q)

na . It follows that the her optimal project size is
Q = na

r and it is independent of q, which implies that the manager’s time-inconsistency arises due to the
agents increasing their effort along the evolution path of the project.
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Figure 1: Optimal project size when β = 0.5, r = 0.1, k = 1, and n = 4. The left panel illustrates

the manager’s incentives the extend the project as it progresses: her optimal project size increases in the

state of the project q, and there exists a state at which the manager is better off completing the project

without further delay. The right panel illustrates that her optimal project size (solid line) decreases in her

commitment power, while the agents’ optimal project size (dashed line) is independent of their commitment

power.

will choose a larger project, the agents respond by scaling down their effort. While ratchet

effects have been shown to arise in settings with asymmetric information (e.g., Freixas,

Guesnerie and Tirole (1985) and Laffont and Tirole (1988)), in our model they arise under

moral hazard with full information.

The following result examines how the manager’s optimal project size depends on the pa-

rameters of the problem.

Result 3. Other things equal, the manager’s optimal project size QM (y):

(i) increases in k (and β) for all y ;

(ii) decreases in r for all y ; and

(iii) if k = 1, then there exists a threshold Φ such that it increases in n if and only if y ≥ Φ.

On the other hand, if k = n, then it increases in n.

Statements (i) and (ii) are not surprising. Because each agent’s effort increases in k, the

team can achieve more progress during any given time interval by playing a more cooperative

equilibrium, and hence the manager has incentives to choose a larger project. If the agents
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receive a larger share of the project’s value upon completion, then they will work harder

along the equilibrium path, and as a result, the manager will choose a bigger project. For

the intuition behind (ii), recall that the manager trades off the higher payoff of a larger

project against the longer delay until that payoff is collected. As the parties become more

patient (i.e., as r decreases), the cost associated with the delay decreases, and hence the

optimal project size increases.

To examine how the manager’s optimal project size depends on the team size, one must

first consider how the agents’ cooperation level k depends on n. To obtain sharp results, we

consider the cases k = 1 (which corresponds to the MPE) and k = n (which corresponds

to the efficient PPE). In the first case, observe from Proposition 1 that ∂
∂q
a (q ;Q) = r

2n−1

decreases in n. Because the manager’s incentive to extend the project is driven by the agents

raising their effort as the project progresses, it follows that this incentive becomes weaker

in n. As a result, the manager’s optimal project size increases in n if and only if she has

sufficient commitment power. On the other hand, if k = n, then the result follows from the

fact that the aggregate effort of the team increases in n at every state of the project.

This analysis also raises the question about the manager’s optimal team size. Considering

the cases k = 1 and k = n as above, by substituting (8) in (7) and differentiating with

respect to n, it is straightforward to show that with no commitment power (i.e., y = 0), the

manager’s optimal team size is n∗ = 2 when k = 1, while the project is never completed

and the manager’s discounted profit equals 0 for any team size if k = n. On the other hand,

with full commitment power (i.e., y = ∞), it is n∗ = 1 and n∗ = ∞ when k = 1 and

k = 2, respectively. With intermediate levels of commitment power, the expression for the

manager’s discounted profit is not sufficiently tractable to optimize with respect to n, but

numerical analysis for the cases with k = 1 and k = n indicates that the manager’s optimal

project size decreases in her commitment power.

4.2 Optimal Delegation

The manager’s limited ability to commit, in addition to disincentivizing the agents from

exerting effort, is detrimental to her ex-ante discounted profit; i.e., W
(
0 ;QM (y) , QM (y)

)
increases in y.15 Thus, unable to commit sufficiently early, the manager might consider

delegating the decision rights over the project size to the agents.

15This follows from the facts that W (0 ;Q,Q) is concave in Q, the manager’s ex-ante discounted profit is
maximized at QMFC , QM (y) ≥ QMFC for all y, and QM (y) decreases in y.
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We begin by examining how the agents would select the project size. LetQA ∈ arg maxQ {Π (x ;Q)}
denote the agents’ optimal project size given the current state x. Solving this maximization

problem yields

QA =
β

r

k (2n− k)

2n
.

16 First, observe that the agents’ optimal project size is independent of the current state x.

This is also illustrated in the right panel of Figure 1. Intuitively, this is because they incur

the cost of their effort, so that their effort cost increases together with their effort level as

the project progresses. As a result, unlike the manager, their marginal cost associated with

choosing a larger project does not decrease as the project evolves, and consequently they do

not have incentives to extend the project as it progresses.

Second, observe that QA < QM (y) for all y; i.e., the agents always prefer a smaller project

than the manager.17,18 This is because they incur the cost of their effort, so that their

marginal cost associated with a larger project is greater than that of the manager’s.

Proposition 4. Suppose that given the current state q, the manager can commit to any

project size Q ∈ [q, q + y]. There exists an interior threshold θ such that W
(
0 ;QA, QA

)
>

W
(
0 ;QM (y) , QM (y)

)
if and only if y < θ; i.e., she should delegate the choice of the project

size to the agents unless she has sufficient commitment power.

