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Abstract

We study the dynamics of team production with unknown true prospects. Team mem-
bers receive interim feedback that is informative of their current effort levels and the
project’s prospects. We show that the presence of uncertainty alleviates inefficiencies
arising from free-riding. Team members exaggerate their effort to influence the interim
feedback signal, which in turn, affects their partners’ beliefs about the prospects and con-
sequently affects their future effort choices. The free-riding problem can vanish in the
limit where feedback is sufficiently responsive. Our result implies that introducing un-
certainty into team production can be welfare improving. Utilizing the tractability of our
framework, we analyze various implications for optimal team design, such as the effects

of team flexibility and asymmetric information among team members.
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1 Introduction

The fast evolution of the modern economic environment creates considerable uncertainty
about the prospects of many economic activities. In this light, many firms increasingly uti-
lize small teams as more agile and adaptable means of production, moving away from rigid
and highly structured meansUnderstanding the dynamics of team incentives under uncer-
tainty is therefore of central economic interest. These dynamics are complex: as uncertainty
resolves over time, positive feedback boosts team members’ confidence and subsequent ef-
fort, while setbacks undermine team morale. At the same time, individual team members may
have incentives to keep their teammates motivated by exerting themselves in order to improve
feedback.

In this paper, we present a framework of dynamic team production that enables us to
analyze various features of team dynamics in the presence of uncertainty. The questions we
address include: How does the dynamic resolution of uncertainty interact with the classic free-
riding that naturally arises in teams? What is the effect of uncertainty on team welfare? Are
there implications for optimal team design?

We consider a team of agents working on a joint project with unknown true prospects
and finite horizon.At the end of the project, agents share the common output. This inherently
creates free-riding incentives. Each agent’s effort level is unobservable by the others. Over
time, the agents receive interim public feedback about team performance. This feedback is
noisy but informative about the agents’ efforts and the project’s prospects: both high effort
and good prospects (statistically) improve feedback.

Such dynamic models, where the learning process interacts with unobservable actions,
are typically not tractable. Specifically, the characterization of behavior off the equilibrium
path is severely complicated as a deviation by an agent may cause her private belief about the

prospects to diverge from the public belief. Moreover, in such environments, effort incentives

1To quote an article from the Economist: “...a network of teams is replacing the conventional hierarchy. The
fashion for teams is driven by a sense that the old way of organising people is too rigid for both the modern
marketplace and the expectations of employees. Technological innovation puts a premium on agility.” (“Team
spirit”, 2016 Using survey dataDsterman(1994 2000 estimates that among private, for-profit establishments
that have at least 50 employees, approximately 40% have at least half of their employees organized in teams.
Similarly, Lawler et al.(2007) reports that 47% of Fortune1000 companies make use of self-managed teams.



can be confounded by incentives to experiment. This paper contributes to the literature by
proposing a model that overcomes these difficulties while isolating and highlighting the main
economic forces at work. In particular, the marginal product of effort depends on uncertain
prospects, while feedback is additively separable in effort and prospects with Gaussian noise.
The former aspect guarantees that the dynamics of agents’ incentives are linked with the evo-
lution of their beliefs—thus remaining relevant to our central economic question—while the
latter eliminates motives for experimentation, rendering our analysis tractable.

Two aspects of our equilibrium characterization deserve emphasis. First, our model ad-
mits a unique perfect Bayesian equilibrium (PBE). Second, the equilibrium strategies have a
particularly simple and intuitive structure. Namely, the agents’ effort choices after any history
(both on and off the equilibrium path) are a linear function of the mean of their own private
belief. Here, the coefficient multiplying the posterior mean—the belief sensitivity of effort—
captures the impact of uncertainty on effort incentives. Ultilizing the simple structure of the
unique PBE, we describe the non-stationary dynamics of a team project whose true prospects
are gradually revealed.

Our first main result is thathe presence of uncertainty alleviates the free-riding prob-
lem The presence of uncertainty boosts the effort incentives of the agents, because work-
ing harder today improves the interim feedback, rendering team members more optimistic
about the project. Optimistic agents exert more effort in the subsequent phases because better
prospects provide the agents with a higher marginal product. Essentially, the presence of un-
certainty endogenously generates strategic complementarity between one agent’s current effort
and the other agents’ future effoRsThis strategic complementarity leads to an equilibrium
effort level that is higher than the myopically optimal level.

The main result of this paper leads to an important corollbriyoducing uncertainty into

2By strategic complementarity we refer to the following: Fix all agents’ expectations about the effort choice
of a given agent. Themprovided that the effort is unobservabsn increase in the agent’s effort level would lead
to an increase in the expected marginal returns to the other agents’ future efforts. Although this is not precisely
the standard definition of strategic complementafgulpw et al, 1985, we use the term with some abuse, as
we believe that it effectively captures the essence of the mechanism we identify.

3This mechanism can be interpreted as a novel application of “signal jamming,” which has been identified in
various contexts, including early work in industrial organizati®iofdan 1985 Fudenberg and TiroJel986
and the seminal paper bfolmstidm (1999 in the context of agency theory. We discuss our contribution relative
to these models in the literature review below.



team production can be welfare improving/hile uncertainty always entails a cost resulting
from uninformed action choices, the benefit from mitigating the free-riding problem could
outweigh that cost. In this case, adopting a project with uncertain prospects—even without a
premium on returns —would lead to a Pareto improvement for the team mefnbers.

After characterizing the unique equilibrium, we conduct several comparative statics ex-
ercises. We show that the effort-boosting impact of uncertainty is stronger when the project
uncertainty is higher, the interim feedback is more precise, and the agents are more patient.
Moreover, there exists a share structure under which the free-riding profaleishesvhen
interim feedback is sufficiently responsive to the agents’ effort.

We also consider an infinite-horizon version of our model in which the project’s prospects
evolve stochastically over time. We construct a Markov perfect equilibrium whose structure
is similar to that of the unique PBE of our main model. In analyzing the Markov perfect
equilibrium, we show when the state is stochastic, the effort boosting impact of uncertainty
exists permanently so that the equilibrium belief sensitivity of effort remains higher in the
presence of uncertainty than in its absence.

The tractability of the framework we propose can help answer various economic questions.
We take advantage of this feature in our discussionoptimal team desigrfocusing on the

following four aspects:

e Role of imperfect monitoringf individual effort choices are perfectly observable, then
exerting more effort does not create an optimistic bias in others’ beliefs. Therefore, the
effort-boosting impact of uncertainty disappears. From the perspective of team design,
this result implies that in environments in which monitoring is costly, it may be benefi-
cial to choose a project with uncertain prospects instead of investing in the monitoring

structure and establishing formal contracts.

e Optimal level of project uncertaintysuppose that a team faces a choice of projects with

4Our result provides a novel explanation of risk-taking behavior in entrepreneurial organizations. Risk tak-
ing is considered one of the main elements of entrepreneurial behdiitar( 1983, and the economics lit-
erature has suggested various motivations for risk-taking behavior, such as the desire to receive a higher pre-
mium (Heaton and Luca=2000 or the desire to smooth out the entrepreneur’s value as a function of wealth
(Vereshchagina and Hopenhay®09. In this paper, we identify an alternative motivation related to team in-
centives.



various levels of uncertainty regarding their prospects. We demonstrate that there exists
an optimal level of project uncertainty that balances the trade-off between the benefit of

alleviating free-riding problem and the cost of uninformed effort choices.

e Effect of team flexibility We show that if an organization is more flexible—that is,
if team members receive feedback more frequently and adjust their actions—the free-
riding is further alleviated in equilibrium. This result provides an interesting contrast to
the repeated partnership literature in which the scope of cooperation could be limited
when actions are flexiblédpreu et al, 1991; Sannikov and Skrzypag2007).

o Effect of asymmetric information among team membaksconsider an asymmetric in-
formation model in which some team members are “experts” who are perfectly informed
about the prospects. We show that the essential structure of the unique equilibrium of
our model extends to these cases. Additionally, using the asymmetric information mo-
del, we discuss the interaction between the incentives of the informed experts and those
of the uninformed agents. The main trade-off arises between the speed of learning and
the strength of effort incentives. When a team member is replaced by an expert, learning
takes place faster as the expert’'s informed actions lead to more informative feedback.
However, team members’ effort incentives become weaker since it is not possible to ma-
nipulate the expert’s beliefs. Either side of the trade-off may dominate in equilibrium,

depending on various aspects of the economic environment.

