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Abstract

Firms in industrial markets use personal selling to reach prospective customers.
Such person-to-person interaction between salespersons and customers allows for com-
munication on product attributes and flexibility on price. In this paper, I study a
continuous-time game in which a buyer and a seller discover their value from trade
while simultaneously bargain for price. The match between the product’s attributes
and the buyer’s preferences is revealed gradually over time. The seller makes repeated
price offers bounded by a self-imposed list price, and the buyer decides whether to
accept or wait. Players incur flow costs during the game and can leave at any moment.
I find that the list price plays an important role in balancing the buyer’s incentive to
stay and the seller’s bargaining power. But the players always trade at a discounted
price, due to the seller’s incentive to close the sale early. The costly discovery of match
provides a rationale for the use of list price and discount, which is absent in the bar-
gaining literature. I also examine whether the seller should commit to a fixed price
or allow bargaining. The paper finds that bargaining benefits the seller by shortening
the process and increasing ex-ante success rate. When the seller’s flow cost is high,
both players are willing to participate in the game only if bargaining is allowed. In
such cases, bargaining leads to a Pareto improvement over the fixed price, which can
explain the prevalent use of bargaining in many industries. If the buyer has private in-
formation on his outside option, the model predicts that, counter-intuitively, the buyer
with higher value for the product pays lower price. More fundamentally, the paper
expands the bargaining literature by adding a discovery process that makes product
value stochastic. This leads to departure from standard results.
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1 Introduction

Sales force is an indispensable marketing instrument for many firms, especially those that

serve other businesses. Firms rely on salespersons to provide product information, learn

about prospective customers’ needs, and persuade them to buy. Typical activities include

sales pitch, Q&A meeting, product demonstration, etc. This process of interaction that

leads up to transaction is referred to as the sales process (or the selling process). Mantrala

et al. (2010) put the sales process at the core of their framework for sales force modelling.

They state that “the firm’s decisions surrounding the selling process...are critical and impact

response functions, operations, and, ultimately, strategies.”

This paper focuses on two main functions that this person-to-person interaction allows:

(1) to discover the total surplus from trade through discovery of product match; and (2) to

determine the split of that surplus through bargaining. In many markets, value from trade

can be relationship-specific. Vendors differ in the products or services that they offer, and

customers differ in their needs for attributes. Potential trading partners that lack adequate

information about each other have to communicate to find out how well the product matches

the customer’s needs. The buyer acquires product information to guide his purchasing

decision, and the seller learns about the buyer’s needs to better fine-tune her selling strategy.

This view is consistent with earlier works on the role of selling (see, e.g., Wernerfelt 1994a).

The second important aspect of the sales process is bargaining. For example, Mukerjee

(2009) explains that in industrial goods markets, “[f]or initial proposals forwarded to the

buyer by the seller, the list price is mentioned...negotiations over these prices happen to

reach the final figures.” Similar practices can be observed for certain consumer goods as

well, such as automobiles and housing. A survey of sales forces by Krafft (1999) found 72%

of sampled companies allow their salespersons to adjust price offers. The number rose to

88% for industrial-goods companies in the survey. Anecdotal evidence suggests that giving

the buyer a discount has become the norm in B2B markets. (Caprio 2015 and Wang 2016)

The matching and bargaining that takes place during the sales process can be viewed

2



as dynamic, interdependent, and simultaneous. Information on product fit arrives gradually

and the parties take time to reach agreement on price. Product match affects bargaining

strategy and vice versa. For example, intuitively, finding out that the product is a good fit

is a good news for the buyer. However, if the seller observes that the buyer really values the

product, the seller may charge a higher price. This reduces the buyer’s interest to find out

about product fit in the first place. Most importantly, there are no natural “stages” that

separate matching and bargaining. The buyer and the seller may continue to discuss about

the product or reach a deal on price at any moment during the process. Such observation

pushes us to view matching and bargaining as happening simultaneously.

In this paper, I study the game where a buyer and a seller discover their product match

over time while simultaneously bargain for price. I solve the optimal selling and buying

strategies in continuous time. The model provides novel insights on the use of list price

and price discount, both of which have been ignored in previous bargaining models. For

example, if we allow the seller to set the list price in Fudenberg et. al. (1985), it is optimal

as long as the list price is higher than valuation of the highest type. Thus, “list price” and

“discount” are meaningless terms in such models. This paper also look at the impact of

bargaining versus committing to a fixed price. Answering these questions provide important

implications on managerial issues such as optimal pricing and delegation of pricing authority.

On the theoretical side, the paper expands the existing bargaining literature by adding a

simultaneous matching process. The matching process causes product value to be stochastic,

as well as introducing a hold-up problem to the bargaining framework.

More specifically, a buyer and a seller trade over a product with uncertain value to the

buyer. The seller’s product’s attributes and the buyer’s preference for these attributes are

revealed to each other over time. The seller can publish a list price before the sales process

that acts as a price ceiling. At each moment, players discover more about their match, the

seller makes a price offer without future commitment, and the buyer decides whether to take

that offer. Continuing the process is costly to both parties and they can choose to quit. For
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example, the seller’s cost can come from the salesperson salary and product demonstration

cost, etc, while buyer has opportunity cost when dedicating employees to talk to salesperson

instead of working.

I show that the list price acts as an important instrument for the seller, yet players always

trade at a discounted price. The seller uses the list price to balance the buyer’s incentive

to engage and the seller’s bargaining power. If the seller sets the list price too high, then

the buyer may leave immediately due to a hold-up problem. Even if the product match is

good, the buyer cannot get any utility since the seller can charge a high price once the good

match is revealed. In order to encourage the buyer to continue for a sufficiently long time,

the seller needs to set a low enough list price to limit the impact of such hold-up. However,

a lower list price also indirectly decreases the seller’s bargaining power by increasing the

buyer’s continuation value. The optimal list price thus has to balance these two effects.

Surprisingly though, I find that the parties always trade below the list price, regardless of

what the list price is. The intuition is that the seller does not want to wait until the buyer is

fully convinced to buy at the original price. Instead, the seller prefers to convince the buyer

to buy earlier by offering a price discount. This finding provides a rational explanation for

the “list price - discount” pattern that we observe in real world.

Who should leave the process if the product fit is poor? Surprisingly, it’s always the

buyer who leaves, otherwise the seller should increase the list price. The intuition is that,

raising the list price has two effects: it discourages buyer engagement and improves surplus

extraction. However, if the seller quits first, discouraging the buyer is costless. This makes

raising the list price strictly beneficial to the seller.

Should the seller commits to a fixed price or be open to bargaining? I find that bargaining

leads to a lower final price, a shorter sales process, and a higher ex-ante probability of trade

than under fixed price. Bargaining always benefits the seller and increases overall welfare,

but it’s effect on buyer’s utility depends on the ratio of the players’ costs. However, when the

seller’s cost is high, bargaining is necessary for both players to participate in the game. If the
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price is fixed, then one of the player quits immediately, regardless of the level of the price.

The flexibility from allowing players to bargain improves overall efficiency by saving time

and cost and by increasing ex-ante success rate. In this case, bargaining is welfare-enhancing

for both the buyer and the seller.

I also examine the case where the buyer has private information on his outside option.

The seller only knows the buyer’s valuation for the product up to a distribution. This model

is similar to an one-sided bargaining model with incomplete information (such as Fudenberg

et al. 1985) but with a stochastic product value resulting from the gradual discovery of

product match. In equilibrium, the seller can separate different types of buyers, in contrast

to previous models. One counter-intuitive finding is that the buyer with a higher valuation

for the product buys at a lower price. This is due to a combination of the seller’s incentive

to stop early and the buyer’s information rent.

1.1 Literature Review

The paper is related to literature on decision making with gradual learning (e.g., Roberts

and Weitzman 1981, Moscarini and Smith 2001, Branco et al. 2012, Ke et al. 2016). Similar

to these papers, I use a Brownian motion to capture the effect of gradual arrival of product

information on product value. The main difference is that this paper introduces bargaining

to the process. Whereas previous papers focus on single-agent decision-making, the addition

of bargaining in this paper turns the problem into a dynamic game between the buyer and

the seller. This greatly increases the complexity of the problem.

Other papers have also looked at bargaining problems with stochastic features. Daley and

Green (2016) look at a bargaining game with asymmetric information and gradual signals.

The seller knows the true quality, and the buyer receives noisy signals of the quality over

time. In contrast, this paper features a symmetric learning that leads to a stochastic product

value. Ortner (2017) solves a bargaining model where the seller’s marginal cost change over

time. Fuchs and Skrzypacz (2010) look at bargaining with a stochastic arrival of events that
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can end the game.

The use of list price to encourage buyer engagement in this paper is related to the use of

published price to reduce hold-up in the search literature. Wernerfelt (1994b) shows that,

when product quality is uncertain and requires search/inspection, then the seller wants to

inform the buyer about the price before search. Similarly, to encourage visit, multi-product

retailers want to advertise the prices of some products to put a bound on the total price of

a basket. (Lal and Matutes 1994) This paper introduces a similar hold-up problem into the

bargaining game, which helps to rationalize the use of list price in bargaining situations.

This paper is organized as follows. Section 2 presents the model. Section 3 solves the

model with a costless seller, and discusses the core findings and their intuitions. Then section

4 solves the equilibrium where selling is costly, and proves the necessity of bargaining when

selling cost is high. Section 5 gives the buyer private outside options, and discusses how the

model differs from other one-sided bargaining models. Section 7 offers concluding remarks.

2 The Model

I first give an intuitive description of the game, with two players simultaneously discover

product match and bargain for price.

2.1 Description

Consider two players, a Buyer (b) and a Seller (s). Throughout the paper, we will refer to

Buyer as “he” and refer to Seller as “she”. Seller owns a product that can be sold to Buyer.

The product has an infinite number of attributes, and each attribute has equal importance

to the Buyer. In each period, the players discover a little more on their match and then

bargain for price.

The discovery of match goes as follows: At the beginning of each period, Seller reveals

one attribute of the product, and observes Buyer’s preference for the attribute zt = +σ
√
dt
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or −σ
√
dt, where dt is the length of the period (alternatively can be viewed as the size

of each attribute). The expected value of the product at time t then can be written as

xt = x0 +
∑t

0 zs, where x0 is Buyer’s expected value of the product prior to the sales process.

The bargaining goes as follows: Before the game starts, Seller can set a list price P̄ ,

which is a commitment that Buyer can always buy the product at this price (setting P̄ =∞

is equivalent to not setting a list price). Then in each period during the sales process, after

observing zt, Seller can make a price offer Pt with no guarantee for future prices. Buyer

decides whether to accept the offer and receive utility xt−Pt. If Buyer rejects the offer, the

game continues. Notice that Seller cannot effectively offer any price above P̄ . Also, if Seller

does not make an offer, it is equivalent to making an offer at P̄ , since P̄ is always available.

So there’s a standing offer at each period, bounded above by P̄ .

Both players incur flow costs during the game. Players can choose to quit the sales process

at the end of each period. If either party quits, the game ends and the players receives their

outside options, πb and πs, respectively.