Recall that the agents’ optimal project size is time-consistent, which implies that if the

manager delegates the decision rights to the agents, then her ex-ante discounted profit is

independent of when the project size is chosen. The key part of this result is that if the

manager has no commitment power (i.e., y = 0), then she is always better off delegating the

decision rights over the project size to the agents. By noting that the manager’s optimal

project size (and hence her ex-ante discounted profit) increases in her commitment power,

the Proposition follows.

4.3 Socially Optimal Project Size

In this Section, we characterize the optimal project size of a social planner who seeks to

maximize the team’s total discounted payoff.

16The comparative statics established in Result 3 (i) and (ii) also hold for QA. However, QA increases in
the team size n both when k = 1 and k = n.

17An implication of this observation, together with Remark 1, is that the equilibrium of the game is unique
also when the project size is chosen by the agents.

18One might envision an intermediate decision rule, wherein all parties need to unanimously agree on a
project size. Because the manager prefers a larger project than the agents regardless of her commitment
power, under a unanimity requirement, effectively, they will agree to the manager’s optimal project size.
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Result 4. Consider a social planner who maximizes the sum of the agents’ and the manager’s

discounted payoffs (but cannot control the agents’ effort strategies).

(i) His optimal project size QFB
y satisfies QA < QFB

y < QM (y) for all y.

(ii) With 1 agent, his optimal project size decreases in the commitment power y.19

The social planner seeks to maximize the sum of the manager’s and the agents’ discounted

payoff. As such, his optimal project size will lie between the agents’ and the manager’s

optimal project size for all y. In addition, because the agents’ (manager’s) optimal project

size is independent of (decreases in) y, it is intuitive that the social planner’s optimal project

size decreases in the commitment power y. With n ≥ 2 agents, this problem becomes

intractable. However, numerical analysis indicates that the social planner’s optimal project

size continues to decrease in the commitment power y. This is illustrated in the left panel

of Figure 2.
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Figure 2: The social planner’s optimal project size (left panel) and the manager’s optimal

cooperation level (right panel) when β = 0.5, r = 0.1, and n = 4. The left panel illustrates (with

k = 2) that the social planner’s optimal project size decreases in the commitment power y. The right panel

illustrates that the manager’s optimal cooperation level k increases in her commitment power and a fully

cooperative equilibrium (i.e., k = n) is optimal only if she has sufficient commitment power (i.e., y ≥ ϕ).

19Given y, the social planner commits to QSPx(y) = arg maxQ {Π (q ;Q) +W (q ;Q,Q)} at q = x (y), where

x (y) satisfies max
{
QSPx(y) − y, 0

}
= x (y). The result follows from the facts that this problem is strictly

concave and d
dQ [Π (q ;Q) +W (q ;Q,Q)] increases in q for all Q ≤ QSPx(0), which in turn implies that QSPx(y)

decreases in y.
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If the social planner can also control the agents’ strategies, then it is straightforward to verify

from the social planner’s discounted payoff characterized in Result 1 that his optimal project

size equals n
2r

and it is independent of his commitment power.

5 Equilibrium Selection

Insofar we have taken the agents’ cooperation level as given. However, experiments in social

identity theory have demonstrated that it is surprisingly easy to affect subjects’ behavior

as insiders or outsiders within a group (Akerlof and Kranton (2005)). Using equilibrium

selection concepts proposed by Kreps (1990), we consider the possibility that the manager

can influence the agents’ cooperation level (i.e., the PPE that will be played) by cultivating a

more (or less) cooperative environment within the team; for example, by organizing sponsored

activities, encouraging interaction among the team members, and engaging the agents when

making decisions, as well as with appropriate selection of those who join the team.

Taking into account her commitment power y at time 0, the manager chooses the agents’

cooperation level to maximize her ex-ante discounted profit:

ky ∈ arg max
1≤k≤n

{
W
(
0 ;QM (y) , QM (y) , k

)}
.

To obtain tractable results, we restrict attention to the extreme cases y =∞ and y = 0.

Proposition 5. Suppose that the manager can choose the agents’ cooperation level k at q0.

(i) If y =∞, then a fully cooperative environment is optimal: kFC = n.

(ii) If y = 0, then the optimal cooperation level kNC < n.

Choosing a higher cooperation level has two opposite effects. For a fixed Q, the agents

work harder, which increases the manager’s discounted profit. However, because the agents

work harder and they ramp up their effort faster as the project progresses, the manager has

stronger incentives to extend the project (as evidenced by the fact that ∂QMx
∂x

increases in

k), which harms her ex-ante discounted profit. If y = ∞, then the latter effect is absent

and hence she is better off fostering a fully cooperative environment within the team; i.e.,

k = n. On the other hand, if y = 0, then the latter effect dominates the former, so that a

less than fully cooperative environment within the team renders her better off; i.e., k < n.