The remainder of the paper is organized as follows. Sectidrdiscusses the related
literature. Sectio2 formally describes the model. Sectidcharacterizes the equilibrium and
undertakes the comparative statics exercises. Setgatends the main model to an infinite-
horizon version. Sectiob analyzes the implications for team design. SecBaoncludes.

The Appendix contains all the omitted proofs. The supplementary material analyzes a two-
period example, discusses the potential non-monotonicity of the belief sensitivity and analyzes

a continuous-time version of the main model.



1.1 Literature Review

This paper contributes to the literature on free-riding in gro@dsdn 1965 Alchian and
Demsetz 1972 Holmstiom, 1982. The literature generally suggests that cooperation can
be sustained by “punishments” based on past behavior in the form of either lower monetary
transfers or future non-cooperation from other team menmb&sr paper analyzes dynamic
moral hazard in team production with uncertainty over a project’s prospects and demonstrates
that the presence of uncertainty could alleviate free-riding.

Our paper is related to the literature on experimentation in teams. The literature focuses
on the effect of either a pure informational externalBplton and Harris1999 Keller et al,

2005 Rosenberg et gl2007) or combinations of information and payoff externaliti@®atti

and Hirner, 2011 Guo and RoesleR016 Halac et al.2017). In contrast, our model considers

a pure payoff externalityln our model, the speed of learning is independent of the agents’
actions, and thus, the agents do not have incentives for experimentation. Moreover, the welfare
effect of uncertainty is typically negative in the literature—the equilibrium payoff is higher if
the state is known—Dbut we show that uncertainty mitigates the free-riding problem, possibly
leading to a welfare improvement.

In this literature, the closest papers to oursBoéon and Harrig1999 andBonatti and
Horner(2017). Bolton and Harrig1999 consider a multi-agent experimentation problem in
which agents’ actions are observable and the agents share the information, but not the payoff,
resulting from experimentation. Their symmetric Markov perfect equilibrium demonstrates
that the possibility of eliciting future experimentation by others encourages current experi-
mentation. While our unique equilibrium exhibits similar incentives, the underlying channels
are distinct. Whereas iBolton and Harrig1999, the agents are encouraged to demonstrably
generate new informatiorcgnvincing, in our model, the agents’ incentives are generated by
secretly manipulating the feedbadhgating. Indeed, for the “encouragement effect” to exist
in our case, it is essential that the agents’ effort choices are unobser3ablgtti and Hrner

(201)) consider dynamic moral hazard in teams with an uncertain state. In their paper, the

5In the literature on contracts with many agents, a group contract based on total output can mitigate moral
hazard in teamsHolmsttdm, 1982 Legros and Matthews1993; in repeated partnership games, the threat of
future non-cooperation following a deviation sustains various equilibrium dynafRadnger et a).19869.



game ends when the common project has a “breakthrough,” the arrival rate of which depends
on the agents’ current effort levels and the unknown quality of the project. This instantaneity
of potential success implies that one agent’s current effort and the others’ future efforts are
strategic substitutes, leading to inefficiencies in the form of procrastination. In contrast, in our
model, uncertainty over the project’s prospects generates a form of strategic complementarity
between an agent’s current effort and the future efforts of others, strengthening the incentives
to exert effort and sometimes leading to an (approximately) socially efficient outcome.

Our paper is also related to the literature on dynamic contributions to public ghdchsti
and Perry(1991) andMarx and Matthew$2000 show that a public project can be completed
by agents who contribute small amounts from time to tirgdirim (2006 and Georgiadis
(2014 assume that the payoff is realized only when the project’s state reaches a pre-specified
threshold. In these papers, the threshold-payoff assumption implies that the effort choices at
different points in time are strategic complements, which plays a key role in mitigating the
free-riding problenf. Importantly, these papers do not feature uncertainty over the project
type. In contrast, our repeated partnership game does not assume a completion threshold, and
the complementarity between current and future effort arises endogenously because an agent’s
effort affects the inferences of others.

As noted above, the signal-jamming mechanism of our paper has been investigated in var-
ious contexts. Sincelolmstiom (1999, the literature on career concerns has analyzed the
“market-based” incentives of a manager who attempts to affect the market belief about his in-
nate ability.Riordan(1985 (oligopoly) andFudenberg and Tirol€l986 (entrant-incumbent
game) consider cases in which a firm has a signal-jamming incentive to make the competing
firm more pessimistic about future profitability. In this paper, we identify the role of such a
mechanism in the context of team production and optimal team deSigirernag2017h ex-
pands the career concerns model to allow general (non-linear) payoffs for the long-run player
in a stationary environment. Using the first-order approach, he shows how “ratchet effect”

shapes player’s equilibrium incentivesCompared tcCisternag2017h, we describe the dy-

6See alsdseorgiadig2016 for how deadlines and the frequency of the monitoring affect free-riding incen-
tives.

’Cisternag20173 generalizes the career concerns model along another dimension by allowing investment in
human capital.



namics of the ratchet behavior inn@n-stationarymodel with a specific form of non-linear
payoffs®

Our infinite-horizon model in Sectiod is closely related to the literature on repeated
games with frequent actiofs SinceAbreu et al.(1991), the literature has shown how fre-
guent actions can be detrimental to cooperat®anhikov and Skrzypac2007 Fudenberg
and Levineg 2007, 2009. In contrast, we show that frequent actions increase the level of

cooperation in our model.

2 Model

A team of N agents undertakes a common project. TimeO,..., T is discrete and fi-
nite. Each period has length> 0, andt = TA is the real-time length of the project. At the
beginning of the game, nature draws a persistent state of the @drtdn a Gaussian distri-
bution.#" (Lo, 1/ Vo), which defines the initial common prior abo@it'° In each period, agent
i chooses an effort level; € R. Each agent’s effort level is not observable by others. We
assume that agenincurs a quadratic cost of effafic; aﬁ/Z, wherec; > 0. The agents have a
common discount facta¥ = e"2, wherer > 0.

Atthe end of each period, the agents publicly observe feedpatkis can be the outcome
of an internal review or feedback from an employer. We assume that the pdeedback is

e =A

Y

N
KgO + Ka Zlan + &
i=

whereg ~ 4 (0,1/vg) is a stochastic noise term with precisiop= Ang, andkg,Ka > 0
are positive constants. We interprgtas the information disclosure rate. Note that the infor-
mativeness of feedback increasefift The parameterg, andkg determine how sensitive

feedback is to agents’ actions and to the realization of the true state, respectively. We assume

8This result is in contrast to the outcomeHioImstidm (1999’s model, where the optimal effort level of the
long-run player may diverge as the horizon becomes longer.

9Recently, lijima and Kasahar§2015 prove an equilibrium uniqueness result for a class of finite horizon
frequent action games which however does not include our finite horizon model.

10In Sectiond, we extend our result to the case of a stochastic state.

HAs A — 0, a linear interpolation of the feedback procegsconverges in distribution taly =
(Ko +Kay] 1 ai1) dt+ ﬁdw, whereW is a standard Brownian motiof\(hitt, 1980).
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that theg;s are independent and identically distributed over time.