As we shrink the length of each period (or size of each attribute), the game approaches

to continuous time. Buyer’s expected value for the product, xt, approaches to a Brownian

motion with dx = σdW , where W is the Wiener process.

Figure 1 is an example of how the value of the product evolves. Horizontal axis is time

t, and vertical axis is product value x. The solid line in the middle represents the list price

P̄ . For now assume that Seller never makes a price offer, so the price is always at P̄ . If

Seller does not take a action, the game becomes Buyer’s single agent optimization problem.

In the beginning, Buyer optimally chooses to wait and find out more about product match.

Waiting is optimal even beyond the list price because of the optional value of buying a well-

matched product is greater than the utility he gets if he buys when xt reaches P̄ (which is

0). Buyer chooses to buy when product value reaches a threshold. In retrospect, however,

Seller might prefer to close the sale earlier at a discounted price. Closing the sale earlier

saves time and cost, while also eliminating the possibility of subsequently discovering a bad
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Figure 1:

match and never making the sale. This point is shown in Figure 2.

However, solving the equilibrium in this game is difficult for two reasons. The first reason

is that Seller cannot commit to future prices. Buyer’s decision has to depend on Seller’s entire

pricing strategy Pt in all future states of the world. Conversely, Seller’s optimal price offer

depend on Buyer’s buying strategy in all future states of the world. The game is infinite

horizon so we cannot use backward induction. The second difficulty is that when product

match is bad, the game ends with one party quitting, but we do not know which player quits.

This effectively takes away one optimality condition, since we don’t know whether quitting

at a given threshold x is Buyer’s optimal choice or Seller’s optimal choice.

2.2 Formal Model

The game is continuous-time with infinite horizon. There are two players: a Buyer (b)

and a Seller (s). Product value xt is observable to both players and follows Brownian motion

dx = σdW , with initial position x0. Let (Σ, F , P) be the probability space that supports the
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Figure 2:

Wiener process W , and F = (Ft)t∈[0,∞) be the filtration process generated by W satisfying

usual assumptions. As explained earlier, this is the continuous-time limit of a product with

infinite number of small, independent attributes, which players learn over time.

Before the game starts, Seller chooses a list price P̄ . This is a commitment that Buyer

can always buy the product at P̄ . Effectively, this puts a upper bound on the price that

Seller can offer to the Buyer. At all time t ≥ 0, players take actions in the following order:

1. Seller makes price offer Pt subject to Pt ≤ P̄ .

2. Buyer chooses buying decision at ∈ {0, 1}, where at = 1 indicates buying product with

value xt at price Pt.

3. (If Buyer does not buy) Buyer and Seller choose whether to quit with qb,t ∈ {0, 1} and

qs,t ∈ {0, 1}, respectively.

Because there is an infinite number of attributes with equal importance, the number of

attributes already revealed should be irrelevant conditional on product value xt. Thus I
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restrict attention to stationary Markov equilibrium with state variable x ∈ R.

I consider pure strategies only. Seller’s action is characterized by (P̄ , P (x, P̄ ), qs(x, P̄ )),

with list price P̄ ∈ R+, price offer P (x, P̄ ) : R × R+ 7→ R, and quitting decision qs(x, P̄ ) :

R × R+ 7→ {0, 1}. Buyer’s action is characterized by (a(x, P, P̄ ), qb(x, P̄ )), with buying

decision a(x, P, P̄ ) : R2 × R+ 7→ {0, 1}, and quitting decision qb(x, P̄ ) : R × R+ 7→ {0, 1}.

Since everything depends on list price P̄ , which is fixed throughout the game, we’ll drop P̄

from notation going forward.

I make a simplifying assumption on players’ quitting strategies. In Appendix I show that

this assumption is innocuous. I assume that qs(x, P̄ ) ≥ qs(x
′, P̄ ) and qb(x, P̄ ) ≥ qb(x

′, P̄ ) for

x ≥ x′. This means that players’ quitting function can only have a single jump. For each

player, there exits a threshold such that the player quits whenever x reaches that threshold

or below, and remains in the game when x is above such a threshold. This type of stopping

rule is common in optimal stopping problems. Intuitively, the parties should continue the

sales process when product fit is good, and leave only when the product fit is sufficiently

bad. If Seller or Buyer is willing to continue the process for a certain product value x,

he or she should be willing to continue if x is even higher. Conversely, if Seller or Buyer

wants to leave when at a low x, he or she should leave when x is even lower. Let xs and

xb denotes the quitting thresholds for seller and buyer respectively. With this assumption,

seller’s action can be characterized by (P̄ , P (x), xs), and buyer’s action can be characterized

by (a(x, P ), xb).

Buyer (Seller) incurs flow cost cb (cs) during the game. Game ends if players trade or if

either player quits. If buyer and seller agree to trade at time τ , Buyer receives utility xτ −Pτ

and Seller receives Pτ . If either player quits, game ends and players get outside option of

πb and πs, respectively. Players are risk neutral and perfectly patient with discount factor

rb = rs = 0. As an extension, I show that having time discounting instead of flow costs does

not affect core results.

Let u(x, P̄ , P (·), xs | a(·), xb) denote seller’s expected utility at state x, and
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v(x, a(·), xb | P̄ , P (·), xs) denote buyer’s expected utility at state x. Let U(x, t) represent

the equilibrium value function for Seller at state x and time t, and V (x, t) represent the

equilibrium value function for Buyer. For state x such that players choose to continue, we

can write recursively:

U(x, t) = −csdt+ e−rsdtEU(x+ dx, t+ dt)

V (x, t) = −cbdt+ e−rbdtEV (x+ dx, t+ dt)

Under stationarity and rs = rb = 0, they become:

U(x) = −csdt+ EU(x+ dx)

V (x) = −cbdt+ EV (x+ dx)

Furthermore, by taking Taylor expansion and applying Ito’s Lemma on EU and EV

terms, we can reduce the the expressions to the following second order conditions:

U ′′(x) =
2cs
σ2

V ′′(x) =
2cb
σ2

which implies that, for some coefficients As, Bs, Ab, Bb:

U(x) =
cs
σ2

(x− P̄ )2 + As(x− P̄ ) +Bs

V (x) =
cb
σ2

(x− P̄ )2 + Ab(x− P̄ ) +Bb

(1)

We can solve the coefficients later by applying appropriate boundary conditions.

In this model, xt is observable to both players. The idea is that Seller truthfully reveals

attributes and Buyer truthfully reveals his preference for each attribute. In the real world,
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potential buyers may hide their preferences in order to barter a lower price.1 In section 5,

I extend the model by giving Buyer private information on his outside option, and discuss

what happens in such environment.

There can be many equilibrium strategies that result in the same equilibrium outcome.

What determines the outcome is the earliest points that players trade or quit; what hap-

pen beyond those states do not show up on equilibrium path. Define x̄ = inf{ x ≥

x0 | a(x, P̄ , P (x)) = 1} as the lowest x starting from initial position that Buyer and Seller

trade. Define x = sup{ x ≤ x0 | qb(x, P̄ ) = 1 or qs(x, P̄ ) = 1} as the highest x to initial

position that either Seller or Buyer quits. The process continues as long as x < x < x̄. On

the equilibrium path, the game never proceed above x̄ or below x. An equilibrium outcome is

defined as the triplet (x̄, P (x̄), x). We will focus on the solution of this triplet. Note that we

can easily come up with different equilibrium strategies for the same equilibrium outcome.

For example, for values of x such that Buyer does not buy, Seller can charge any price above

Buyer’s willingness to pay, and the resulting strategies still constitute as an equilibrium.

3 Costless Selling

In this section, let the selling activity be costless (cs = 0). We can assume that Seller never

quits on equilibrium path. This simplifies the problem and help us to get core intuitions.

We want to solve the trading threshold x̄, and the price that they trade at, P (x̄). But in

order to do so, we have to also specify pricing and buying strategies for off equilibrium path

points x > x̄ in order to establish SPE.

When Buyer and Seller trade at x̄, they split a total surplus of size x̄. Seller receives

the price P (x̄), and Buyer receives the rest of the surplus, x̄ − P (x̄). Alternatively, we can

think of Buyer as receiving his equilibrium utility V (x̄), and Seller receives the rest of the

1We can motivate the truthful revelation in a simple model. Suppose that Buyer can choose whether
to reveal his preference for each attribute. Buyer always chooses to reveal if he does not like the attribute,
then even if Buyer does not reveal when he likes the attribute, Seller can infer that Buyer indeed likes it
from Buyer’s silence.
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surplus with x̄ − V (x̄). Thus the highest price that Seller can charge at x̄ in equilibrium

corresponds to the lowest equilibrium utility that Buyer can get at x̄. In other words, the

lower the Buyer’s continuation value is, the more he is willing to pay now. If Seller wants to

trade now, she prefers a strategy that makes Buyer as miserable as possible from continuing

the game.

Since the product is always available at list price P̄ , Buyer cannot be worse off than if

Seller never makes an offer below P̄ . Thus we can get a lower bound on Buyer’s equilibrium

value by solving for Buyer’s value function facing a fixed price of P̄ . Since Seller never quits,

this is Buyer’s single-agent optimal stopping problem with stopping utility max{0, x− P̄}.

Each moment, Buyer decides between buying at P̄ , continuing, or quitting. Such problem

has been solved for investment under uncertainty (eg., Dixit 1993) as well as consumer search

(e.g., Roberts and Weitzman 1981, Moscarini and Smith 2001, Branco et al. 2012).

Let Ṽ (x) denote the Buyer’s value function for a fixed price of P̄ . Let ¯̄x denote the

earliest state in which Buyer decides to purchase, and let x denote the earliest state in

which Buyer decides to quit. By equation 1, Buyer’s value function must be of the form

Ṽ (x) = cb
σ2 (x− P̄ )2 + α(x− P̄ ) + β for some coefficients α and β. The value function must

satisfy the following boundary conditions:



Ṽ (¯̄x) = ¯̄x− P̄

Ṽ (x) = πb

V ′(¯̄x) = 1

V ′(x) = 0

The first two conditions ensure that the value function must match the stopping value,

when Buyer buys or quits. The last two conditions, often referred to as “smooth-pasting”

conditions, ensure that the stopping time is optimal. See Dixit (1993) for more details.
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Solving to the system of equation shows that Buyer buys at

¯̄x = P̄ +
σ2

4cb
+ πb (2)

and quits at

x = P̄ − σ2

4cb
− πb (3)

Buyer’s value function is

Ṽ (x|P̄ , πb) =


πb, x− πb < P̄ − σ2

4cb

cb
σ2 (x− πb − P̄ )2 + 1

2
(x− πb − P̄ ) + σ2

16cb
+ πb, x− πb ∈

[
P̄ − σ2

4cb
, P̄ + σ2

4cb

]
x− P̄ , x− πb > P̄ + σ2

4cb

(4)

Although Ṽ (x) is a lower bound on Buyer’s equilibrium value function, it’ not clear

whether it is binding. We do not know if there exists an equilibrium with V (x) = Ṽ (x),

because Seller cannot credibly commit to charge P̄ in the future. Lemma 1 states that there

indeed exists an equilibrium where Buyer’s continuation value is Ṽ (x). Buyer players the

game as if price is fixed at P̄ .