The manager’s optimal cooperation level is illustrated in the right panel of Figure 2 as a

function of her commitment power.
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If the manager delegates the decision rights over the project size to the agents, then a fully

cooperative environment (i.e., k = n) is always optimal. This is intuitive, because the agents’

preferences are time-consistent and a fully cooperative environment eliminates the free-rider

problem.20

6 Concluding Remarks

We develop a tractable model to study the interaction between a group of agents who col-

laborate over time to complete a project and a manager who chooses its size. A central

feature of the model is that the manager has limited commitment power, in that she can

only commit to the project size when the project is sufficiently close to completion. This

is common in projects that involve a significant innovation or quality or design component

that is difficult to contract on in advance.

In a setting in which both the manager and the agents are rational and they do not obtain

new information about the difficulty or the value of the project, we show that the manager

has incentives to extend the project as it progresses. As a result, if the manager has lower

commitment power, then she will eventually commit to a bigger project. To mitigate her

commitment problem, the manager might consider delegating the decision rights over the

project size to the agents, who will choose a smaller project than is optimal for the manager,

but their preferences are time-consistent. We show that delegation is optimal unless the

manager has sufficient commitment power.

In our model, agents are compensated upon completion of the project and their compensation

is independent of the completion time of the project. While Georgiadis (2013) shows that

backloading all rewards is optimal when the project size is given exogenously, it is unclear

that this continues to be optimal when the project size is endogenous and the manager has

limited commitment power. It is possible that a more complex scheme in which the manager

provides agents with flow payments while the project is in progress (e.g., Sannikov (2008))

can improve her discounted profit by mitigating her commitment problem. In addition,

we know from Bonatti and Hörner (2011) and Campbell, Ederer and Spinnewijn (2013)

that time-dependent contracts (e.g., deadlines) can be employed to mitigate the free-rider

problem. Relaxing these restrictions is an interesting avenue for future research.

20Similarly, if the manager acts as a social planner who maximizes the sum of the manager’s and the
agents’ discounted payoffs (but cannot control the agents’ effort strategies), then numerical analysis suggests
that cultivating a full cooperative environment is optimal.
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A Extensions

In this Appendix we consider five extensions to our model to test the robustness of the main

results.

A.1 Production Synergies and Team Coordination Costs

First, we consider the case in which at every moment, the total effort of the team is greater

(due to production synergies) or smaller (due to coordination costs among the team members)

than the sum of the agents’ individual efforts. We show that all three main results continue

to hold for any degree of complementarity.

To obtain tractable results, we consider the production function proposed by Bonatti and

Hörner (2011), so that the project evolves according to dq =
(∑n

i=1 a
1/γ
i

)γ
dt, where γ > 0.

Note that γ ∈ (0, 1) (γ > 1) captures the case in which the total effort of the team is

smaller (greater) than the sum of the agents’ individual efforts, and a larger γ indicates

smaller coordination costs or a stronger degree of complementarity. By assuming symmetric

strategies, it follows that given the current state of the project q, cooperation level k, and

the completion state Q, each agent’s discounted payoff and effort strategy are given by

Π (q ;Q, k) =
rn2−2γ

2k

(
[q − C (Q ; k)]+

)2
2n− k

and a (q ;Q, k) =
rn1−γ

2n− k
[q − C (Q ; k)]+ ,

respectively, where C (Q ; k) = Q −
√

2βQ
r

n2γ−2(2n−k)k
n

.21 Because (with other things equal)

Π (q ;Q, k) increases in k for all γ, it follows that for all k ∈ [1, n] there exists a PPE such

that each agent follows the strategy dictated by a (q ;Q, k), and after any deviation from

the equilibrium path, all agents revert to the MPE; i.e., k = 1. Furthermore, each agent’s

discounted payoff, his equilibrium effort, as well as the aggregate effort of the entire team,

increase in the degree of complementarity γ.

By using the agents’ strategies, it follows that the manager’s discounted profit satisfies

W
(
q ;Q, Q̃, k

)
= (1− β)Q


[
q − C

(
Q̃ ; k

)]+
Q− C

(
Q̃ ; k

)


2n−k
n

.

21As the algebra is straightforward and similar to that used to derive Propositions 1 and 2, it is omitted
here in order to streamline the exposition.
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To streamline the exposition, we focus on the extreme cases in which the manager has either

full or no commitment power. It follows that

QM
FC =

β

r

k (2n− k)

2n

(
4n

4n− k

)2

n2γ−2 and QM
NC =

2β

r

kn

2n− k
n2γ−2 .

Observe that the manager’s optimal project size increases in the degree of complementarity,

and similar to the case analyzed in Section 4, QM
NC > QM

FC . Moreover, the counterpart of

Proposition 2 continues to hold; i.e., if the manager has less commitment power, then she

will choose a bigger project.