Total productiorP is realized at the end of periddand is given by
T
pP—gT Zoe_rtAH’
t=

whereR = AG SN | a; is periodt production and™ is a normalization term? Note thatR

is linear in each agent’s periddeffort, and the staté is the marginal product. Further, note

that in this specification, output is additively separable in effort across agents and over time.
The agents share total production according to a(sile- - ,sy), wheres represents agent

i's share of the total output wit§N ;5 = 1 ands > O for all i. The agents are risk-neutral

expected utility maximizers, with agenmaximizing

U=E

T 2
s€P— zoe‘”AAci ﬁ]
2 2

.
= Z}Ae‘”AE
t=

Remark 1. The agent’s payoff in our model it additively separable in the agent’s action

A a;
2] i 1
S lea,t G-

(at) and the statéf). Such complementarity between the action and the state is crucial for
generating our main result. Without this complementarity, the agent’s marginal benefit of
effort—and, therefore, the optimal effort level—would be independent of the state; thus, the

incentive to manipulate others’ beliefs would disappear.

Remark 2. The agent’s action and the state enter in an additively separable way into feed-
backy;. As we demonstrate in a two-period example in the supplementary material, such
additive separability is not necessary for our results, but it renders our dynamic model very
tractable. In particular, as Section 3 clarifies, this assumption implies that the speed of learn-

ing is independent of agents’ actions, and thus, the agents in our model do not have incentives

120ur assumption that output is realized at the end of the game is not essential for our main mechanism. This
assumption allows the linear feedback to be the only source of belief updating throughout the game and, thus,
significantly simplifies the analysis. Nevertheless, one can find various real-world examples in which the returns
to effort are realized at a specific future date, such as the release of a new product or the issuance of an IPO.



for experimentation. This makes the underlying mechanism of the model different from those

in the literature on experimentation in tear@®(atti and Hirner, 2011 Keller et al, 2005.

A public historyh! € 77 is a feedback sequen@w}}(;%. Agenti’s private historyhf € A
is the combination of the public history and the sequence of his own past effort choices, that is,
ht = {(aik, Yk) }L_5-12 A pure strategy for ageitis a functiona : 74 — R, whereay = g(ht)
is agent’s effort level in period. We focus on pure strategy profiles.

The solution concept is perfect Bayesian equilibrium (PBE).PBE is a strategy profile
a=(a,...,an) and a belief system such that the beliefs on and off the equilibrium path are
derived using Bayes’ rule from the strategies whenever possible, and each player’s strategy is

optimal given his beliefs and the strategies of others.

Benchmark cases We conclude this section by considering two benchmark cases for future

reference. The proofs are straightforward and thus omitted.

1. Static settindT = 0): Agenti’s effort in the unique equilibrium of the static setting is
& static = E[0] = %UO. Note that the socially efficient level of effort (the one without
free-riding) is po.

2. Complete information cas@d = «): Suppose that the state of the woflds perfectly
known. Then, the unique equilibrium profileag = %6 foranyt =0,..., T, while the

socially efficient level iscl—ie.

3 Equilibrium

In this section, we derive the unique PBE of our model. We also discuss the resulting

equilibrium dynamics and the mechanisms underlying these dynamics.

13As usual, we defing® = h? = 0 for all i.
14For the formal definition of PBE, sdeudenberg and Tirol€1991) Definition 8.2.



3.1 Belief Updating

We first analyze the evolution of beliefs on and off the equilibrium path. Observe that
the agent’s deviation is never detected because of the full-support assumption for feedback.
Thus, any public histort' is on the equilibrium path, and hence, the posterior belief is pinned
down by Bayes’ rule. Then, the Gaussian information structure of the game implies that
all posteriors are also Gaussian; thus, any posterior belief is characterized by its mean and
precision.

Define thepublic belief as the common posterior belief under the expectation that the
agents follow the equilibrium strategy profile. Formally, #t= (a;,...,ay) be an equilib-
rium strategy profile, and given a public histdiy= {yk}}(;%, defineﬁ} = {(a_;k,yk)}}(;%) recur-
sively asaip = & (0) anday = a:(ht). Note thath! is a private history of ageritin which he
follows the equilibrium strategfor all t” < t. Then, given the expectation of “no-deviation,”

an element of feedbagk that is purely informative about the stelas
7=y —Dka Y & (),
|

Note that if the agents follow the equilibrium strategy fortalk t, the signalz follows a
normal distribution with meafkg 0 and precisiom; /A.

In each period, the public belief is updated based;ohet 1 andv; be the mean and the
precision, respectively, of the public belief in periodlhen, by standard Gaussian updating,

Lk andv; are recursively determined by

_ Vic1li—1+Kghez—1
Vi—1+DK3Ne

Lt and v = V_1+AKENe. 1)

The private beliefof agenti does not necessarily follow the public belief, as he privately

knows his effort level. Specifically, ageinipdates his private belief based on the signal

Zt =y; —OkKa <ait+ ;ﬁ@)) ;
J#l

wherea; is the actual effort choice of agentwhich can be different frora; (ht). Then, the
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meanfi; and precisiorv;; of the private belief in periotiare recursively determined by

- Va1 +KeNeZi 1
I’llt - 2
Vi—1+AKgNe

and Oit = V. (2)

Note thatfiy = 1 as long as agentfollows the equilibrium strategy. In contrast, once
an agent deviates from his equilibrium effort choice, his private belief and the public belief
diverge. For example, suppose that agedaviates in periodl and playsai = ai*(ﬁ}) +a for
somea > 0 and, thereafter, follows the strategy that the other agents anticipate (that is, he
playsa;(h®) for anys=t-+1,...,T).1% Then, for all future periods, the public belief is more

optimistic than agents private belief. In particular, for any> t,
flis = Us— psa,

where

ps— > Olry1 _0I1t+1' 0z _ AKaKgle
> 0z Oay Vs

ritto OMt
is the rate at which the deviation in peribet s affects the belief divergendé.

Note that agents deviation does not bias his own belief about the state, since he discounts
feedback according to his actual effort level. However, agerdeviation biases the public
belief, which discounts the observed feedback through the equilibrium action. Specifically,
by devoting greater effort, each agent can increase the mean of the publicihdlief any
realization of noise&;) at a rate ofps. This is precisely the mechanism that leads each agent to
have additional incentives to increase his effort.

Finally, note that the precision of the posterior belief is deterministic and independent of
any history. Since the speed of learning is independent of the action, the agents in our model do
not have incentives for experimentation in choosing their optimal effort levels. This property

greatly simplifies our equilibrium analysis, as becomes clear in the next subsection.

15Clearly, playingai*(ﬁ?) need not be optimal for agenfollowing a deviation, as his belief off the equilibrium
path may be distinct from the public belief. In Subsect®8 we provide a detailed discussion of the off-
equilibrium behavior in the unique PBE.

18we define3_;» "gﬁl =1fors=t+1.
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3.2 Equilibrium
We first state our main result.

Proposition 1. There exists a unique perfect Bayesian equilibrium. In equilibrium, agent i's
period-t action is

a; (h) = &t fiie, (3)
whereéit = s/¢;, and

S
fitZE

T k-1
1+ y 1er(kt)AJ§_£jkpkl [ (1—fi|PI)] ; (4)

k=t-+ I =t+1
fort=0,..., T -1

The unique PBE of our model has a remarkably simple structfier any history the
equilibrium action of each agent is linear in the mean of his private posterior beNgé call
the coefficientj; agenti’s belief sensitivity of efforin periodt: It captures the rate at which
the agent responds to changes in his befig)( Note thatj; is deterministic and varies only
with the calendar timé. If the agents are homogeneous (thatijs- c ands = 1/N for all
i), thenéj;s are identical across agents and the unique PBE becomes symmetric. However, the
agents may choose different actions off the equilibrium path, as their beliefs could diverge.
In the Appendix, we formally prove Propositidn Here, we provide an intuitive explana-
tion. First, note that since we assume a quadratic cost fungtiéyi2, ageni’s optimal effort
level equals his expected marginal benefit dividedjbyRewriting equations3) and @), we

express the marginal benefit of effort as follows:

ca; = sk +e s ;Ej.,t+1pt+1+ezmsi fli ;ELHZPHZ(]-_ &itr1Pre1) +-o
myopic benefit 17 17 ,

effect on}?eriod +1 effect on?eriod +2

(. J

signal-]?;\mming
®)

1'This result can be explained as follows: Due to the Gaussian signal structure, the marginal impact of in-
creased effort on belief is independent of the level of others’ beliefs. Moreover, the marginal payoff gained from
the belief divergence is constant due to the quadratic cost function.
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The first term in §) captures the (direct) myopic benefit of effort, which is equal to the ex-
pected social benefifi ) times agent’s share(s). The rest of the right-hand side captures
the (indirect) benefit from manipulating others’ future beliefs. Specifically, this term captures
the extent to which (agems share of) expected output increases as a result of an increase in
i's effort in periodt followed by optimal effort choices based on his private belief.