Lemma 1. There exists an equilibrium with V (x) = Ṽ (x, P̄ ). In this equilibrium, x̄ ≤ ¯̄x.

Strategies P (x) and a(x, P ) have the following properties:

• a(x, P (x)) = 1 if P (x) = x− Ṽ (x, P̄ ).

• a(x, P (x)) = 0 if P (x) > x− Ṽ (x, P̄ ).

Proof. See appendix.

Furthermore, Ṽ (x) is the unique limit of discrete-time equilibrium value functions. Specif-

ically, if we solve the discrete-time analog of this game as described in Section 2.1, with the

additional refinement that players do not quit unless quitting is strictly preferred, then
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Buyer’s equilibrium value functions must converge to Ṽ (x) as the game approaches contin-

uous time. Full specification of the discrete-time game and the proof are in the Appendix.

The intuition of the proof is similar to backward-induction and trembling-hand.

Lemma 2. Ṽ (x) is the unique limit of Buyer’s value functions in discrete-time equilibria

where players do not quit unless quitting is strictly preferred,

Lemma 1 says that even though Seller cannot commit to future price, Seller can still

enforce Buyer’s continuation value to be Ṽ (x). Consider the following strategy: Seller offers

price P (x) = x− Ṽ (x) if she wants to trade, and offers P (x) > x− Ṽ (x) if she does not want

to trade (subject to P (x) ≤ P̄ ). If Seller follows this strategy, Buyer never receives more than

Ṽ (x) utility when he buys. Thus Buyer’s optimal response is to comply to Seller. Buyer buys

if P (x) = x − Ṽ (x), which is the price that makes Buyer indifferent between buying now,

or continuing with a value of Ṽ (x). If P (x) > x − Ṽ (x), Buyer rejects because he gets less

utility than continuing, since continuation value must be at least Ṽ (x). Thus by following

this pricing strategy, Seller can fully control when they trade (subject to x̄ ≤ ¯̄x). Intuitively,

at every moment in time, Seller is choosing between two options. She can continue the sales

process, or she can close the sale right now by offering a discount. If Seller choose to close

the sale, she offers a discounted price of P (x) = x − Ṽ (x), and receives that as her utility.

This transforms the game into Seller’s optimal stopping problem. By solving Seller’s optimal

stopping problem, we also solve the equilibrium, since Buyer’s optimal actions is always to

comply with Seller’s stopping decision. Thus the new questions are when Seller should make

the final offer, and what offer Seller should make. Note that Seller can only control the

stopping point between ¯̄x and x, which are Buyer’s stopping points facing a fixed price of P̄ .

At x, Buyer quits and ends the game. At ¯̄x, Buyer buys the product even if it will be forever

priced at the highest price P̄ , so Seller cannot delay trade beyond this point in equilibrium.

Figure 3 illustrates Seller’s problem graphically. The vertical axis is utility, and horizontal

axis is state x. Buyer’s value function V (x) = Ṽ (x) is shown on top, and Seller’s value

function U(x) is the straight line on the bottom chart (U(x) is straight line due to zero flow

15



cost). Seller’s value hits zero at x when Buyer quits, and Seller gets P (x) = x− Ṽ (x) when

she sells. To maximize U(x), the trading point x̄ must make U(x) and stopping value P (x)

tangent.

Figure 3:

Proposition 1 provides the closed-form solution of the equilibrium outcome (x̄, x, P (x̄)).

Definition 1 simplifies the notation by normalizing outside options into x and P .

Definition 1. Define xn = x− πb− πs, xn,0 = x0− πb− πs, Pn = P − πs, and P̄n = P̄ − πs.

The notation xn represents the total increase in surplus from trade, and the notation Pn

captures Seller’s gain from trade. This normalization gets rid of outside options but does

not affect value functions. It’s easy to check that Ṽ (x|P̄ , πb) = Ṽ (xn|P̄n, πb). We can solve

the equilibrium outcomes using xn and Pn, then back out the original solution. For the rest

of the section, we simply work with xn and Pn.

Proposition 1 (Costless Selling). If P̄n >
1
4
σ2

cb
, the games ends immediately. Otherwise,

players continue for P̄n− 1
4
σ2

cb
< xn < P̄n+σ2

cb

[√
1
4
− P̄n cbσ2− 1

4

]
; Buyer and Seller trade at x̄n =
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P̄n+ σ2

cb

[√
1
4
− P̄n cbσ2− 1

4

]
at price Pn(x̄n) = σ2

cb

[√
1
4
− P̄n cbσ2−2

(
1
4
−P̄n cbσ2

)]
; and Buyer quits at

xn = P̄n− 1
4
σ2

cb
. The size of the price discount is P̄n−Pn(x̄n) = σ2

cb

[
−
√

1
4
− P̄n cbσ2 + 1

2
− P̄n cbσ2

]
Proof. Since V (xn) = Ṽ (xn), Buyer must quit at xn = x

n
from equation 3. For x̄n and

P (x̄n), solve Seller’s optimal stopping problem, with stopping value Pn(xn) = xn − Ṽ (xn)

and an exogenous exit at xn.

See Appendix for details.

Proposition 1 gives two interesting findings. The first finding is that the list price plays

an crucial role in the game. There exits an optimal list price for Seller. The second finding

is that the final trading price is always lower than the list price, regardless of what the list

price is. Thus Proposition 1 predicts that every trade comes at a discounted price.2

Figure 4:

Figure 4 illustrates that Seller’s choice of list price need to balance two effects. A higher

2In reality, trade could happen at the list price for in some customers. Note that this strong prediction
that every trade happens at a discounted price is due to having only a single type of Buyer in this model. If
there are different types of Buyers with different costs or starting positions, then some Buyers may buys at
the list price in equilibrium.
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list price discourages Buyer from engaging. As P̄ increases, x = P̄ − 1
4
σ2

cb
increases, which

means that Buyer is quicker to leave the sales process when he receives unfavorable infor-

mation about product match. In the extreme case where list price is too high, Buyer leaves

immediately, because the expected gain from trade is not enough to justify the cost of stay-

ing in the sales process. This is conceptually similar to the hold-up problem in Wernerfelt

(1994b). It is costly for Buyer to find out about product match (or quality), and Seller can

hold Buyer up by charging a price equal to the product value after Buyer spent the cost.

This gives Buyer a negative utility ex-ante, and as a result, Buyer chooses to not spend any

effort in the first place. Thus in order to encourage Buyer to stay in the sales process, Seller

has to impose a low enough list price, which increases the optional value of discovery for

Buyer. On the downside, a lower list price restricts Seller’s ability to bargain. Buyer’s higher

continuation value means that Seller has to offer more discount in order to close the sale,

since P (x) = x̄− Ṽ (x, P̄ ) decreases as P̄ increases. Seller’s choice of list price must balance

these two effects. List price can be viewed as an instrument that balances Buyer’s incentives

to engage and Seller’s bargaining power.

Figure 5 illustrates why it’s never optimal for Seller sell at list price. If Seller never

offers a price discount, Buyer will continue to learn about the product until product value

reaches P̄ + σ2

4cb
(the vertical dotted line on the right). As Buyer gets close to his buying

threshold, Buyer’s value function Ṽ (x) becomes increasingly tangent to the function y = x.

As a result, P (x) becomes increasingly tangent to P̄ . This means that Buyer is willing to

accept the trade with discount that approaches 0. Thus Seller can close the deal earlier by

sacrificing very little on price. Closing the sale earlier is beneficial because it increases the

ex-ante success rate and saves cost (in this case, only Buyer’s cost is saved, but Seller can

extract that saving through price). The required amount of price discount to close the sale

increases at a faster rate as we move the buying threshold to the left, so it’s not optimal to

close the deal too early. In another word, some discovery of product match is valuable to

Seller, due to the possibility of selling at a higher price in case the product match is good.
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Figure 5:

Proposition 1 gives the optimal timing and size of the price offer, which balances the risk of

losing the sale with the potential of selling at a higher price.

Proposition 2 solves the optimal list price by maximizing Seller’s ex-ante utility.

Proposition 2. (Optimal List Price and Outcome at t = 0)

• For intermediate values of xn,0 (−1
4
σ2

cb
< xn,0 <

1
16
σ2

cb
), the optimal list price is 1

3
xn,0 −

1
18
σ2

cb

√
1− 12xn,0

cb
σ2 + 7

36
σ2

cb
. Game continues beyond t = 0.

• For higher xn,0, any list price above xn,0 + σ2

4cb
is optimal. Parties trade at Pn = xn,0 at

t = 0.

• For lower xn,0, any non-negative list price is optimal. Buyer quits at t = 0.

As Proposition 2 shows, the sales process only takes place if the initial surplus from

trade, xn,0 = x0 − πb − πs is not too big or too small. If the initial surplus is big enough

(xn,0 ≥ 1
16
σ2

cb
), then Seller does not want Buyer to learn more about product match. Seller
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publishes a list price high enough to deter Buyer from continuing, and offers a monopoly

spot price that takes all surplus. On the other hand, if the initial trade surplus is too low

(xn,0 ≤ −1
4
σ2

cb
), matching is no longer socially efficient. Buyer will not engage in the game

even if list price is 0. Note that since only Buyer has cost, Buyer’s action is socially optimal

when list price is 0.

Given that the majority of firms in the real world allows sales persons to bargain with

customers (Kraft 1994), it is important to understand the effect of bargaining. Should Seller

come to the market committing to a fixed price or allowing price to be negotiated? Here we

can examine the effect of bargaining by comparing results from Proposition 1 to equilibrium

where Seller commits to a fixed price P̄ .

Corollary 3 (Comparison to Fixed Price). Optimal list price under bargaining is higher than

optimal fixed price. Final price under bargaining is lower than optimal fixed price. Expected

length of the game is shorter under bargaining. Ex-ante social welfare is higher but Buyer’s

utility is lower.

Proof. For prices and ex-ante utilities, simply compare solutions from Proposition 1 and

Proposition 2 to the fixed price case, which is solved in equations 2 through 4.

Let T denote the total length of the game. Buyer’s ex-ante utility must satisfy V (xn,0) =

xn,0−xn
x̄n−xn

(x̄n − P (xn))− cbE[T ], where
xn,0−xn
x̄n−xn

is the probability that players trade. Expected

length of the sales process is thus calculated as E[T ] = 1
cb

[xn,0−xn
x̄n−xn

(x̄n−P (xn))−V (xn,0)
]

Figure 6 and 7 show two sample paths of product value, and illustrate the value of bar-

gaining to the Seller. In both graphs, trade happens at time τ , with price P (xτ ) slightly below

sticker price. However, the small discount significantly decreases Buyer’s buying threshold

from P̄ + σ2

4cb
to x̄. The dotted path in Figure 6 simulates what happens if Seller commits to

the list price. Buyer continues to discover the match for a period of time, before deciding to

purchase when product value reaches the higher threshold. In this example, Seller’s ability

to bargain significantly decreases length of the process. The cost saving is captured by Seller
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Figure 6:

through price and results in a higher ex-ante utility.