We now examine the manager’s option to delegate the choice of Q to the agents, as well as

her optimal choice of the agents’ cooperation level. To begin, note that the agents’ optimal

project size satisfies QA = β
2r
k(2n−k)

n
n2γ−2. By following a similar approach as in Section 4.2,

it follows that there exists a threshold θ such that the manager is better off delegating the

choice of the project size to the agents if and only if her commitment power y < θ.

A.2 Fixed Compensation

In the base model, we have assumed that the agents’ net payoff upon completion of the

project is proportional to its value. While a more valuable project will typically yield a

larger net payoff to the agents - for example a bigger bonus, a salary increase, greater job

security, or a larger outside option, this assumption can be thought of as an extreme case,

since any incentive scheme will likely consist of a fixed component that is independent of the

project size, and a performance-based component. In this Section, we consider the opposite

extreme where each agent’s net payoff is fixed and independent of the project size, while

efforts are perfect substitutes; i.e., dqt = (
∑n

i=1 ai,t) dt.

The main results continue to hold. In fact, the manager’s commitment problem becomes so

aggravated in this case, that the project may never be completed in equilibrium. Moreover,

because the agents’ net reward is independent of Q, their optimal project size is always 0.

As such, the manager can no longer use delegation to mitigate her commitment problem.

To begin, suppose that each agent receives a lump-sum V
n

as soon as the project is completed

regardless of its size. Then given the current state of the project q, the cooperation level k,
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and the completion state Q, each agent’s equilibrium effort is given by

ā (q ;Q, k) =
r

2n− k
[
q − C̄ (Q ; k)

]+
where C̄ (Q ; k) = Q−

√
2V

r

(2n− k) k

n
,

while the manager’s discounted profit satisfies

W̄
(
q ;Q, Q̃, k

)
= (Q− V )


[
q − C̄

(
Q̃ ; k

)]+
Q− C̄

(
Q̃ ; k

)


2n−k
n

.

Using the same approach as in Section 3, one can show that for all k ∈ (1, n] there exists a

PPE such that each agent follows the strategy dictated by ā (q ;Q, k) contingent on all other

agents following the same strategy, and reverts to the MPE (i.e., k = 1) after observing a

deviation.

By examining the manager’s optimal project size, it follows that with full and with no

commitment power, we have

Q̄M
FC =

2n− k
3n− k

V +
n

3n− k

√
2V

r

(2n− k) k

n
and Q̄M

NC = V +

√
2V

r

kn

2n− k
,

respectively. Observe that Q̄M
NC > Q̄M

FC , and by solving for Q̄M
x ∈ arg maxQ W̄ (q ;Q,Q, k),

it follows that Q̄M
x increases in x. Therefore, similar to the base model, the manager has

incentives to extend the project as it progresses. In fact, these incentives can be so strong

that the project is never completed in equilibrium. To see why, note that the project is

completed only if C̄ (Q ; k) < 0, and this inequality is true at Q = Q̄M
NC (k) if and only if

rV < 2k(n−k)2
n(2n−k) . Moreover, if each agent’s net payoff is independent of the project size, then

delegating the choice of the project size to the agents is not beneficial, because they will

choose a project of size 0.

To examine the manager’s optimal choice of k, note that the last inequality is violated if

k = n, which implies that if the agents play the fully cooperative PPE and the manager

has no commitment power, then the project is never completed. Therefore, the manager can

increase her discounted profit by choosing some k < n such that the project is completed.

On the other hand, by noting that
√

2(2n−k)k
n

>
√

2kn
2n−k

∣∣∣∣
k=1

for all n ≥ 2, and observing that

V is the only parameter that the manager can choose, it follows that there always exists

some V > 0 and k ∈ [1, n] such that the project is completed in equilibrium even if the
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manager has no commitment power.

Therefore, the manager’s commitment problem is severely aggravated if the agents’ net

payoffs are independent of the project size. Intuitively, this is because the manager obtains

the entire marginal benefit from a larger project (as opposed to 1−β thereof), which provides

her with stronger incentives to extend it as it progresses. As a result, anticipating this

behavior, the agents prefer to exert no effort and abandon the project altogether.

A.3 Flow Payments while the Project is in Progress

Throughout the analysis we have maintained the assumption that the agents receive a lump-

sum payment upon completing the project, but they do not receive any flow payments while

the project is ongoing. Therefore, to extend the project, the manager must only incur the

cost associated with having to wait longer until the project is completed. In this Section, we

consider the case in which the manager compensates each agent with a flow payment w
n
> 0

per-unit of time while the project is in progress, in addition to a lump-sum payment upon

completing it.

Similar to the base case, the manager has incentives to extend the project as it progresses,

and she is better off delegating the decision rights to the project size to the agents unless she

has sufficient commitment power. Moreover, her optimal cooperation level k increases in her

commitment power, and a fully cooperative equilibrium is optimal only if she has sufficient

commitment power.