To understand the benefit from the signal-jamming effect, consider an upward deviation
by agent in periodt in which he chooses; = &; + o, with a > 0. For any realization of
&, such a deviation increases the mean of the peftiadl) public belief (1) by pr10.
Then, in the next period, each aggng i would increase his effort by 10110 (recall
that¢; is the response rate of ageys effort to a change in the posterior mean he holds in
periodt). Therefore, agenis expected benefit from this increase in others’ effosri€'s; fii; -
(z#i ¢jt+1P+10). Since the benefit from deviation is linear én the marginal benefit is
constant and equal to the second termS)f (

For periodt + 2 (and thereafter), the effect of a deviation in periodecomes more
complicated because the agents’ beliefs diverge off the equilibrium path. If agdsys
ai = a; + a in periodt, his private belief in periodi+- 1 is more pessimistic than the public
belief: i t+1 = Hi+1— pr+10. Then, in period + 1, the equilibrium effort level of ageritis

smaller than what the others anticipate:

&1 = &itrallitrr = &itra(Her1 —Pra0).
——

divergence

This divergence of ageifit effort makes the public belief in periad- 2 downward biased. In
particular, L4 is smaller bypy.2 - & 11010 than its level would have been had the agent
taken the anticipated action. Consequently, belief divergence in geridchegatively affects
agenti's incentive in period. We refer to this negative incentive as ttachet effectas the
agent’s current incentive to work is affected by the other agents’ expectations for the'future.

As a result, the agent’s marginal benefit of effort consists of the (positive) direct signal-

18The ratchet effect—the effect of potentially causing high future expectations of the agent’s current
incentives—is extensively analyzed in the literature on dynamic agency models with asymmetric information
(Weitzman 198Q Freixas et al. 1985 and dynamic moral hazard with learning and symmetric uncertainty
(Bhaskar 2014 Prat and Jovanovj@014 Cisternas2017h Bhaskar and Mailat2016.
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jamming effect and the (negative) ratchet effect. Note that similar to its effect on peribgd
agent’s deviation in period directly increasesgy .2 by pr2a. Therefore, agents deviation
in periodt, followed by the corresponding equilibrium strategy in petiadl, has a net effect

of

Eitr2Pre  —  Ejtrep2bitriprr| O = &j P2 (1= &igr1pt41)
SIS h ~— g
direct signal-jamming ratcheting

on agentj’s period{t + 2) effort choice. Summing over all agenits# i, multiplying by s it
and discounting yields the coefficient (af) equal to the third term off). Iterating this

reasoning yields the expression in Proposition

Remark 3. The direct signal-jamming effect in peridds linear in each€j, (k > t). By
devoting greater effort, each agent can directly change the future posterior to which the other
agents respond in a linear way. However, the ratchet effect is (at least) quadr@ti@amd

¢ijk: A deviation creates belief divergence in future periods, and the resulting divergence in
the expected effort level in turn leads to belief distortion in periods further in the future. The
implication of this difference becomes more evident when we consider the continuous-time

limit of the equilibrium below.

We prove uniqueness by backward induction. Note that the above argument for the marginal
benefit holds after any history, regardless of whether an agent has previously deviated. In the
final period ¢ = T), after any historyh!, each agent has a unique best respajgh’ ) =
(s/ci) T, which is linear in the mean of the private belief. Now, suppose that for $pme
the equilibrium strategy after any histon‘f is linear infy for allk=t+1,...,T. Then,
each agent’s best response in periad unique since the cost of effort is convex while the
benefit is linear. Furthermore, our linear-quadratic-Gaussian structure implies that the unique
best response is also linearjip. In the Appendix, we present a formal proof based on this

argument.
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(a) A realization of the equilibrium effos; (b) Belief sensitivityé;

Figure 1: Dynamics of the unique PBE with the homogeneous aglnts3, T = 20)

Equilibrium dynamics Figurel illustrates the dynamics of the unique PBE when the agents
are homogeneousi(= 1 ands = 1/N for all i). Note that with homogeneous agents, the
unique PBE is symmetric; i.e§; = & for all i. The left panel shows a realization of the
equilibrium effort on the equilibrium path (whefe = ). The equilibrium effort leveb; =

& 1 is stochastic and typically non-monotonic over time. This is because the dynamics of the
posterior meany depend on realized feedback. However, the coefficient of the equilibrium
action (belief sensitivity of effort) is deterministic and has more consistent properties. In what
follows, we analyze the equilibrium properties by mainly focusing on the dynamics of the
belief sensitivity.

The dynamics of a symmetri§ over time are depicted in the right panel of Figure
Recall that the myopically optimal level of belief sensitivity—that is, the level without the
signal-jamming effect—is; /¢ = 1/N (lower dashed line), while the socially efficient level
is 1/c; = 1 (upper dashed line). In the graph, the equilibriindecreases over time and lies
between the two dashed lines.

The intuition for decreasing belief sensitivity is twofold. First,tascreases, there are
fewer remaining periods during which coworkers make effort choices, and thus, the agents’
return to influencing the others’ beliefs declines. Second, as the agent$|pwre precisely
over time, they place a smaller weight on new feedback in updating their beliefs, making it

more difficult to affect this belief by changing the effort level.
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Although the above intuition suggests that the equilibrggshould generally be mono-
tonic, this is not always the case. Non-monotonicity may result when the ratchet effect dom-
inates the direct signal-jamming effect. Such a phenomenon may occur when the belief sen-
sitivity in the next period is large. For example, suppose that the (homogeneous) agents in
periodt expect a very large (symmetrié),; (wheret+1 < T). Then, contributing more
effort in periodt creates a very large divergence in expectatiors of; between agentand
the other agents, which in turn, downward biases the pdtiad?) public belief by a large
amount. This quadratic ratchet effect may dominate the direct signal-jamming effect, and thus,
& may be lower thaid; 1. In the supplementary material, we discuss this issue in detail.

Such non-monotonicity disappears when the “real-time” length of a period becomes shorter.
Note that as the period length becomes shorter, the agents receive more frequent feedback and
can frequently adjust their effort levels. In this case, as we solve the equilibrium by back-
ward induction, the equilibriungi; cannot exhibit large “sudden jumps”. Therefore, although
the ratchet effect strengthens graduallyt(gees backward), it does not dominate the signal-
jamming effect, leading to monotonic dynamics.

In the next subsection, we consider the continuous-time limit of the model where the period
length becomes arbitrarily small. In this limiting environment, we establish the monotonicity

of & and conduct comparative statics.

3.3 Continuous-Time Limit and Comparative Statics

In this subsection, we consider a continuous-time limit in which feedback (and the cor-
responding effort adjustment) is arbitrarily frequent. Specifically, we fix the real-time length
T = TA of the game and consider the limit of equilibrium behavioAas 0.

3.3.1 Equilibrium in the Continuous-Time Limit

To derive the continuous-time limit of the equilibrium, we first describe the equilibrium
strategies in recursive form. Defigg(t =0,...,T) recursively as
Sjt=¢& 1P +e P (1—Ei1P1) Sjtras (6)
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with §j r = 0. The variableSj; captures the effect of ageri$ signal-jamming in period,

resulting from changes in ageyis effort level. Then, 4) can be rewritten as

3
fi= g

1+erA;Sj,t] : (7)

Summing 6) over j # i and substituting fof ;. St andy ;4 Sj t+1 from (7) yields a recur-

sive formulation foréj;:

Sit = ? +e ' [2 J; Sjtr1P+1+ (1= &itaprsa) (Ei,t+ - i)] : (8)

i G

Then, writing the variables in terms &f re-arranging, and takindy — 0, we obtain the

following system of differential equations: Foe 1,...,N,

. N
G0 =r (50-3) - e, (““ 3 &)-& <t>2) . ©
9 ,

G Vo+ Netk3 \ Ci &

discounting signal-amming

Together with the terminal conditiords(7) = 5/c;, the above system of differential equations
fully describes the equilibrium dynamics over tif#&° In the supplementary material, we
formulate the continuous-time counterpart of the main model and show that (i) there exists an
equilibrium of the continuous-time model that is described®)yafid (ii) the unique PBE of
the discrete-time model (weakly) converges to that continuous-time equilibridm-as.