Figure 7 simulates a different continuation trajectory. Players subsequently discover that

the product match is bad, so that game ends without a trade. In this example, the lower

trading threshold from bargaining increases the ex-ante success rate. Note that neither

graphs shows the full price path. We only know that price is P (xτ ) at point of trade. There

are infinite price paths leading up to time τ that produces this equilibrium outcome. Price

strategies before time τ only need to be high enough so that Buyer does not want to buy.

Keeping the price at the list price before time τ , for example, would work.

Next we look at comparative statics.

Corollary 4. (Comparative Statics w.r.t cb, πs, πb)

For −1
4
σ2

cb
< xn,0 <

1
16
σ2

cb
:

• List price decreases in Buyer’s cost, cb; increases in Seller’s outside option, πs; and

decreases in Buyer’s outside option, πb.
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Figure 7:

• Final price decreases in Buyer’s cost, cb; increases in Seller’s outside option, πs; and

decreases in Buyer’s outside option, πb.

• Size of price discount decreases in Buyer’s cost, cb, and outside options, πs and πb.

• Ex-ante probability of trade is unaffected by Buyer’s cost, cb, and decreases in outside

options πs and πb.

• Expected length of the game decreases in Buyer’s cost, cb, and has inverse U-shape in

outside options, πs and πb.

The most interesting comparative statics is that expected length of the game is not

monotonic in outside options. Intuitively, one would expect that better outside options

make players less interested to engage with each other. However, as outside options become

increasingly poor, surplus from trade gets higher. As a result, Seller is more inclined to close

the deal early. Seller imposes a high list price to discourage Buyer from continuing, and offer
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a discount to close the deal. Thus the length of the sales process is lower for both good and

bad outside options.

Another finding is that the probability of trade is unaffected by Buyer’s cost. This

is somewhat counter-intuitive. For a given list price, probability of trade decreases in cb.

However, higher cost for Buyer pushes Seller to charge a lower list price, which increases the

probability of trade. In equilibrium, these two effects negate each other. Note that this is

not true if price is fixed. With a fixed price, we can show that the ex-ante probability of

trade is monotonically decreasing in cost. As discussed earlier, bargaining improves ex-ante

probability of trade.

4 Costly Selling

Now we look at the case where selling is costly and Seller may quit before Buyer does.

Let x = max{xb, xs} denotes the threshold where the first player quits. When product value

hits this point, Buyer and Seller get their respective outside options, πb and πs. We can

assume WLOG that πb = πs = 0, as Definition 1 shows that they can be normalized into x

and P . The difficulty in solving the equilibrium is that we don’t know which player quits at

x. Intuitively, the player with higher flow cost is more likely to quit earlier. However, this

is not true. If Seller optimally chooses the list price, then Buyer always quit before Seller

does. This result is proved in Proposition 5 below.

As in Section 3, I first derive the Buyer’s equilibrium value function. The following

Lemma is a generalization of Lemma 1 to the case of cs ≥ 0. Given that one of the players

quit at x, we can solve for the Buyer’s value function if price is fixed at P̄ . This gives a

lower bound on the Buyer’s equilibrium value function. We can then show that there exists

an equilibrium where Buyer receives exactly this lower bound. Furthermore, this is the limit

of discrete-time equilibria where players do not quit unless quitting is strictly preferred. If

Buyer quits first in equilibrium, then his value function is same as when Seller is costless. If
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Seller quits first, then Buyer’s value function is shifted down and left.

Lemma 3. In equilibrium, Buyer’s value function V (x) ≥ Ṽ (x + η, P̄ ) − η, where η =

1
4
σ2

cb
− (x− P̄ )−

√
−σ2

cb
(x− P̄ ) . There exists an equilibrium with V (x) = Ṽ (x+ η, P̄ )− η.

Strategies P (x) and a(x, P ) have the following properties:

• a(x, P (x)) = 1 if P (x) = x− Ṽ (x+ η, P̄ ) + η

• a(x, P (x)) = 0 if P (x) > x− Ṽ (x+ η, P̄ ) + η.

Proof. See Appendix.

Using Lemma 3 we can prove that Buyer always quits before Seller in equilibrium. The

intuition can be traced back to Figure 5. Suppose Seller sets a list price, and under such

list price Seller quits first. Consider the effect of raising the list price. As Figure 5 shows,

increasing the list price has both positive and negative effects on Seller’s utility. The positive

effect is that higher list price lowers Buyer’s continuation value, which increases the surplus

that Seller can extract in every state. The negative effect is that Buyer’s lower continuation

value pushes him to quit earlier. However, if Seller is quitting earlier than Buyer does in

equilibrium, then pushing Buyer to quit earlier has no impact on the outcome and both

players’ utilities. Thus raising the list price is strictly beneficial to the Seller. Thus the

original list price must be sub-optimal.

Proposition 5. If Seller quits earlier than Buyer, then sticker price P̄ is sub-optimal.

Proof. See Appendix.

Figure 8 outlines the proof of Proposition 5. If Seller quits first at x, then increasing list

price by ∆P = x+ 1
4
σ2

cb
− P̄ is strictly better for the Seller. This implies that the original list

price was sub-optimal. Setting list price to P̄ + ∆P leads to an optimal stopping problem

with same quitting threshold but a higher stopping payoff at every point. Thus we know

that Seller’s ex-ante utility must be strictly higher under the new list price. Note that this
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Figure 8:

new list price P̄ + ∆P is not the optimal list price. The optimal list price must be even

higher, so that Buyer is quitting strictly earlier than Seller.

Proposition 5 implies that we can solve the equilibrium by assuming that x = xb =

P̄ − 1
4
σ2

cb
, then maximizes U(x0) over P̄ . We can then verify that xb(P̄

∗) ≥ xs(P̄
∗).

For tractability, I restrict to the case of x0 = 0 in remainder of the section.

Proposition 6 (Costly Selling with x0 = 0). Let k = cs
cb

. The optimal list price is P̄ =

1
4
− 27+10k−6

√
9+10k+k2

16k2 . Buyer and Seller trade at x̄ = P̄ + σ2

cb

[
3−

√
9+k
1+k

4k
− 1

4

]
at price P (x̄) =

P̄ − σ2

cb

(
3−

√
9+k
1+k

4k
− 1

2

)2

; and Buyer quits at x = P̄ − 1
4
σ2

cb
.

Proof. Buyer’s value function must be Ṽ (x). Seller’s value function is U(x) = cs
σ2 (x− P̄ )2 +

As(x− P̄ ) +Bs for some coefficients As and Bs. Assuming x = P̄ − σ2

4cb
, we can solve x̄ and

P (x̄) by two value-matching conditions: U(x) = 0, U(x̄) = P (x̄), and one smooth-pasting

condition: U ′(x̄). Then maximize U(x0) with respect to P̄ , and verify that xb(P̄ ) ≥ xs(P̄ ).

See Appendix for full proof.
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What’s the effect of bargaining when selling is costly? Corollary 7 shows that bargaining

is necessary for the game to move past time 0 when Seller’s cost is high. If the ratio of cs to

cb exceeds a certain threshold, the game ends immediately if price is fixed, regardless of the

level of the price. However, if bargaining is allowed, no matter how high Seller’s cost is, the

length of the sales process and the chance of a trade are always positive. The intuition is

that bargaining lowers both player’s costs. Suppose Seller charges a fixed price. When Seller’

cost is very high, Seller needs to charge a high price to make up for her cost. But a higher

price pushes Buyer to wait further more before buying, which makes the process more costly

for Seller, who in turn has to charge an even higher price. If Seller charges too high a price,

Buyer quits immediately. Thus there may not exist any fixed price such that both players

are willing to engage in the sales process. If Seller is open to bargaining, then Seller can

close the sales earlier, curbing her cost of selling. This flexibility makes trade possible. Also,

Seller always benefits from Buyer engaging in the sales process for at least some positive

amount of time. If product value increases in that period, Seller can finish the sale at a

positive price. If it decreases, Buyer will quit and Seller gets 0. Thus the option value of

matching at time 0 is always positive regardless of Seller’s cost. This effect guarantees that

Seller does not charge a list price too high, so that both players are willing to continue at

t = 0. Also, Buyer prefers fixed price over bargaining when the ratio of costs are low. When

the ratio k = cs
cb

exceeds a certain threshold, both Buyer and Seller gain from bargaining.

Corollary 7 (Comparison to Fixed Price for x0 = 0). For k >= 1, the game ends at t = 0

under any fixed price, and ends at t > 0 with positive chance of trade under bargaining. Both

Buyer’s and Seller’s ex-ante utilities are higher under bargaining.

Proof. See Appendix.

This can explain the prevalence of bargaining in selling. In industries that rely on sales

force to win customers, firms have to incur significant cost in employing and training sales-

persons. Corollary 7 shows that if this cost is high relative to customer’s cost of being in the
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sales process, then the firm must be open to bargaining. Otherwise, the sales process will

not take place regardless of the price.

Corollary 8 (Comparative Statics w.r.t k = cs
cb

). Both the list price, P̄ , and the size of

discount, P̄ − P (x̄), increase in k. The buying threshold, x̄, and the final price, P (x̄),

decrease in k. Expected length of the game decreases in k. Both Buyer’s and Seller’s ex-ante

utility decreases in k.

It is interesting that a higher k = cs
cb

leads to higher P̄ but lower P (x̄). This means that

when Seller’s cost increases, she issues a higher list price, but gives a bigger discount and

actually sells at a lower price than before. Why would Seller settle for lower price if her cost

is high? Again this is to reduce the length of the sales process and saves selling cost. Note

that if Seller is not able to give a discount (as under a fixed price), Seller would want charge

a higher price when cost increases. This leads to the no-sales-process result in Corollary 7.

5 Private Outside Option

Previous sections assume that Buyer’s expected value for the product, x, is fully observed

by the Seller. In this section we consider the case where Buyer has private information on

his outside option. Seller still learns Buyer’s preference for each attribute. However, Seller

does not know Buyer’s full WTP for the product due to his private outside options. This

gives rise to the uncertainty from Seller’s point of view. If we normalize outside option into

product value per Definition 1, the state x now represents the product value net of Buyer’s

outside option. At each moment, Seller is facing a distribution of Buyers with different levels

of x. Seller observes how this distribution shifts over time, but does not observe where Buyer

falls within this distribution.

In this section we solve the case of having two types of Buyers with equal probability.

In Appendix, I extend the results to N evenly spaced discrete types, and derive the limiting

case of uniform distribution as N approaches infinity. Outside options are normalized into
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product value and thus are set to 0. I assume selling to be costless. Positive selling cost

should have limited impact on the qualitative nature of the equilibrium outcome, as shown

in Section 4

We will call the Buyer with the better outside option as the Low(L) type, and the

Buyer with the worse outside option as the High(H) type. The reason is that the outside

option is a negative component of Buyer’s normalized product value. Intuitively, for the

same attributes and preferences, the buyer with better outside option has a lower WTP.