It is straightforward to show that for a given project size Q, each agent’s discounted payoff,

and the manager’s discounted profit satisfy

rΠ̄ (q ;Q) =
w

n
+
k (2n− k)

2

[
Π̄′ (q ;Q)

]2
s.t. Π̄ (Q ;Q) = βQ

rW̄
(
q ;Q, Q̃

)
= −w +

[
na
(
q ; Q̃, k

)]
W̄ ′
(
q ;Q, Q̃

)
s.t. W̄

(
Q ;Q, Q̃

)
= (1− β)Q ,

respectively, where ā
(
q ; Q̃, k

)
= kΠ̄′ (q ;Q). As this model is analytically not tractable,

to examine how the main results extend to this case, we present a numeric illustration (see

Figure 3). The takeaway from this analysis is that the main results continue to hold when

the agents receive flow payments while the project is in progress.
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Figure 3: An example in which the manager compensates the agents per unit of time while

the project is in progress when β = 0.5, r = 0.1, n = 4, and w = 0.001. The left panel illustrates

that her optimal project size decreases in her commitment power, while the agents’ optimal project size is

independent of their commitment power. The middle panel illustrates that delegating the decision rights

over the project size to the agents is beneficial if and only if the manager doesn’t have sufficient commitment

power. Finally, the right panel illustrates that the manager’s optimal cooperation level increases in her

commitment power.

A.4 Sequential Projects

Insofar, we have assumed that the manager interacts with the agents for the duration of

a single project. However, because in practice, relationships between a manager and work

teams are often persistent, it is important to verify that the main results of this paper are

robust to repeated interactions. In this Section we consider the case in which as soon as a

project is completed, the manager and the agents interact for the duration of another project

with probability α < 1, while the relationship is terminated with probability 1−α and each

party receives its outside option which is normalized to 0.22

Indeed, we find that when the manager and the agents engage in sequential projects, all

the main results continue to hold. Moreover, we observe that if the relationship is more

persistent (i.e., α is larger), then the manager has stronger incentives to delegate the choice

of the project size to the agents, and her optimal cooperation level is larger.

22If α = 0, then this case reduces to the base model. On the other hand, because the value of the project
has been assumed to be linear in its size, and it generates a payoff only upon completion, as α =→ 1,
both the manager and the agents choose an arbitrarily small project, which is completed arbitrarily quickly.
Therefore, we restrict attention to the cases in which α < 1.
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Since the problem is stationary, the manager will choose the same project size every time.

Both the agents’ and the manager’s problem remain unchanged, except for the boundary

conditions, which become Π̄ (Q ;Q) = βQ
n

+ αΠ̄ (0 ;Q) and W̄
(
Q ;Q, Q̃

)
= (1− β)Q +

αW̄
(

0 ;Q, Q̃
)

, respectively. The interpretation of these conditions is that upon comple-

tion of each project, each party receives its net payoff from this project, plus the expected

continuation value from future projects.

Unfortunately, it is not possible to derive the desired results analytically. As such, we use a

numerical example to illustrate how the main results of the paper extend to this case. Figure

4 illustrates that the main results continue to hold. In particular, (i) the manager’s optimal

project size decreases in her commitment power, whereas the agents’ optimal project size

is independent of their commitment power, (ii) the manager should delegate the decision

rights over Q unless she has sufficient commitment power, and (iii) the manager’s optimal

cooperation level increases in her commitment power.
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Figure 4: An example in which the manager interacts with the agents repeatedly when β = 0.5,

r = 0.1, n = 4, and α = 0.25. Similar to Figure 3, it illustrates that the main results continue to hold in this

case.

A.5 Stochastic Evolution of the Project

A key assumption that provides tractability to our model is that the project progresses

deterministically. To obtain some insights as to how the results in this paper depend on this
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assumption, consider the case in which the project progresses stochastically according to

dqt =

(
n∑
i=1

ai,t

)
dt+ σdWt ,

where σ > 0 captures the degree of uncertainty associated with the evolution of the project,

and Wt is a standard Brownian motion. It is straightforward to show that for a given project

size Q, in any MPE, each agent’s expected discounted payoff and the manager’s expected

discounted profit satisfy

rΠ̄ (q ;Q) =
(2n− 1)

2

[
Π̄′ (q ;Q)

]2
+
σ2

2
Π̄′′ (q ;Q) and

rW̄
(
q ;Q, Q̃

)
=

[
nā
(
q ; Q̃

)]
W̄ ′
(
q ;Q, Q̃

)
+
σ2

2
W̄ ′′

(
q ;Q, Q̃

)
subject to Π̄ (Q ;Q) = βQ

n
, W̄

(
Q ;Q, Q̃

)
= (1− β)Q, limq→−∞ Π̄ (q ;Q) = 0, and limq→−∞ W̄ (q ;Q) =

0, respectively, where ā
(
q ; Q̃

)
= Π̄′ (q ;Q). This problem is studied by Georgiadis (2013)

for a fixed project size, who shows that similar to Proposition 1, a unique solution to this

system of ODE exists, and Π̄′ (q ;Q) > 0 and increasing in q, which in turn implies that the