The differential equation9) has a simple and intuitive form. The first term captures the
effect of discounting. Note that wheneg(t) is above the myopically optimal leves (c;),
the first term is positive, and thus, the discounting effect decreases the incentive in the earlier
phases (bear in mind that we compéié) backwards front = 7). The second term captures
the effect of signal jamming, and its coefficient is a function of the information parameters
(vo, n,Kg andky). It consists of a linear component and a quadratic component, which capture

the direct signal-jamming effect and the ratchet effect, respectively.

9In this subsection, we slightly abuse notation and reféra®real time in the game.

20This system is a backward Riccati equation. In the proof of Proposgtjome show the existence and
uniqueness of the solution. Whgrandc; are the same for all the system has a closed-form solution expressed
by confluent Hypergeometric and Laguerrel functions.
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Figure 2: Equilibriumé;(t) under the continuous-time limiN = 2,7 = 10,5 = 1/2)

Figure2 illustrates the evolution of belief sensitivity in the limit, wheke- 0, with homo-
geneous agents (left panel) and heterogeneous agents (right panel). It shows that the signal-
jamming effect remains nontrivial in the continuous-time limit. In what follows, we use the

simple form of Q) to further analyze the properties of the equilibrium.

3.3.2 Equilibrium Properties

We begin by establishing the monotonicity of equilibrium belief sensitiity).

Proposition 2. For any i, éj(t) is monotonic and decreasing over time. Moreover, for any
t [0, 7], &i(t) € [¢,. &), where

S p_[s¢ s
R NS

The intuition for a monotonically decreasiggt) is provided in the previous subsection.
In addition, Propositior? establishes lower and upper bounds on the equilibdyi). The
lower boundéi is the myopically optimal level that would be attained in the absence of signal-
jamming incentives.

The existence of the upper bouﬁ_plis due to the ratchet effect, which appears in the

guadratic term of¥). Suppose that we solv8)(backwards from the terminal poiht= 1. At
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t=r1,asé(1) =s/c, the linear term% Z?‘:l &j(1)) is greater then the quadratic ter&(()?),
and thus, the signal-jamming incentive becomes greateg@as backward. However, &st)
becomes larger, the quadratic term catches up to the linear term, which prevents the belief
sensitivity from being greater tha.?

The next proposition states the equilibrium properties with respect to the cost parameter
and the share structure. Its proof is straightforward from equa$iprad Propositior2 and

thus is omitted.

Proposition 3. Consider the continuous-time limit of the unique PBE.
1. Foranyte [0, T}, &(t) decreases inic
2. Foranyte [0,T), &(t) decreases inj¢j #1).

1

3. Suppose that the share structufe=s(sj,...,sy) is setby §= z,fi . Then,& = 1/ci

. J:lcJ
foralli=1,... N.

The intuition for part 1 is straightforward: The agent contributes less effort when his
marginal cost increases. Perhaps more interestingly, part 2 states that'sigéort level
decreases in the marginal cost of other agents. This is because the agent’s marginal benefit of
effort is increasing in the other agents’ belief sensitivity, which is decreasing in their own cost.
This effect is illustrated in Figurg. The left panel illustrates the symmetéc¢t) of a homo-
geneous two-person team, and the right panel skayt$ and&»(t) when agent 2’s marginal
cost has decreased. Note thath &;(t) andéx(t) lie above the symmetri€(t) (black dotted
line in the right panel): If one agent’s cost is reduced, then both agents choose higher effort.

Part 3 shows that there exists a sharing rule that makes the upper bound orsaugisf
sensitivity G_i) coincide with the socially efficient level (&;). Figure2 (right panel) shows
that, generallyf_i does not coincide with /f; (depicted as dashed lines of the respective color):

&1(t) initially lies above the socially efficient level, while agent 2 always underinvests in his

2ln contrast, inHolmstvm (1999's career concerns model, the ratchet effect does not preclude equilibrium
action from diverging under limits (e.gkg — ). This is because in our model, the return to jamming the
feedback signal is endogenous and based on others’ belief sensitivity, which is also subject to the ratchet effect.
The reduction in others’ belief sensitivity due to the ratchet effect compounds the negative impact on each agent’s
effort choice, eventually bounding it.
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effort. If an agent’s cost is higher than that of the other agents, his signal-jamming incentives
may be inefficiently strong, as the other agents are more responsive to belief changes.
The next proposition establishes the comparative statics results for the discount rate and

the information parameters.

Proposition 4. In the unique PBE of the model, for ang {0, 1),

1. &(t) decreasesiinr.
2. &(t) decreases iwg and increases img.

3. &i(t) increases irka but is non-monotone iRg.

Thaté(t) decreases inis intuitive: A largerr makes the future less important and thus
decreases the signal-jamming incentive. The intuition for parts 2 and 3 can be explained by
the coeﬁicient(%ﬂ‘%) of the second term of9: This coefficient becomes larger when
future beliefs become more sensitive to variations in current effort, and consequently, the
marginal benefit of current effort increases. This, in turn, happens when the impact of effort
on feedbackK3) increases or when future beliefs become more sensitive to feedback either
due to a decrease in initial precisiom) or an increase in the signal precisiom)( The
effect ofkg on the signal-jamming incentives is non-monotonic. Specifically, signal-jamming
incentives disappear whedy is too low (feedback contains almost no information ab@ut
or too high (feedback is extremely precise). This implies that there is an interior vakye of
that maximizes the belief sensitivity of effort.

The next proposition establishes the effect of team size, and it states that as the individual
effort level decreases iN, the total effort level increases. The result follows immediately by

inspecting 9) and is therefore stated without proof.

Proposition 5. If the agents are homogeneous {cc and $ = 1/N for all i), then for any
t € [0,T], é(t) decreases in N, and for anyet [0, T ), N& (t) increases in N.
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Figure 3: Equilibriumé (t) in the homogeneous agents case, with different valueg of

3.3.3 Vanishing Free-riding Problem

Finally, we identify a limit condition under which the free-riding problem vanishes. The
following proposition shows that with the share structure established in PropoS3ijtidve

equilibriumé;(t) can be arbitrarily close to the socially efficient level in certain limiting cases.

Proposition 6. Suppose that the share structufe=s(s;, .. .,sy) is set as

1

* Ci
S =1
2j=1¢;
Then, asky — o, the agents’ equilibrium belief sensitivi§y(t) for any te [0, 7) converges

(pointwise) tol/c;.

Figure3 shows the equilibriung (t) in the homogeneous agents case with different values
of ka (ka = 1,5,50). Note that if the agents have the samehens” = 1/N; thus, the equal
share structure induces the socially efficient effort level whkgtis large. Note that ag,
increases, the equilibriud(t) becomes arbitrarily close to the socially efficient leveldt

1) for almost the full length of the horizon.
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4  Stationary Model

In this section, we construct an infinite-horizon version of our model in which the @tate
evolves stochastically over time. We show that our main result and underlying strategic in-
centives continue to hold in the infinite-horizon environment. Moreover, the stationary model
generates an equilibrium with a simpler structure, providing a framework for a broader set of
applications®®

Assume that the time horizon is infinite=£ 0,1,...) and that each period has lendth>

0.23 Let 6 be the state of the world in periddWe assume tha follows a random walk

6[+l:9t+o-t7

whereg is independently and identically drawn from the distributisf(0,A/ng), andng >

0 is the persistence of the state. Similar to the main model, the pefestiback is given

by yi = A[Kgb +Ka 3N ;& + &], wherekg,ka > 0 are constants angl ~ .4 (0,1/An).
Assume that; andg; are independent of one another. For simplicity, we consider a case with
homogeneous agents = 1) and equal share structufg = 1/N).