Formally, let i ∈ {H,L} denote Buyer’s type. Nature draws types with Prob(i = H) =

Prob(i = L) = 1
2
. Define xH = x + ε

2
and xL = x − ε

2
, where ε is the gap in outside option

between the two types. Note that xi is the product value (net of outside option) for type i,

whereas x is the common state variable and the midpoint between xi’s. Both H type and L

type incur flow cost cb > 0. Seller has no cost.

I look for stationary Markov equilibrium with pure strategy, with Seller’s belief as an

additional state variable. Let µ ∈ {{H}, {L}, {H,L}} denote Seller’s belief about which

types she’s facing. Strategy functions now depend on µ: P (x, µ), ai(x, µ, P ), and xi(µ).

Type i’s value function is Vi(x, µ), where x = 1
2
(xH + xL) is the common state variable for

both types. Note that if µ = {H} or µ = {L}, then we are back to a game with single type,

which has been solved in Section 3 and 4. This happens in a separating equilibria. Finally,

we can simplify notation by denoting µH = {H}, µL = {L}, and µHL = {H,L}. I assume

that Seller does not update her belief off the equilibrium path.

Proposition 9 summarizes the equilibrium outcome. The proof is roughly structured as

follows. First, Lemma 4 proves that H type must buy before L type does in equilibrium.

The intuition is that H type suffers from Seller finding out about his type. H type is always

better off taking L type’s offer than waiting. If he waits, he becomes the only remaining

type, and receives Buyer’s payoff in Proposition 1. This is strictly inferior than buying at the

same time as L type. Since H type buys earlier than L type, L type must get the same deal

as he does when there’s no uncertainty about types. This is proved in Lemma 5. As a result,
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the strategy and outcome for L type should be the same as in Proposition 1. Seller cannot

use P̄ as a threat to H type, since H type can take L type’s offer, which is strictly better

than facing a fixed price at P̄ . Thus L type’s offer becomes the new boundary condition on

H type’s value function. Seller then faces the new optimal stopping problem regarding when

to sell to H type and at what price.

Lemma 4. In equilibrium, if aL(x, µHL, P (x, µHL)) = 1, then aH(x, µHL, P (x, µHL)) = 1.

Proof. See Appendix.

Lemma 5. In equilibrium, VL(x, µHL) = Ṽ (xL). L type quits at xL = xL = P̄ − σ2

4cb
, and

buys at xL = x̄L = P̄ + σ2

cb

[√
1
4
− P̄ cb

σ2 − 1
4

]
at price PL = P (xL = x̄L) = σ2

cb

[√
1
4
− P̄ cb

σ2 −

2
(

1
4
− P̄ cb

σ2

)]
.

Proof. See Appendix.

We only need to consider the case of P̄ < x0 − ε
2

+ σ2

4cb
= xL,t=0 + σ2

4cb
. By Lemma 5,

L type should act the same way as when there’s only one type. As Proposition 1 shows,

when P̄ ≥ x0 + σ2

4cb
, Buyer buys immediately if x0 > 0 or Buyer quits immediately if x0 ≤ 0.

By Lemma 5, H type should buy immediately if L type buys immediately. If L type quits

immediately and the H type remains, then we are back to a single type player game. So the

only interesting case is if P̄ < x0 − ε
2

+ σ2

4cb

Proposition 9 (Private Outside Options for P̄ < − ε
2

+ σ2

4cb
). Buyer with type i ∈ {H,L}

quits at xi = P̄ − 1
4
σ2

cb
, and buys at x̄i = P̄ + σ2

cb

[√
1
4
− P̄ cb

σ2 − 1
4

]
. H type buys earlier and

pays less than L type: P (x = x̄− ε
2
, µHL) < P (x = x̄+ ε

2
, µL) = x̄− Ṽ (x̄).

Proof. See Appendix.

Surprisingly, having private types does not effect Buyer’s buying and quitting thresholds

in the equilibrium. Not only the two types buy and quit at the same thresholds of net product

values, they are also the same threshold as in Proposition 1 when there’s only a single type.
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This implies that H type buys before L type does, since H type has a higher product value

than L type and must reach the threshold earlier. The second surprising finding is that H

type pays less than L type does, even though they are buying the product at the same value

net of outside option. L type Buyer pays the same amount as in single type case, but H

type Buyer receives a bigger discount. Thus on equilibrium path, we would actually observe

trading price rising overtime. This is counter-intuitive. In typical bargaining models, types

that buy earlier are expected to pay higher prices.

Why would L type choose to wait if waiting is costly and price is rising? The idea is that,

when Seller makes an offer to the H type, L type is facing a product with lower value (by ε),

thus strictly preferring to wait and discover more. On the flip side, Seller has to offer H type

a lower price because H type has the option to pretend to be L type, but Seller does not want

H type to pretend. H type can wait till xL reach buying threshold, then pays the same price

as L type. However, Seller prefers H type to buy earlier, which saves cost as well as increasing

the ex-ante success rate. Intuitively, if the Buyer already comes into the sales process with

good intention to buy, then discovery is less valuable, and Seller prefers to close the sale early.

But in order for the Buyer to voluntarily buy earlier, Seller needs to make a more generous

offer. This is also analogous to designing different contracts to different types of buyers. H

type buyer can take L type’s contract, but the seller does not want H type to take L type’s

contract. The binding incentive constraint means that the seller has to concede more utility

to the H type. In this game, Seller wants Buyers to self-sort into sales processes of different

lengths: a shorter process for H type and a longer process for L type. The price cut for H type

is needed to satisfy the IC condition so that H type does not undertake L type’s sales process.

The price difference between the two offers represents type H’s information rent. The size

of this rent is P (x̄+ ε
2
, µL)−P (x̄− ε

2
, µHL) = Ṽ (x̄)− cb

σ2 (x̄− ε
2
− P̄ )2−αH(x̄− ε

2
− P̄ )− βH ,

where αH and βH are solutions to equations (7) in the proof.

Figure 9 shows one example of the equilibrium outcome. Both types trade when their

respective product value reaches x̄. H type reaches earlier, and pays a lower price. Trading
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price increases from time τH to τL.

Figure 9:

This model expands on previous bargaining models with one-sided incomplete informa-

tion, such as Fudenberg et al. (1985). The novelty is that, with the additional discovery of

product match, we allow the product value to follow a public diffusion process. Fudenberg et

al.(1985) shows that, when Seller does not have any price commitment, equilibrium satisfies

Coase conjecture. All types buy immediately at price equal to value of the lowest type. If

players incur flow cost, as Fudenberg et al. points out, the bargaining game is similar to a

one-shot monopoly pricing, since no Buyers will wait beyond time 0. In either case, trade

is immediate, and Seller cannot separate different types. After adding discovery of match

to the bargaining game, we find that the outcome is different from both Coase conjecture

and one-shot monopoly. Proposition 9 shows that trade happens with delay, and Seller can

separate Buyers of different types. Buyer with the higher ex-ante value are offered better

price due to information rent.

Another novelty is that the discovery of match rationalizes the use of list price in a bar-
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gaining framework. In most bargaining models (eg., Fudenberg et al. (1985) and Rubinstein

(1982), etc.), list price is meaningless as long as it is high enough. Setting the list price at

infinity is always optimal for the seller. With the discovery of match, list price is not only

meaningful, but required. If the seller sets the list price too high, the buyer would not engage

in the sales process at all. Our model can also be viewed as a special case of the hold-up

problem in Wernerfelt (1994b) and Grossman and Hart (1986). Instead of ex-ante invest-

ment and ex-post bargaining, our model features simultaneous investment and bargaining,

which makes the hold-up problem more dynamic.

One implication of our model is that the relationship between length of the game and

trading price can be positive. In bargaining models without stochastic value, price path is

declining and often deterministic in time. In our model, the relationship between trading

time and trading price is probabilistic, and the average trading price is increasing in time.

This increase in price is of course partially due to our assumption that the product has

infinite number of attributes. If we assume that the product has finite mass of attributes,

then the average trading price can increase in the short term then decline. We explore this

case more in Section 6.

6 Extensions

6.1 Time Discounting

6.2 Finite Mass of Attributes

Suppose that the product a finite mass of attributes, T , then players can only discovery

their match up to time T . One can show that, in general, both trading threshold and price

decline over time. Also, players never wait till they exhaust all attributes. The following

chart shows the case for T = 1, cb = 0.25, σ = 1, x0 = 0, at a list price of 0.5.
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Figure 10:

7 Conclusion

This paper presents a bargaining model with a stochastic value discovery process. A

seller and a buyer find out their product match over time while simultaneously bargain for

price.

The paper provides an explanation for the use of list price and price discount in bar-

gaining, which is absent in previous literature. The buyer does not participate in the sales

process if the list price is too high due to a hold-up problem. A lower list price incentivizes

the buyer to stay in the game longer, but reduces the seller’s bargaining power. The optimal

list price balances these two effects. However, the final price is always below the list price,

because the seller prefers to shorten the process and secure the trade. The seller can push

the buyer to buy earlier by offering a small discount, and some level of discount is always op-

timal regardless of the list price. Thus the model explains the common “list price - discount”

pattern that we observe in industry. Additionally, the buyer should always quit before the

seller does, otherwise the seller should increase the list price.
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Should the seller commit to a fixed price or be open to bargaining? The model shows that

bargaining leads to smaller deal size, shorter game, and higher ex-ante probability of trade.

Allowing bargaining is always beneficial to the seller, but can hurts the buyer if buyer’s flow

cost is high relative to seller’s. When seller’s flow cost is relatively high, bargaining is required

for both players to participate in the sales process. This result highlights the importance of

allowing salespersons and customers to bargain, and is supported by the widespread practice

of delegating pricing authority to salespersons.

If the buyer has private information on his outside option, then the seller only knows

buyer’s valuation of the product up to a distribution. This is a one-sided bargaining model

with incomplete information, with a simultaneous matching process. The stochastic nature

of the product value enables the seller to separate different types of buyers even when the

seller has no commitment power. Surprisingly, I find that buyer with higher valuation (or

lower outside option) for the product pays lower price due to information rent and seller’s

incentive to trade early.

This paper contributes to literature on bargaining and sales force management by solving

the optimal selling and pricing strategies in response to a strategic customer in a dynamic

environment. The paper develops novel insights into the roles of list price and bargaining in

the sales process that match real world observations. Last but not least, the model expands

existing bargaining literature by adding a simultaneous matching process which makes the

product value stochastic.

This paper is limited in several ways. First, the model ignores many aspects of the sales

process, such as prospecting and service delivery. Also, the model only looks at one potential

buyer with one potential seller. Future research can explore how competition in either side of

the market affects outcome. Last but not least, the model assumes that all communication

to be honest. The seller truthfully reveals product information, and the buyer truthfully

reveals his preference for attributes. Future research can consider what happens if players

have choice on what message to send, or whether to send message at all.
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Appendix

Proof of Lemma 1

Let Γ = {x|a(x, P (x)) = 1} be the set of x such that players trade in equilibrium.