MPE is unique. It is worth noting that the non-Markovian strategies characterized in this

paper no longer constitute a PPE if the project progresses according to the above stochastic

process. Intuitively, this is because a deviation from the equilibrium path cannot be detected

instantaneously with probability 1.
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Figure 5: An example in which the project progresses stochastically when β = 0.5, r = 0.1, n = 3,

and σ = 1. Similar to Figure 3, it illustrates that the main results continue to hold in this case

Georgiadis (2011) shows that the agents are time-consistent with respect to their optimal

30



project size, which implies that similar to the deterministic case, their optimal project size

is independent of the commitment power y. Unfortunately however, the analysis of the

manager’s choice of Q is not tractable. Therefore, in Figure 5, we use a numerical example

to illustrate that the main results continue to hold when the project progresses stochastically:

the manager’s optimal project size decreases in her commitment power, while the agents’

optimal project size is independent of their commitment power, and delegation is optimal

unless the manager has sufficient commitment power.

B Proofs

Proof of Proposition 1. To show that a MPE with differentiable strategies exists for this

game, it suffices to show that a solution to (4) exists. To show this, we derive a symmetric

solution analytically. In particular, for symmetric strategies (i.e., Πi (q ;Q) = Πj (q ;Q) for

all i and j), (4) can be re-written as

rΠ (q ;Q) =
2n− 1

2
[Π′ (q ;Q)]

2
, (9)

and the solution to this ODE satisfies

Π (q ;Q) =
r

2

(
[q − C (Q)]+

)2
2n− 1

, where C (Q) = Q−
√

2βQ

r

2n− 1

n

is determined by the value matching condition. By using the first order condition, it follows

that each agent’s effort strategy is given by

a (q ;Q) =
r

2n− 1
[q − C (Q)]1{q≥C(Q)} .

To show that there do not exist any asymmetric solutions to (4) we proceed by contradic-

tion. Fix Q > 0, and suppose there exist at least two agents a and b whose discounted payoff

functions Πa (q ;Q) and Πb (q ;Q) satisfy (4), but Πa (q ;Q) 6= Πb (q ;Q) for at least some

q < Q. Then let D (q) = Πa (q ;Q)−Πb (q ;Q), and note that D (Q) = 0 and D (·) is differen-

tiable. Then using (4) we can write 2rD (q) = [2
∑

i Πi (q ;Q)− Πa (q ;Q)− Πb (q ;Q)]D′ (q).

Moreover, because agents are impatient (r > 0) and the amount of effort that needs to be

exerted until the project is completed diverges to infinity as q → −∞, it must be true that

Πi (q ;Q) → 0 as q → −∞. Therefore, limq→−∞D (q) = 0, so if D (q) 6= 0 for at least some

q < Q, then it must be the case that there exists some interior z < Q such that D (z) 6= 0

and D′ (z) = 0, which yields a contradiction. Hence we conclude that (4) cannot admit an
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asymmetric solution.

To show that (9) has a unique symmetric solution, we use a similar approach. Fix

Q > 0, and suppose that there exist ΠA (q ;Q) and ΠB (q ;Q) that both satisfy (9). Then let

∆ (q) = ΠA (q ;Q) − ΠB (q ;Q), and note that ∆ (Q) = 0 and ∆ (·) is differentiable. There-

fore, (9) can be re-written as 2r∆ (q) = (2n− 1) [Π′A (q ;Q) + Π′B (q ;Q)] ∆′ (q). Moreover,

limq→−∞∆ (q) = 0 by the same argument as above, so if ∆ (q) 6= 0 for at least some q < Q,

then it must be the case that there exists some interior z < Q such that ∆ (z) 6= 0 and

∆′ (z) = 0, which yields a contradiction. Therefore, there exists a unique symmetric solution

to (4).

We have insofar shown that there exists a unique solution to (4), and that this solution

is symmetric. Moreover, note that if C (Q) ≥ 0 (or equivalently Q ≥ 2β
r

2n−1
n

), then the

equilibrium strategy dictates that no agent ever exerts any effort, in which case the project

is never completed. On the other hand, as long as C (Q) < 0, the strategy a (q ;Q) consti-

tutes the unique project-completing MPE. Next, suppose that C (Q) < 0 ≤ C (Q)|n=1 (or

equivalently 2β
r
≤ Q < 2β

r
2n−1
n

), and fix all effort strategies except of that of agent i to 0.

Then agent i’s best response is to also exert 0 effort, since C (Q)|n=1 ≥ 0; i.e., he is not

willing to undertake the entire project by himself. As a result, if Q ≥ 2β
r

, then in addition

to the project-completing MPE, there also exist an equilibrium in which no agent exerts any

effort, and the project is never completed.