As in our main model, the posterior belief about the state after any history follows a normal
distribution. Lety; and vy be the mean and precision of the public belief ab8uat the
beginning of period, and lety/ andv/ describe the public beligffter feedbacky is realized.
Then, we havey = %ﬁ%‘ andv{ = v +Ak3ne, wherez = y; — Ak, 5 & (h) is the signal
for updating the public belief given the equilibrium strategjyand the “no-deviation” history

r_l} (defined in SubsectioB.1). Taking into account the effect @k, the periodft + 1) public

22In Subsection$§.3and5.4, we conduct the analysis using the stationary model.
23|n the infinite-horizon model, we reinterpret the discount faetdf as the probability of project survival:
In each period, the project ends with probability & 2, and the team members share the total production.
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belief is characterized B§

Vit + KgNez

Hi+1 = Vt‘f‘AKgrle ) (10)
Vet = (1+A>1: (4 +2K0e) Ng (11)
T\ ne A (Ve +DK32N:) + N

Itis easy to show that, for any value of the initial precisignast goes to infinity,v; converges

to a stationary leveb*, which is given by®

2
ve=1KE (L ay fp2y Mo ) (12)
2 NeKg

We are interested in constructing a Markov perfect equilibrium that has a structure similar

to the unique PBE of our main model: In equilibrium, the agent’s action is linear in the mean
of his private belief, that iy (ht) = & [l

Even though we construct such Markov perfect equilibrium in general environments, for
heuristic purposes, let us first consider the environment with stationary precision, thatis,
v* for all t. In this case, there exists a Markov perfect equilibrium with a stationary sensitivity
level, that is,& = &* for all t. To computeé*, consider the effect of a deviation in period
t on the future beliefs in this equilibrium. Suppose that ageseviates toa = £*[i; + Q.
Then, the periodt + 1) public posterior mean is given .1 = [lit+1+ Aad, whereA; =
bt _ LleKoka  From period(t + 2) onward, the public belief and agei'g private belief

o0& V*+ANeKg
diverge, creating a ratchet effect. A similar calculation as one in the main model yjelds

fit ik + Na(Ay — E*Na)KLa for anyk > 2, whereA, = ‘3(’;;;1 = V*+X;7£K5. Therefore, the

optimal effort level (which equals the marginal benefit of effort) is given by

a:; = E*ﬁit = % <l+(N _1>E* Z e_mk/\a</\y _E*/\a)k_1> ‘
k=1

24gimilar to SectiorB, the private belief of ageritis updated using the same Gaussian updating process as
(10) and (L1) but with the signakif =yt — AKa(&it + 3 ji a’j*(h‘j)) instead ofz.
25The stationary level of* is derived by settingy = w1 = v* in equation {1):
V(A (V' +ANgKE) +No) = (V¥ +ANekF) o

This quadratic equation has a unique positive solution, as shown above.
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Simplifying, we have a quadratic equation or:

N(E*)?—=N(1-T)&*—T =0, (13)

1-e "Ny

Whel‘er == e—r—A/\a

. There exists a unique positive solution £, which is given by®

_1-T+/(@A-T)>+4r/N

¢ 5

(14)

The next proposition states the general result thaafyinitial precisionvy under a suffi-
ciently smallA, there exists a linear Markov perfect equilibrium in which the belief sensitivity

of effort converges to the stationary level.

Proposition 7. Fix vp > 0. There existsA > 0 such that for anyA < A, there exists a se-
quence{& }7 , such that the agent’'s Markovian strategy/(fit) = & [l is a Markov perfect

equilibrium. Moreoveré; — £* ast— oo, whereé™ is given by(14).

In the Appendix, we provide the detailed construction of the linear Markov perfect equi-
librium. First, we construct an agent’s dynamic programming problem pyitind fi; as the
state variables. Making use of our linear-quadratic-Gaussian framework, we guess a quadratic
value function and a linear policy of the agent. Then, solving the problem yields recursive
equations for the coefficients. Using a phase diagram, we show that fapathere exists a
unique value o€g such that the corresponding sequefié&g converges td *. We show that
this sequence satisfies the transversality condition and therefore constitutes an equilibrium
strategy profile.

From (L4), it is easy to derive various properties of the stationary belief sensigvity

which we state in the next proposition.
Proposition 8. In the stationary Markov perfect equilibrium,

1. forany N> 2, &* € (1/N,1);

26Note that ag\ — 0, ' converges t(<r ’,77—‘87 +Ke) /Ka. Therefore, the equilibrium in the continuous-time

limit satisfies the “square-root law”: The effect of doubling the discount rate on equilibrium behavior is equivalent
to the effect of multiplying the volatility of the stochastic process/8: A similar property is observed in various
continuous-time model$-@ingold and Sannikg2011, Daley and Greer2012 Frei and Bernard2015.
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2. E<O;

3. % <0,
4, K<0;
5. —a > 0; andlimy, & = 1.

Part 1 implies that the main result in Secti®r-that the presence of uncertainty alleviates
the free-riding problem—-does not depend on the existence of a deadline. Moreover, it shows
that the signal-jamming incentives ggermanentvith stochastically evolving states.

The comparative statics results of Parts 2-5 are analogous to the results in SeCiidn
Part 4 differs from the results of the main model, where the impacg oh &; is non-monotone
(Propositiord). In the main model, the signal-jamming incentive disappears wigdaa too
low, as feedback becomes uninformatreative tothe prior belief about the persistent state
6. With stochastic states, however, the stationary precigioalso becomes smaller &g
decreases. In this case, feedback remains informative relative to the existing information,

leading to a monotonic relationship betwegnandé *.

5 Discussion: Team Design

Our analysis implies that the dynamics of the agents’ incentives depend on the design of
team structures, especially ones that affect the agents’ beliefs and learning processes. In this
section, we take advantage of the tractability of our framework to address questions concerning
optimal team design/Me discuss the following four aspects of teams: (1) imperfect monitoring
of effort; (2) uncertainty of a project; (3) flexibility of a team; and (4) asymmetric information
among team members. For the last two items, we conduct the analyses using the stationary
model introduced in Sectiof

To keep the analysis simple and transparent, we assume throughout the section that the
agents are homogeneo(s = 1) and that they share the output equally= 1/N) unless
otherwise stated.
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5.1 Role of Imperfect Monitoring

Our results highlight a mechanism whereby the presence of uncertainty indirectly induces
signal-jamming incentives that alleviate free-riding. This mechanism contrasts with direct
reward/punishment schemes that are extensively studied in the classic literature on teams
(Alchian and Demset972 Radner et a).1986. It is interesting to note that while accurate
performance measures enhance the effectiveness of direct reward schemes, such measures are
detrimental in our model. In fact, our assumption that the agent’s effort level is unobservable
is crucial for the existence of the signal-jamming incentive. The following proposition shows
that if a; is perfectly observable to others, then each agent chooses the myopically optimal

effort level. Its proof is straightforward and is thus omitted.

Proposition 9. In the perfect monitoring case, there exists a unique PBE where for any t
o,..T,
ay = gut-

From the perspective of team design, Proposifidnghlights the role of signal-jamming
incentives as an alternative to standard reward/punishment schemes. In the classic literature
on teams, the inability to monitor individual effort (or its high cost) is typically considered
a major obstacle to inducing cooperatfdnProposition9 suggests that if the monitoring of
individual effort is indeed costly, it may be advantageous to choose a project with uncertain
prospects instead of investing in the monitoring structure and establishing formal incentive

schemeg®

5.2 Optimal Level of Project Uncertainty

Risk taking is considered one of the main elements of entrepreneurial behavior. The liter-

ature suggests various explanations for risk-taking behavior, such as the higher premiums or

2’For exampleAlchian and Demsetg1972 write, “...In team production, marginal products of cooperative
team members are not so directly and separably (i.e., cheaply) observable...The costs of metering or ascertaining
the marginal products of the team’s members is what calls forth new organizations and procedures.”