To show that Ṽ is credible, we only need to show that Buyer indeed buys ∀x ∈ Γ, if

P (x) = x − Ṽ (x|P̄ , πb) for x ∈ Γ and P (x) > x − Ṽ (x|P̄ , πb) for x /∈ Γ. That is, the

described strategy produces Γ. If P (x) = x − Ṽ (x|P̄ , πb) for x ∈ Γ, then Buyer receives

V (x) = Ṽ (x|P̄ , πb) for x ∈ Γ. This implies V (x) = Ṽ (x|P̄ , πb) for all x. This is because V (x)

and Ṽ have same diffusion process with same flow cost. Buyer is indifferent between buying

and not buying for x ∈ Γ. Thus Buyer buys at x if and only if P (x) ≤ x− Ṽ (x|P̄ , πb). Thus

for x /∈ Γ, we must have P (x) > x− Ṽ (x|P̄ , πb). For x ∈ Γ, if P (x) < x− Ṽ (x|P̄ , πb), then

Buyer can profitably deviate by charging P (x) = x − Ṽ (x|P̄ , πb). Thus Ṽ is attainable in

equilibrium. Such equilibrium must have the stated properties.

Proof of Proposition 1

Fix any P̄n ≤ xn,0 + 1
4
σ2

cb
. Given Lemma 1, Buyer has same value function as if she’s

facing a committed price at P̄ . Since V (x) = Ṽ (x, P̄ ), Buyer’s quitting strategies must be

same. So xn = xn = P̄n − 1
4
σ2

cb
.

Since Seller controls when to trade, the trading threshold x̄ must solve the optimal

stopping problem with stopping value x− Ṽ (xn, P̄n). By Taylor expansion and Ito’s Lemma,

Seller’s value function satisfies rU(xn) = −cs + σ2

2
U ′′(xn). r = 0 and cs = 0 implies linear

value function for the Seller U(xn) = αs(xn− P̄n) + βs. We have three boundary conditions.

First two conditions match values at quitting and trading points. Third condition is a

first-order “smooth-pasting” condition ensuring the stopping time is optimal (Dixit 1993).


αs

(
− 1

4
σ2

cb

)
+ βs = 0

αs(x̄n − P̄n) + βs = x̄n − cb
σ2 (x̄n − P̄n)2 − 1

2
(x̄n − P̄n)− σ2

16cb

αs = 1− 2cb
σ2 (x̄n − P̄n) + 1/2

(5)

37



Solving the system of equations, we get x̄n = P̄n + σ2

cb

[√
1
4
− P̄n cbσ2 − 1

4

]
as the point of trade,

with P (x̄n) = x̄n − Ṽ (x̄n, P̄n) = σ2

cb

[√
1
4
− P̄n cbσ2 − 2

(
1
4
− P̄n cbσ2

)]
. Optimal sticker price is

found by

argmax
P̄n

U(0) = argmax
P̄n

αb(−P̄n) + βb = argmax
P̄n

(1

4

σ2

cb
− P̄n

)(
1− 2

√
1

4
− P̄n

cb
σ2

)
We can prove that Seller wants to trade for all x ≥ x̄n. Suppose there exists x̃n > x̄n such

that a(x̃n, P (x̃n)) = 0. Let xleft = sup{xn|xn ∈ Γ & xn < x̃n}, and xright = inf{xn|xn ∈

Γ & xn > x̃n}. Since there’s no trade between xleft and xright, U(x̃n) is on a convex function

connecting U(xleft) and U(xright). Because the stopping value xn− Ṽ (xn, P (xn)) is a concave

function connecting U(xleft) and U(xright), we must have U(x̃n) ≤ x̃n− Ṽ (x̃n, P (x̃n)). Thus

Seller should trade at x̃n, a contradiction.

If P̄ > 1
4
σ2

cb
, then xn = P̄ − 1

4
σ2

cb
> 0. At xn, Seller would offer P (xn) = xn and Buyer

buys. The only difference now is that Seller receives utility of xn instead of 0 at Buyer’s

quitting threshold. We can re-solve the above system equations by swapping out the first

condition of equations (5) with

αb

(
− 1

4

σ2

cb

)
+ βb = P̄n −

1

4

σ2

cb

and we get x̄n = xn = P̄n− 1
4
σ2

cb
. Furthermore, for 0 ≤ xn ≤ xn, Seller would offer P (xn) = xn

and Buyer accepts, otherwise Buyer would quit. Thus game ends immediately for all xn ∈ R+

Proof of Lemma 3 For any stationary equilibrium that satisfy our refinement, let

Γ = {x|a(x, P (x)) = 1} be the set of x such that trade happens. Since P̄ is upper bound on

price, Buyer cannot be worse off than if price is committed at P̄ . However, Buyer’s value

function if price is fixed at P̄ is no longer Ṽ (x, P̄ ) as in Lemma 1, since Seller may quit

earlier than Buyer wants to. We show that Ṽ (x+ η, P̄ )− η is the lower bound on V (x), and

offering the lower bound to Buyer at point of trade is SPE.

First let’s assume xb ≥ xs in equilibrium. Then x̄s does not affect equilibrium outcome.

38



Buyer’s value function with fixed price is same as in Lemma 1 with Ṽ (x, P̄ ) = Ṽ (x+η, P̄ )−η,

where η = 0 since xb = P̄ − 1
4
σ2

cb
per Proposition 0.

Now assume xs > xb in equilibrium. x = xs is an exogenous stopping point for the Buyer.

Given x, let V p̄
x (x) denotes Buyer’s value function if price is fixed at P̄ . By Ito’s Lemma,

V p̄
x = −cb + σ2

2
d
dx2V

p̄
x , which implies V p̄

x = cb
σ2 (x− P̄ )2 + α(x− P̄ ) + β for some α and β. Let

x̄ denotes the point that Buyer chooses to buy if price is fixed at P̄ and game ends at x.

Then we have following value-matching and smooth-pasting conditions.:



cb
σ2 (x̄− P̄ )2 + α(x̄− P̄ ) + β = x̄− P̄

2cb
σ2 (x̄− P̄ ) + α = 1

cb
σ2 (x− P̄ )2 + α(x− P̄ ) + β = 0

Solving these 3 conditions shows that V p̄
x = Ṽ (x + η, P̄ ) − η, with η = 1

4
σ2

cb
− (x − P̄ ) −√

−σ2

cb
(x− P̄ ).

We have shown now Ṽ (x + η, P̄ )− η is the lower bound on V (x). The rest of the proof

is same as Lemma 1. In equilibrium, Seller offers Buyer V (x) = Ṽ (x + η, P̄ ) − η if Seller

wants to trade and offers less if Seller does not want to trade. Buyer will buy at x if

P (x) = x− Ṽ (x+ η, P̄ ) + η since she is indifferent between buying and waiting.

Proof of Proposition 5

We prove by showing that, if Seller quits earlier than Buyer, then there’s a profitable

deviation in P̄ . Suppose in equilibrium, x = max{xb, xs} = xs > xb. We know that

P̄ = xb + 1
4
σ2

cb
from Lemma 1 and Proposition 1, thus P̄ < x + 1

4
σ2

cb
. We’ll show that

increasing P̄ to x+ 1
4
σ2

cb
is strictly better for the Seller ex-ante.

As an interim step, we first prove that xs decreases as P̄ increases. To find xs, assume

xb = −∞. Let ¯̄x denotes the point where Buyer would buy if price is committed at P̄ , and

let x̄ denotes the point where trade happens in equilibrium. We know that Buyer’s value

function is in the from of V (x) = cb
σ2 (x − P̄ )2 + αb(x − P̄ ) + βb and Seller’s value function
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is in the form of U(x) = cs
σ2 (x − P̄ )2 + αs(x − P̄ ) + βs. Then ¯̄x, x̄, and x must satisfy the

following 7 boundary conditions, 3 for the Buyer and 4 for the Seller:



cb
σ2 (¯̄x− P̄ )2 + αb(¯̄x− P̄ ) + βb = ¯̄x− P̄

2 cb
σ2 (¯̄x− P̄ ) + αb = 1

cb
σ2 (x− P̄ )2 + αb(x− P̄ ) + βb = 0

cs
σ2 (x− P̄ )2 + αs(x− P̄ ) + βs = 0

2 cs
σ2 (x− P̄ ) + αs = 0

cs
σ2 (x̄− P̄ )2 + αs(x̄− P̄ ) + βs = x̄− V (x)

2 cs
σ2 (x̄− P̄ ) + αs = 1− d

dx
V (x)

Using the last 6 conditions we can derive x = − cb
cs
P̄ , Thus xs = x decreases as P̄ increases.

Now we prove that increasing P̄ to x + 1
4
σ2

cb
is strictly better for the Seller ex-ante. Fix

a x in equilibrium, we can think of Seller as facing an optimal stopping problem regarding

when to sell, with a lower boundary at x. Her utility from stopping is P (x) = x − V (x) =

x − Ṽ (x + η, P̄ ) + η. Now suppose sticker price is increased from P̄ to P̄ + ∆P where

∆P = x + 1
4
σ2

cb
− P̄ . Seller’s quitting threshold is decreased as argued above, and Buyer’s

quitting threshold increases to P̄ + ∆P − 1
4
σ2

cb
= x, so the lower boundary of the game is

unchanged. With the new sticker price P̄+∆P , η becomes 0, and Seller’s payoff from trading

is x−Ṽ (x, P̄+∆P ), which is strictly higher than her selling price under P̄ : x−Ṽ (x+η, P̄ )+η,

for x > x. Thus Seller is facing the same lower boundary under the two sticker prices, and

a stopping utility under P̄ + ∆P that strictly dominates P̄ . Thus regardless of where she

wants to trade, Seller’s ex-ante utility is strictly higher under P̄ + ∆P than under P̄ . Thus

P̄ is sub-optimal.

Proof of Proposition 6 From Proposition 5, we know that Buyer quits first in equilib-

rium. Thus given P̄ , Lemma implies that Buyer’s value function must be V (x) = Ṽ (x) =
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cb
σ2 (x− P̄ )2 + 1

2
(x− P̄ ) + σ2

16cb
, and Buyer’s quitting threshold is x = P̄ − σ2

4cb
.

Since cs > 0, by U ′′(x) = 2cs
σ2 , we know that U(x) = cs

σ2 (x− P̄ )2 +As(x− P̄ )+Bs for some

coefficients As and Bs. At x, we must have (1) U(x) = 0. Since x̄ is Seller’s optimal stopping

points, x̄ must satisfy: (2) U(x̄) = P (x̄) = x̄− V (x̄), and (3) U ′(x̄) = 1− V ′(x̄). From these

3 conditions, we can solve x̄, As, and Bs by solve the following system of equations:



cs
σ2 (− σ2

4cb
)2 + As(− σ2

4cb
) +Bs = 0

cs
σ2 (x̄− P̄ )2 + As(x̄− P̄ ) +Bs = x̄− cb

σ2 (x̄− P̄ )2 − 1
2
(x̄− P̄ )− σ2

16cb

2 cs
σ2 (x̄− P̄ ) + As = 1− 2cb

σ2 (x̄− P̄ )− 1
2

From which we get


x̄ = P̄ − σ2

4cb
+ σ2

cb

1√
1+k

√
1
4
− r

As = 2+k
2
− 2
√

1 + k
√

1
4
− P̄ cb

σ2

Bs = (1
4

+ k
16

)σ
2

cb
−
√

1+k
2

σ2

cb

√
1
4
− P̄ cb

σ2 .