Finally, to compute the completion time of the project, we substitute the agents’ effort

function a (q; Q) into dqt = natdt, we solve the resulting ODE q′ (t) = r n
2n−1 [q (t)− C (Q)]+

subject to q (0) = 0, and we obtain the completion time of the project τ by solving for

q (τ) = Q.

Proof of Proposition 2. This proof is organized as follows. First, we show that Π (q ;Q, k) is

the solution to a game in which each agent chooses his effort according to (5), and that (6)

is the corresponding effort strategy. Then we show that this strategy constitutes a PPE.

From (5), given the current state of the project q, the first order condition yields a (q ;Q, k) =

kΠ′ (q ;Q, k), and the second order condition is always satisfied. Substituting the first order

condition into each agent’s HJB equation yields

Π (q ;Qk) =
(2n− k) k

2r
[Π′ (q ;Q, k)]

2

subject to Π (Q ;Q, k) ≥ 0 for all q and Π (Q ;Q, k) = βQ
n

.

It is straightforward to verify that Π (q ;Q, k) = r
2k

([q−C(Q ;k)]+)
2

2n−k solves the above HJB
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equation, and by using the first order condition, it follows that each agent’s effort strategy

satisfies (6). If k = 1, then (6) corresponds to the Markov equilibrium. To compute the

completion time of the project, we substitute (6) into dqt = natdt, we solve the resulting

differential equation q′ (t) = r n
2n−k [q (t)− C (Q ; k)]+ subject to q (0) = 0, and we obtain the

completion time of the project τ by solving for q (τ) = Q.

We now show that the strategy defined above is indeed a PPE for any k ∈ (1, n]. First

note that any deviation from the described strategy is detectable arbitrarily quickly. Since

the agents can react quickly, such deviation can be punished with arbitrarily small delay,

so that the gains from a deviation are arbitrarily small. Second, reverting to the Markov

equilibrium after a deviation is sequentially rational since the MPE is (by definition) a PPE.

Third, observe that Π (q ;Q, k) > Π (q ;Q, 1) for all k > 1 and q ≥ C (Q ; k), which implies

that for any k ∈ (1, n], as long as each agent chooses his effort to maximize the expected

discounted payoff of k agents, no agent has an incentive to unilaterally deviate. Finally, by

applying Theorem 4 of Bergin and MacLeod (1993) it follows that there exists a Public

Perfect equilibrium in which each agent follows 6 along the equilibrium path.

Proof of Proposition 3. To begin, fix k ∈ [1, n], and note that for any x, W (x ;Q,Q, k) is

strictly concave in Q. Applying the first order condition yields (8). It is straightforward to

verify that ∂
∂x
QM
x > 0 and ∂2

∂x2
QM
x < 0 for all q > 0. Finally, solving the fixed point QM

Q = Q

yields QM
Q = β

r
2kn
2n−k .

Next, let g (x) = QM
x − x, and observe that g (0) = QM

0 > 0 and g
(
QM
Q

)
= 0. Moreover,

it is easy to check that g′ (x) < 0 on
[
0, QM

Q

]
, which implies that given any y ≤ QM

0 , there

exists a unique x (y) such that g (x (y)) = y.

Clearly, if y ≥ QM
0 , then the manager finds it optimal to commit to QM

0 at x = 0.

Therefore, for all y ≥ 0, there exists a unique x (y) that solves max
{
QM
x(y) − y, 0

}
= x (y).

To proceed, suppose that y < QM
0 , and note that W (q ;Q,Q) is strictly concave in Q

for all Q ≥ q. Given the current state of the project q, the manager can either commit to

a completion state in the interval [q, q + y], in which case her discounted payoff is equal to

maxq≤Q≤q+yW (q ,Q,Q), or she can delay committing, anticipating that she will be able to

commit to some completion state q′ > q + y later, which will yield her a discounted payoff

W (q , q′, q′). Therefore, the manager will choose to commit to a completion state at q if and

only if maxq≤Q≤q+yW (q ,Q) ≥ W (q , q′, q′) for all q′ > q + y, or equivalently if and only if

arg maxQ≥qW (q ,Q,Q) ≤ q+ y. By noting that QM
q ∈ arg maxQ≥q {W (q ;Q,Q)}, it follows

that the manager finds it optimal to commit to project size QM
x(y) at q = x (y), where x (y)

is the unique solution to the equation max
{
QM
x(y) − y, 0

}
= x (y), and QM

x(y) is given by (8).
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Proof of Proposition 4. To begin, fix n ≥ 1 and k ∈ [1, n]. If the project size is chosen by

the agents, then they will choose QA = β
r
k(2n−k)

2n
, and by substituting this into the manager’s

expected discounted profit yields W
(
0 ;QA, QA

)
= (1−β)β

r
k(2n−k)

2n

(
1
2

) 2n−k
n .