28Bonatti and Hirner(2017) also show that perfect monitoring may lead to more inefficient outcomes. Never-
theless, the mechanism underlying their result differs from that in our pap@anatti and Hrner(2011), when
it is observedhat an agent worked hard, the agents are incentivized against contributing effort in the future. In
contrast, in our paper, the agent’s effort shows strategic complementarity ovewhiemeeffort is unobservahle
which provides positive incentives under imperfect monitoring.
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risk-loving preferences of entrepreneurs. In this paper, we identify an alternative motivation:
undertaking an uncertain project can benefit organizations by mitigating the free-rider prob-
lem Our result indicates a natural trade-off between such a benefit and the standard cost of
uncertainty due to the potential mismatch of the effort level and the state. In this subsection,
we show that there exists an optimal level of uncertainty that balances the trade-off.

Suppose that the manager of a team faces a choice of projects with varying uncertainty.
The team manager tries to maximize the ex ante total payoff of the team. To clarify our
analysis of the trade-off, we consider the case in which all projects theveame ex ante
value under complete informatiorRecall that if the project stat@ is perfectly observed at
the beginning, then the equilibrium actionas(t) = /N for all t € [0, T]. Since the state
6 is normally distributed with meapy and precision, the agent’s ex ante expected payoff

beforethe realization of is

Eo UOT <6~ai*(t) —ﬂ;))z) dt} _ % (1—%) Eo [67]

T 1 , 1
- () (5)

Note that the payoff structure of our model implies that the value of project is convgx in
Therefore, choosing a risky project (one with a snvg)lis always beneficial under complete
information.

Now, consider the original model whefeis unknown. We consider the optimal choice of
uncertaintyvo subject to a constraint? + V—lo = k for somek > 0. This constraint requires that
the mean of the project decreases as its level of uncertainty increases, offsetting the inherent

benefit of risk taking described above.
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Figure 4: Ex ante payoff as a function af, with different levels okg

Given the constraint, the ex ante expected equilibrium payoff is givéh by
(t 2 T t
(—»> dt} = /O () < — %) Eo [u(t)?] dt.

Eo {/OT (9~ai(t)—(a'2
Lol D))

Note that as the project uncertainty becomes larger, the cost of uncertainty (captured by the

term 1/v(t)) increases, while the free-riding problem is alleviated si&fg uniformly in-

creases ivg forallt € (O,T).
Figure4 illustrates that the trade-off between the two effects leads to an interior optimal
level of uncertainty. The optimal level of uncertainty naturally depends on other parameters of

the model. For example, Figudeshows that the larger sy, the larger is the optimal level of
uncertainty. Intuitively, a largexg means that learning takes place faster. Therefore, the cost

of uncertainty (via a mismatch between effort levels and the state) quickly disappears, leading

to a higher optimal level of uncertainty.
29The second equality is derived by the distribution of equilibrium posterior rgaBincez = 6 + & on the

(tro-45 )
_ Ve ) -

equilibrium path, and thes are independent across time, we hg{elzs =t0 + 5 F es ~ A4 (two, % +
)) =N (Ilo, \Tlo — %) . This result naturally extends

. 3 2/,
Sincep = {2 Ho+ 4 3 g% Hi~ A (uo, (%) (2+2
to the continuous-time limit.
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5.3 Effect of Flexibility

Another interesting question regarding team design is how the ability to frequently receive
feedback and adjust actions accordingly affects the dynamics of team incentives. In our model
of dynamic team production, flexibility is captured by (the inverse of) the period lehgi
the literature on repeated games with imperfect public monitoring, it is well known that in the
limit of flexible actions(A — 0), cooperation may weakeAreu et al, 1991) or completely
break down $annikov and Skrzypac2007). In sharp contrast to these results, we show in
this subsection that the degree of free-riding diminishes as the team becomes more flexible.
This result highlights an interesting contrast between the signal-jamming mechanism in our
paper and the classic punishment mechanism in the repeated games literature.

In our formal analysis of team flexibility, we use the stationary model developed in Section
4. Recall that in the stationary model, there exisf$, v*) such that ifvyg = v* there exists
a stationary Markov perfect equilibrium in whidj = &*fix andv; = v* for all t. Next,
the proposition states that as the agents’ actions become more flexible, the signal-jamming

incentives in the stationary equilibrium become stronger.
Proposition 10. In the stationary Markov perfect equilibriur%%* < 0.

The intuition is straightforward. Suppose tifats arbitrarily large so that the agents are
not able to frequently adjust their effort levels. Then, the effect of information on the future
effort level would occur far in the future, and thus, the signal-jamming incentive vanishes.
However, as\ becomes smaller, the agents have more frequent opportunities to manipulate
others’ beliefs, leading to a higher benefit of effort.

Proposition10 contrasts with the results in the classic literature on repeated gésaes.
nikov and Skrzypac2007) consider a repeated partnership game with imperfect public mon-
itoring (but no uncertainty regarding the underlying state). They show that&s-a8, it is
impossible to achieve cooperation using the punishment scheme. Under flexible actions, any
strategy profile must punish the agents based on the noisy information, which increases the
cost of type | error, which eventually outweighs the benefit from future cooperation. In con-
trast, the equilibrium strategy profile of our paper does not involve any direct punishment, and

the incentives become stronger as a team becomes more flexible. Our result suggests that the
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Figure 5: Ex ante payoff as a function &f

signal-jamming incentive in our model may work better than the standard punishment scheme
under certain conditions of organizations.

To analyze welfare, note that in the stationary equilibrium, given any realizatié thfe
mean of the public beliefy follows a normal distribution with meaé and variance Av*.
Therefore, conditional on the true state befhgeach agent’s expected stage payoff is

* *2
e(1-5 ) e 15)

2v*

Observe that the variablecan impact the payoff through two channels: (i) its impact on effort
incentives £*); and (ii) its impact on the stationary level of uncertainty1). As discussed
above, more flexibility improves effort incentives. Moreover, inspectirif) (eveals that more
flexibility increases the stationary precisioh. As a result, increased flexibility (i.e., smaller

A) is generally welfare improving, as depicted in Figarét

3ONote that we analyze the welfare outcomes by computing an expected stage payoff given a fix@d state
The ex ante payoff of the stationary model is not well defined, sthéellows a random walk so that the long-
run expectation 08? diverges. Yet, we claim that our exercise is valuable. Fird, fbllows a mean-reverting
process, the expectation f would not diverge. In this case, we conjecture that the welfare result is consistent
with our analysis. Second, for any initial finite number of periods, the expectati@hisffinite, and in this case,
the above qualitative discussion remains valid.

31This discussion ignores a second-order effect that appears in welfare calculatignsnagases, the cost
of mismatch increases (as captured by the second terbyf (f 67 is sufficiently large, such a negative effect
becomes relatively weaker than the benefit from t§gh
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5.4 Asymmetric Information: Role of Experts

SinceHermalin (1998, the economics literature on leadership has analyzed the effect of
information transmission and incentive provision by an informed member (leader) of &team.
Our framework enables us to analyze such effects of leadership in dynamic environments. For
this, we extend the stationary model presented in the previous subsection to the asymmetric
information case in which some team members perfectly know the true state. We refer to such
team members asxperts The other team members, povices are uninformed, as in the
previous model.

Consider a team witN® experts andN" novices(N®+ N" = N). We assume that the state
6 follows a random walk, as in the previous subsection. The experts are perfectly informed
of & in each period, while the novices update their beliefs based on feedback. Thetperiod-
feedback is given by; = A[kg6 + ka(N®af + N"a") + &], whereaf anda]' are the period-
effort levels of experts and novices, respectively. We assume that the experts do not have a
direct method of communication.