Plug As and Bs into U(x0), and let r = P̄ cb
σ2 , we get

U(x0) = kr2(
σ2

cb
)2−(1+

k

2
−2
√

1 + k

√
1

4
− r)r(σ

2

cb
)2+(

1

4
+

3k

16
)
σ2

cb
−
√

1 + k

2

σ2

cb

√
1

4
− r+kσ

2

cb
x0

2−2krx0+(1+
k

2
)x0−2x0

√
1 + k

√
1

4
− r.

Maximize U(0) with respect to r produces optimal r∗, and P̄ ∗ = r∗ σ
2

cb
. For x0 = 0, we

get P̄ ∗ = 1
4
− 27+10k−6

√
9+10k+k2

16k2 . Plug P̄ into x̄ = P̄ − σ2

4cb
+ σ2

cb

1√
1+k

√
1
4
− r produces x̄. Plug

P̄ into P (x̄) = x̄ − V (x̄) produces P (x̄). It’s easy to check that U ′(x) > 0, which confirms

that Seller does not want to quit before Buyer does.

Proof of Corrolary 7

We need is to solve for the equilibrium under fixed price. Let P ∗ be the optimal fixed

price. We’ll solve separately for the cases of (1) Buyer quits first and (2) Seller quits first.

Suppose Buyer quits first. We know Buyer’s value function is V (x) = cb
σ2 (x − P ∗)2 +
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1
2
(x − P ∗) + σ2

16cb
, and Seller’s value function is U(x) = cs

σ2 (x − P ∗)2 + As(x − P ∗) + Bs for

some coefficients As and Bs. Let x̄ and x denote Buyer’s buying and quitting thresholds,

respectively. Since both buying and quitting are Buyer’s decision, we know x̄ = P ∗ + σ2

4cb

and x = P ∗ − σ2

4cb
as in Section 3. Solve U(x̄) = P ∗ and U(x) = 0 simultaneously give us

As = P ∗ 2cb
σ2 and Bs = −k σ2

16cb
+ 1

2
P ∗. Thus

U(x0) =
kcb
σ2

(x0 − P ∗)2 + P ∗
2cb
σ2

(x0 − P ∗) +−k σ2

16cb
+

1

2
P ∗

Take derivative with respect to P ∗ and set to zero, we get P ∗ = 1
2−k

σ2

4cb
+ 1−k

2−kx0. To make

sure x < x0, we need k < x0
4cb
σ2 + 1, otherwise Buyer quits immediately.

Now suppose Seller quits first. Since quitting is Seller’s decision, we do not know co-

efficients to Buyer’s value function V (x) = cb
σ2 (x − P ∗)2 + Ab(x − P ∗) + Bb. We still have

U(x) = cs
σ2 (x− P ∗)2 +As(x− P ∗) +Bs. To solve Ab, Bb, As, Bs, x̄, and x, we need to solve

the following system of 6 equations:



U(x̄) = P ∗

U(x) = 0

U ′(x) = 0

V (x̄) = x̄− P ∗

V ′(x̄) = 1

V (x) = 0

This gives x = (1− 1
k
)P ∗, and U(x0) = kcb

σ2 (x0−P ∗)2 + 2cb
σ2 P

∗(x0−P ∗) + kcb
σ2

(
P ∗

k

)2
. Then

maximize U(x0) with respect to P ∗. If k ≤ x0
4cb
σ2 + 1, then d

dP
U > 0 for all P . This implies

Seller will raise price till Buyer quits first, i.e., P ∗− σ2

4cb
≥ (1− 1

k
)P ∗. If k > x0

4cb
σ2 + 1, we get

P ∗ = k
k−1

x0 = x. Thus Seller quits immediately. Thus there does not exist an equilibrium

with positive length such that Seller quitting strictly before Buyer. For k < x0
4cb
σ2 + 1, the

42



length fo the game is positive and Buyer quits first. For k >= x0
4cb
σ2 + 1, one of player stops

immediately regardless of the price.

Now we can compare equilibrium outcome under bargaining to outcome under fixed price.

Particularly, for x0 = 0, we can compare P̄ = σ2

c)b

[
1
4
− 27+10k−6

√
9+10k+k2

16k2

]
with P ∗ = 1

2−k
σ∗

4cb
.

There exists a k̃ < 1 such that P̄ > P ∗ for k < k̃ and P̄ < P ∗ for k > k̃. There’s no tractable

analytical solution for k̃.

Proof of Lemma 4 Suppose both types are in the game and L type buys at x. Since

L type cannot be worse than if price is committed at P̄ , we must have VL(x, µHL) ≥ Ṽ (xL),

where Ṽ is from equation (3). So P (x, µHL) ≤ xL − Ṽ (xL). If H types buys at x, he gets

utility at least xH − (xL − Ṽ (xL)) = Ṽ (xL) + ε. If H type does not buy at x, then he’s

the only type remaining, and gets single-type value VH(x, µH) = Ṽ (xH) = Ṽ (xL + ε). Since

Ṽ (xL) + ε ≥ Ṽ (xL + ε), H type buys.

Proof of Lemma 5 First we see that if µ = L, the game is same as Proposition 1 in

Section 3. Thus on equilibrium path L type buys for xL ≥ P̄ + σ2

cb

[√
1
4
− P̄ cb

σ2 − 1
4

]
and quits

for xL ≤ P̄ − 1
4
σ2

cb
. Denote these two thresholds x̄o and xo, respectively.

Now for µ = {H,L}, by Lemma 4, H type must buy weakly earlier than L type in

equilibrium. Suppose strictly earlier (x̄H < x̄L + ε), then we have a separating equilibrium.

After H type buys, L type buys immediately if xL ≥ x̄o. Thus H type must buy strictly

before xH reaches x̄o + ε, otherwise there cannot be separation. As a result, on equilibrium

path, L type buys at xL = x̄o without uncertainty on types. The existence of H type does

not affect L type’s equilibrium payoff. Thus VL(x, µHL) = VL(x, µL) = Ṽ (xL) as in Lemma

1, and he buys at x̄L = x̄o and quits at xL = xo as in Proposition1.

Suppose for µ = {H,L}, we have a pooling equilibrium where H and L types buy together

(x̄H = x̄L + ε). If Seller cannot separate the two types, then it is as if she’s only dealing with

L type. Using arguments in Lemma 1, Seller can charge up to P (x, µ) = P (xL + ε
2
, µ) =

xL − Ṽ (xL) at point of trade. In equilibrium Seller charges this price if she wants to trade

and above this price if she does not want to trade. L type behaves as if there’s no high type.
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Then we must have x̄L = x̄o, otherwise Seller can profitable deviates by charging P (x, µ) =

P (xL + ε
2
, µ) = xL − Ṽ (xL) for xL ≥ x̄o and charging P (x, µ) > P (xL + ε

2
, µ) = xL − Ṽ (xL)

for xL < x̄o.

If P̄ ≥ x0 − ε
2

+ σ2

4cb
, then xL|t=0 < xL, thus L type wants to quit immediately. If

P̄ < x0 − ε
2

+ σ2

4cb
, then we have shown above that L type behaves same as in Proposition 1.

Proof of Proposition 9 By previous Lemmas, L type buys and quits at same thresholds

as in single type case. Thus through Proposition 1, we have xL = x = P̄ − 1
4
σ2

cb
, and x̄L = x̄

solves

(x̄L − P̄ −
σ2

4cb
)2 + P̄ − σ2

4cb
= 0 (6)

and VL(x, µHL) = VL(x, µL) = Ṽ (x− ε
2
) = Ṽ (xL) = cb

σ2 (xL − P̄ )2 + 1
2
(xL − P̄ ) + σ2

16cb
.

When x drops to xL+ ε
2
, L type quits and the game become single type Buyer with value

xL + ε. When x increases to x̄L + ε
2
, L type buys and by Lemma 3 H type buys too. Thus

Seller has to decide when to sell to H type for xL + ε
2
< x ≤ x̄L + ε

2
. As before, Seller need

to offer H type no more utility than H type’s lower bound. When L quits at xL = xL, H’s

utility become Ṽ (xL+ε). When L buys, H’s utility becomes Ṽ (x̄L)+ε. These two conditions

bound H type’s value function from below. By Taylor expansion and Ito’s Lemma, we have

VH(x, µHL) = VH(xH − ε
2
, µHL) = cb

σ2 (xH − ε
2
− P̄ )2 + αH(xH − ε

2
− P̄ ) + βH . Thus the two

conditions translate to:
cb
σ2 ( ε

2
− σ2

4cb
)2 + αH( ε

2
− σ2

4cb
) + βH = cb

σ2 (ε− σ2

4cb
)2 + 1

2
(ε− σ2

4cb
) + σ2

16cb

cb
σ2 (x̄L + ε

2
− P̄ )2 + αH(x̄L + ε

2
− P̄ ) + βH = cb

σ2 (x̄L − P̄ )2 + 1
2
(x̄L − P̄ ) + σ2

16cb
+ ε

(7)

These 2 equations give αH , βH , and consequently VH(x, µHL). It’s easy to check that

VH(x) > VL(x + ε) for xL + ε
2
< x < x̄L + ε

2
. Thus H type has higher value function

than L type, even when they face the same product value. It’s also easy to check that

VH(x) − ε < VL(x) for xL + ε
2
< x < x̄L + ε

2
; thus L type would not buy if he’s offered
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price P (x, µHL) = xH − VH(x, µHL). Now given VH(x, µHL), Seller receives P (x, µHL) =

xH −VH(x, µHL) when she trade with H type. Seller’s decision of when to trade with H type

must solve the following optimal stopping problem:


αs(x̄H − ε

2
) + βs = −(x̄H − ε

2
− P̄ )2 + (1− αH)(x̄H − ε

2
− P̄ ) + P̄ − βH

αs = −2(x̄H − ε
2
− P̄ ) + (1− αH)

αs(
ε
2
− σ2

4cb
) + βs = (1− 2

√
1
4
− P̄ cb

σ2 )ε

(8)

Using equations 7 and 8, we can derive (x̄H − P̄ − σ2

4cb
)2 + P̄ − σ2

4cb
= 0. This is same

condition as Equation 6. Thus x̄H = x̄L = x̄ = P̄ + σ2

cb

[√
1
4
− P̄ cb

σ2 − 1
4

]
. Note that even

though they buy at same threshold, H type arrives the threshold strictly before L type does,

since xH = xL + ε. Also, this common threshold x̄ is the same buying threshold when we

only have single type.

Since Ṽ (x̄L + ε) > 0, H type does not quit when L is present. After L quits, H has same

quitting threshold as L type. So xi = x = P̄ − 1
4
σ2

cb

At time of trade, L type pays price PL = P (x̄+ ε
2
, µL) = x̄− VL(x̄+ ε

2
), and H type pays

price PH = P (x̄− ε
2
, µHL) = x̄− VH(x̄− ε

2
). Thus PL − PH = VH(x̄− ε

2
)− VL(x̄+ ε

2
). Since

we showed above that VH(x) > VL(x+ ε), this proves that PL > PH .