Next, consider the case in which the completion state is chosen by the manager, and

she has no commitment power (i.e., y = 0) so that she eventually completes the project at

QM
NC = β

r
2kn
2n−k . By substituting this the manager’s expected discounted profit we have that

W
(
0 ;QM

NC , Q
M
NC

)
= (1−β)β

r
2kn
2n−k

(
n−k
2n−k

) 2n−k
n .

Now consider the ratio
W(0 ;QMNC ,QMNC)
W (0 ;QA,QA)

=
(

2n
2n−k

)2 (2n−2k
2n−k

) 2n−k
n , and for the purpose of this

proof, let h (n, k) =
(

2n
2n−k

)2 (2n−2k
2n−k

) 2n−k
n . Observe that h (k, k) = 0 and limn→∞ h (n, k) = 1.

Differentiating with respect to n yields d
dn
h (n, k) =

4[(2n−k)(n−k) ln( 2n−2k
2n−k )+nk]

(2n−k)3(n−k)

(
2n−2k
2n−k

) 2n−1
n > 0

if and only if (2n− k) (n− k) ln
(
2n−2k
2n−k

)
+nk > 0 or equivalently if ln

(
2n−2k
2n−k

)
+ nk

(2n−k)(n−k) > 0.

Now observe that limn→∞

[
ln
(
2n−2k
2n−k

)
+ nk

(2n−k)(n−k)

]
= 0, and ∂

∂n

[
ln
(
2n−2k
2n−k

)
+ nk

(2n−k)(n−k)

]
<

0 for all n ≥ k. This implies that ln
(
2n−2k
2n−k

)
+ nk

(2n−k)(n−k) > 0, and hence d
dn
h (n, k) > 0. By

noting that h (k, k) = 0 and limn→∞ h (n, k) = 1, it follows that h (n, k) < 1 for all n ≥ k,

which implies that W
(
0 ;QA, QA

)
> W

(
0 ;QM

NC , Q
M
NC

)
for all n ≥ k.

We have thus far established that W
(
0 ;QA, QA

)
> W

(
0 ;QM

NC , Q
M
NC

)
. Moreover, it is

straightforward to verify that W
(
0 ;QM

FC , Q
M
FC

)
> W

(
0 ;QA, QA

)
; i.e., the manager should

not delegate the choice of Q to the agents if she has full commitment power. Because

QM (y) is strictly decreasing in y for all y < QM
FC , W (0 ;Q,Q) is strictly concave in Q, and

QM
FC < QM

NC , it follows that W
(
0 ;QM (y) , QM (y)

)
is strictly increasing in y on

[
0, QM

FC

)
.

By noting that W
(
0 ;QA, QA

)
is independent of y, it follows that there exists some threshold

θ < QM
FC such that W

(
0 ;QA, QA

)
> W

(
0 ;QM (y) , QM (y)

)
if and only if y < θ.

Proof of Proposition 5. Suppose first that the manager has full commitment power. Then,

her optimal project size is equal to QM
FC = 2β

r
k(2n−k)

n

(
2n

4n−k

)2
, and it follows that

W
(
0 ;QM

FC , Q
M
FC , k

)
=

2β (1− β)

r

k (2n− k)

n

(
2n

4n− k

)2(
2n− k
4n− k

) 2n−k
n

.

By differentiating this with respect to k we have that ∂
∂k
W
(
0 ;QM

FC , Q
M
FC , k

)
> 0 if and only

if 2n (n− k)− k (2n− k) ln
(
2n−k
4n−k

)
> 0. This condition holds for all k ∈ [1, n]. Therefore, in

this case the manager’s optimal coordination level is kFC = n.
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Next, suppose that the manager has no commitment power, so that she eventually com-

pletes the project at QM
NC = 2β

r
kn

2n−k . Then it follows that

W
(
0 ;QM

NC , Q
M
NC , k

)
=

2β (1− β)

r

kn

(2n− k)

(
n− k
2n− k

) 2n−k
n

,

and by differentiating this with respect to k we have that ∂
∂k
W
(
0 ;QM

NC , Q
M
NC , k

)
> 0

if and only if k(2n−k)
n

(n− k) ln
(
n−k
2n−k

)
−
[
k −

(
2 +
√

2
)
n
] [
k −

(
2−
√

2
)
n
]
< 0. Because

limk→n (n− k) ln
(
n−k
2n−k

)
= 0 and

([
k −

(
2 +
√

2
)
n
] [
k −

(
2−
√

2
)
n
]∣∣
k=n

< 0, the last in-

equality is violated as k → n. Therefore, limk→n
∂
∂k
Wk

(
0 ;QM

NC , Q
M
NC , k

)
< 0, so that

arg maxkW
(
0 ;QM

NC , Q
M
NC , k

)
< n.

Therefore, we have show that with full commitment power, the manager’s optimal co-

operation level kFC = n, while with no commitment power, her optimal cooperation level

kNC < n.
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