Discrete-time Game and Uniqueness of Limit

In this section, I prove Lemma 2, which states that Ṽ (x) from equation (4) is the unique

limit of equilibrium value functions from discrete-time game. I’ll first formally state the

discrete-time game, then introduce a refinement that gets rid of trivial equilibria, then prove

the uniqueness of the limit as the game approaches continuous time.

The discrete time game follows the description in Section 2.1. Let G(∆t) denote the game

with period length of ∆t. Time t ∈ {0,∆t, 2∆t, · · ·}. There are two players, a Seller (b) and

a Buyer (b). x is the product value with x = x0 at time t = 0. State variabel xt evolve as
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a Markov chain, with xt+∆t = xt + σ
√

∆t with probability 1
2

and xt+∆t = xt − σ
√

∆t with

probability 1
2
. Let X(∆t) = {x0 + ασ

√
∆t | α ∈ N} denote the grid on x spanned by σ

√
∆t

from x0. We must have xt ∈ X(∆t) ∀t. xt is observable to both players.

Before game starts, Seller chooses a list price P̄ ∈ R+. Then at t ≥ 0:

1. Seller chooses price Pt subject to Pt ≤ P̄ .

2. Buyer chooses whether to buy at ∈ {0, 1}.

3. If at = 0, then both players chooses whether to quit with qi,t ∈ {0, 1}. If no player

quits, then Buyer incurs continuation cost and game moves to t+ ∆t.

I look for stationary Markov equilibrium with pure strategy. Seller’s action is character-

ized by (P̄ , P (x, P̄ ), qs(x, P̄ )), with list price P̄ ∈ R+, price offer P (x, P̄ ) : R × R+ 7→ R,

and quitting decision qs(x, P̄ ) : R × R+ 7→ {0, 1}. Buyer’s action is characterized by

(a(x, P, P̄ ), qb(x, P̄ )), with buying decision a(x, P, P̄ ) : R2 × R+ 7→ {0, 1}, and quitting

decision qb(x, P̄ ) : R×R+ 7→ {0, 1}. Since everything depends on list price P̄ , which is fixed

throughout the game, we’ll drop P̄ from notation going forward.

Buyer incurs continuation cost of cb ∗ ∆t at the end of the period if a(xt) = 0 and

qs(xt) = qb(xt) = 0. If a(xt) = 1, Buyer receives utility xt − Pt and Seller receives Pt. If

either player quits, game ends and players get outside option of πb and πs, which can be

normalized to 0 WLOG (see Definition 1 in Section 3 for details).

Let u(x, P̄ , P (·), qs(·) | a(·), qb(·) denote seller’s expected utility at state x, and

v(x, a(·), qb(·) | P̄ , P (·), qs(·)) denote buyer’s expected utility at state x. Let V1(x) repre-

sent the equilibrium value function for Buyer at state x. Let V2(x) denote Buyer’s expected

value of staying in the game, conditional of a(xt) = 0.

We can write V2(x) recursively as:

V2(x) = −cb∆t+
1

2
V1(x+ σ

√
∆t) +

1

2
V1(x− σ

√
∆t)
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Given V2(x), in equilibrium Seller must charge price up to max{x − V2(x), P̄}. This

implies:

V1(x) =


max{0, V2(x)} ∀x ≤ P̄

max{V2(x), x− P̄} ∀x > P̄

Before we proceed, we want to get rid of trivial equilibria such that qb(x) = qs(x) = 1

for some x. These equilibria are similar to failures in matching games. If the opponent

is quitting, then the player is indifferent between quiting and not quitting, thus quitting

is always optimal. Thus the opponent’s quitting decision is optimal too. As a result, we

can construct equilibrium with arbitrary quitting rules, as long as they quit at the same

time. These equilibria exist due to the simultaneity of quitting decisions, and do not offer

any insight. One example is qb(x) = qs(x) = 1 ∀x, P (x) = max{0, min{x, P̄} }, and

a(x, P̄ , P ) = I{x ≥ 0} is an equilibrium. Player always quit no matter what x is; Seller

charges the value of the product (if positive) as price; Buyer buys immediately since he’s

indifferent between buying and quitting. In this equilibrium, game ends immediately no

matter what the initial position is.

To get rid of this simultaneous quitting problem, I introduce the following refinement

based on the logic of trembling hand.

Equilibrium Refinement. qi(x) = 1 if only if quitting is strictly preferred.

Under this refinement, players cannot quit simultaneously. If the opponent quits, then

I’m indifferent and will choose to stay. This refinement is not restrictive. The logic is similar

to trembling hand. Suppose we have an equilibrium with xs = xb. Now keep P̄ , P (·), and

a(·) as before, and see whether xs − ε and xb constitute a equilibrium, and whether xb − ε

and xs constitute a equilibrium. If neither is an equilibrium, that means that players quit

only because the other player is quitting. If either perturbation on xs or on xb constitutes

an equilibrium, then the new equilibrium has the same equilibrium outcome as before, thus

is not affected by the restriction that xs 6= xb. Requiring xs 6= xb also gives us a clear answer
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to who quits in equilibrium, which is a question of interest in this game.

Now we are ready to prove Lemma 2.

Claim 1. These exists a x such that a(x) = 0 and qb(x) = 1 iff x ≤ x.

This states that there exists a threshold x such that for all states below the threshold, the

game will end as Buyer quits. First it’s easy to see that if x < 0, then a(x) = 0. Secondly,

we can see that Buyer must quit for some states that are low enough. When x is negative,

there cannot be trade, and Buyer has to pay cost to continue the game. For x approaches

−∞, continuation value also goes −∞ and Buyer will quit.

Next, we can show that if qb(x) = 1, then qb(x− σ
√

∆t) = 1. If qb(x) = 1, then we must

have V2(x) < 0 and V1(x) = 0. Suppose that qb(x− σ
√

∆t) = 0, this implies that

V2(x) = −cb∆t+
1

2
V1(x) +

1

2
V1(x− 2σ

√
∆t) ≥ 0

which means that V1(x − 2σ
√

∆t) > V2(x − 2σ
√

∆t ≥ 0. By induction, we have V1(x′) > 0

for all x′ < x−2σ
√

∆t. Thus Buyer never quits for x′ < x. This is a contradiction, as Buyer

must quit as x approaches −∞.

Lastly, if x > P̄ , then we cannot have a(x) = 0 and qb(x) = 1, because if qb(x) = 1, then

Seller would charge P̄ and Buyer should buy the product and get x− P̄ > 0. This concludes

the proof.

Claim 2. These exists a ¯̄x such that a(x) = 1 and P (x) = P̄ iff x ≥ ¯̄x.

Here we claim that there exists a threshold such that when x is above the threshold,

Seller charges P̄ and Buyer buys immediately.

First we see that if P (x) = P̄ and a(x) = 1, then x ≥ P̄ . If x ≥ P̄ , then V1(x) =

max{V2(x), x − P̄}. Seller must charge P (x) = P̄ if V2(x) < x − P̄ . Let P̃ (x) = min{x −

V2(x), P̄} denote the highest price that Buyer is willing to pay at x > P̄ . Buyer buys at P̄

if and only if P̃ = P̄ .
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Now we prove that P̃ must be non-decreasing. Suppose P̃ decreases for some x. Then

there exist x′ such that P̃ (x′ − σ
√

∆t) > P̃ (x′). This implies that P̃ (x′) < P̄ , which means

P̃ (x′) = x′−V1(x′) = x′−V2(x′) = 1
2
(P̃ (x′−σ

√
∆t) + P̃ (x′+σ

√
∆t) + cb∆t. By rearranging

the terms we get: P̃ (x′ + σ
√

∆t) − P̃ (x′) = P̃ (x′) − P̃ (x′ − σ
√

∆t) − 2cb∆t < 0. Thus

P̃ (x′ + σ
√

∆t) < P̃ (x′) − cb∆t. By induction, P̃ → −∞ as x → ∞. When P̃ < 0, there

cannot be trade since Seller can’t charge negative price, and Buyer does not quit since

V2(x) > 0. Thus there cannot be trade or quit after x pass some threshold. However, this

implies that V1(x) should be decreasing beyond that threshold, which is a contradiction.

Given that P̃ must be non-decreasing, we need to show that P̃ must hit P̄ at some

point. Suppose P̃ (x) never reach P̄ . Previously we show that if x > P̄ and P̃ (x) < P̄ ,

then P̃ (x+ σ
√

∆t)− P̃ (x) = P̃ (x)− P̃ (x− σ
√

∆t)− 2cb∆t < 0. Since P̃ is non-decreasing,

P̃ (x)− P̃ (x− σ
√

∆t)− 2cb∆t > 0, thus P̃ (x)− P̃ (x− σ
√

∆t) > 2cb∆t for all x > P̄ . Then

P̃ must reach P̄ for some x large. This concludes the proof. We can find ¯̄x by taking the

min{x | P̃ = P̄}.

Given the existence of ¯̄x and x, we can know specify V1(x) in three cases:

V1(x) =


0, ∀x ≤ x

−cb∆t+ 1
2
V1(x+ σ

√
∆t) + 1

2
V1(x− σ

√
∆t), ∀x < x < ¯̄x

x− P̄ , ∀x ≥ ¯̄x

(9)

By rearranging the terms, We can prove that equilibrium V1(x) must satisfy the following
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properties: 

2c
σ2 =

V1(x+σ
√

∆t−V1(x)

σ
√

∆t
+
V1(x)−V1(x−σ

√
∆t)

σ
√

∆t

σ
√

∆t
for x < x < ¯̄x

V1(x) = 0 ∀x ≤ x

0 ≤ V1(x+σ
√

∆t)−V1(x)

σ
√

∆t
< 2c

σ

√
∆t.

V1(x) = x− P̄ ∀x ≥ ¯̄x

1 ≥ V1(¯̄x)−V1(¯̄x−σ
√

∆t)

σ
√

∆t
≥ 1− 2c

σ

√
∆t

Let V (x) denote the limit of V1(x)→ V (x) as ∆t→ 0. The above 5 condition converge

to: 

V ′′(x) = 2c
σ2 for x < x < ¯̄x

V (x) = 0 ∀x ≤ x

V ′(x) = 0

V (x) = x− P̄ ∀x ≥ ¯̄x

V ′(¯̄x) = 1

Together they imply that V (x) is C1, and the only C1 function that satisfy the five

conditions is:

Ṽ (x) =


0, x < P̄ − σ2

4cb

cb
σ2 (x− P̄ )2 + 1

2
(x− P̄ ) + σ2

16cb
, x ∈

[
P̄ − σ2

4cb
, P̄ + σ2

4cb

]
x− P̄ , x > P̄ + σ2

4cb

(10)

This proves Lemma 2, which states that Ṽ (x) is the unique limit of value functions in

discrete-time game equilibria in which players do not quit unless quitting is strictly preferred.

Equilibrium with N types

50