We construct an equilibrium in Markovian strategies in which the expert’s effort level is
linear in the current state and the novice’s effort level is linear in the mean of his private belief,

that is,
a‘le:)'feh a'tnzftﬂit-

Then, a sequenci(yt, &)}~ o, combined with a sequence of belief precision levels;” ,,
completely describes the equilibrium strategy profile.

Note that under asymmetric information, the experts’ actions can affect the precision of
novices’ beliefv;. Given the above linear Markovian strategy profile (and the belief that
the novices have never deviated in the past), the novices understand that fegdiratke

equilibrium path is given by

i = Alm 6 + KaN"& L + &,

32In the leadership literaturéjermalin (1999 andKomai et al.(2007) show two different channels through
which an expert can improve the overall welfare of a team. In the former paper, expert effort (perfectly monitored)
provides extra information that reduces the payoff loss resulting from uncertainty. In the latter paper, by working
hard, the expert caencouragether members to work hard. In our model, both channels are present.
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Figure 6: Value of y*,&*,v*) whenN®=0,...,4 (N =5)

wherem = Kg + KaN€y. Therefore, as the experts’ response (ggincreases, feedbagk
becomes more informative abot leading to more precise novice beliefs.
We show that there exists a unique stationary Markov perfect equilibrium of the asymmet-

ric information model, as stated in the next proposition.

Proposition 11. There exists a unique tripldty*,£*,v*) such that ifvp = v*, the linear

Markovian strategies
ay (B)=vy&  ay (i)=& [,
constitute a Markov perfect equilibrium. In this equilibriusa,= v* after any history*®

Figure®6 plots the equilibrium values df* andy* and the stationary precisiart against
the number of expertd\®) on a 5-person team. First, note that#sncreases, the team mem-
bers’ incentives (captured k" andy*) decrease. The intuition is straightforward: As there
are fewer novices who are influenced by feedback, the incentives for signaling (for experts)
and signal-jamming (for novices) decrease. However, the stationary preeisinoreases in
the number of experts, as the experts’ efforts make feedback more informative about the state.
To measure the welfare effect of team composition as in the previous subsection, we cal-

culate the expected stage payoff of the experts and the novices in the stationary equilibrium.

33For a general value afy, finding a sequencgy, &, vt ) that converges to the stationary value is analytically
intractable. However, the numerical simulations suggest that, similar to the analysis in Settiercontinuity
of the vector field may lead to the existence of such a sequence.
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Figure 7: Welfare of a team witfiN®,N") = (0,5) (blue lines) and a team witfN® N") =
(1,4) (red lines)

Given the period-state6;, the sum of expected payoffs of all agents is given by

%2, .2
+N"E d “t]

202
neE | & ey g — YO

9{ e ngx*
N > N(NV*BwNEut)— >

e V3N p2 ol (ee E5 ) g2 &7
ey )L e £

The above argument implies that having an expert helps a team when the benefit of provid-

ing more information outweighs the cost of an increasing free-riding effect. Figliustrates
the impact of feedback responsivenags(left panel) and state persistengg (right panel)
on the expected payoff of two teams: one with five novices (blue lines) and another with one
expert and four novices (red lines). When feedback is uninformative of the state (gnall
or the state is less persistent (sm@}l), then the informational contribution of an expert is
important, so the team with an expert does better than the all-novice team. This advantage of
having an expert disappears rag becomes large (so that the team members receive precise
information even in the absence of an expert) or whgrbecomes large (so that there is not
much uncertainty).

Finally, we consider the impact of the share structure between experts and novices on team

welfare. FigureB plots the total welfare of a team wittN® N") = (1,4) as a function of the
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Figure 8: Team welfare as a function of the expert’s share

expert’s share, assuming that the remaining output is shared equally among the novices. Note
that the optimal share structure is asymmetric, with the expert’s share excegtling 0.2
(dashed line). Intuitively, the impact of increasing the share of experts is similar to that of
replacing a novice with an expert. Thus, when the informational contribution of an expert
becomes important (such as with smidl andng), the expert receives a larger share in the
optimal share structure. Our numerical analysis is preliminary, and analyzing the optimal

share structure (which may be history dependent) is left for future research.

6 Concluding Remarks

The main insights of our paper, along with the tractability of the linear-quadratic-Gaussian
framework, present new opportunities for future research. Here, we discuss three potential
research directions.

First, one could set up a model in which the payoff and informational externalities can be
disentangled, and thus, the agents’ efforts over time exhibit either strategic substitutability or
complementarity conditional on the parameter values. This would provide a unified analysis
of the effect of uncertainty on dynamic team production.

Second, it may be interesting to consider the case with private feedback. Suppose that the

agents receive private feedback in addition to public feedback. Then, in contrast to our main
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model, other agents’ beliefs also become relevant to making the effort choice, as they convey
additional information about the true state. Then, in addition to signal-jamming, there will
be a signaling incentive for each agent. Extending our model to this case would allow us to
analyze additional issues, such as the optimal design of feedback structures in organizations.
Finally, comparison between the signal-jamming mechanism in our paper and the standard
punishment mechanism deserves further exploration. In the infinite-horizon model, there exist
many other non-Markovian equilibria that rely on a trigger mechanism to induce cooperation.
Following the insight oSannikov and Skrzypa¢2007), we conjecture that such trigger equi-
libria would not survive under flexible production, whereas the Markovian equilibrium of our
paper would survive and continue to exhibit cooperation. Comparing other aspects of the two

mechanisms and analyzing possible combinations of the two are left for future research.

Appendix

Proof of Proposition 1

First, recall that given any pure strategy profile, the Gaussian belief updating process
(equationsl and2) implies that the agents’ beliefs after every pertdaistory can be sum-
marized by(p, (fat, - .., fInt)), wherep: and Iy are the mean of the public belief and agent
i's private belief in period, respectively. Furthermore, since every public history is on the
equilibrium path, all agents believe that the others have not deviated after any history, and
thus, agent believes thafijr = i for all j #i.

We employ backward induction to prove the proposition. In the last period, each agent

maximizes his stage payoff:
2 2

a . a
a,-*(hiT) =arg n;aXET [As@ <a+ Zﬁ}})] —AciE = argmas fhr <a+ ;aﬁ) —ciE.
bl JF#I

The first-order condition yields agers unique equilibrium effore; = (s/ci) fir = &t it -
Now, suppose that the claim of the proposition holds for petried onward—that is, in

any equilibrium of the game, agehplaysa,-*(h!‘) = &k fork=t+1,.... T, whereéj is

35



defined in §). To solve agents optimization problem in periot] we first compute the impact
of his effort choice on future public beliefs. Recall (from Sectiof) thata; = a*(ﬁ}) is agent
i’s equilibrium effort at public historyt' if he has not deviated in the past—that is, the other
agents expect agento playa; ath'. Suppose that agenplaysain periodt. Then, using )
and @), we have

A AKaKgNe

~ Vi
Pey1— g1 = —— (e — ) +
Vt+1 Vi+1

(a—ait):%(I—‘t—ﬂit)erwl(a—ait)- (16)

For periodd + 2 onward, we use the induction hypothesis that in peried + 1,..., T agent

i playsay = & [, while the others expect him to play = & 1. Therefore, we have

~ n k-1 Vi . Ok k—1
Hic— Hic = (M1 — Bigen) [ (— — & P|+1) = (M1 — ui,t+1)pt— [1 A-&im),

I=t+1 \ Vt+1 +1)=2t41
(17)
fork=t+2,...,T. Substituting {6) into (17) and re-arranging, we obtain
R 1 R _ k—1
Nk:Uik+<_(“t—llit)+(a—ait)) o [] A=Sip). (18)
Pt I=t41

In periodt, agent’s optimization problem is given by
t A o a’
ar(hl) = arg rr;aﬁuit a+ ;aT(hjt) - ciE
IE4l
2

T E2\ . R
Y e Ak ((Sfik —ci—é") g +s ;fjkaUik> | a] :
k=t11 171

Note thatfly for k=t+1,...,T is independent o and has expectatiofiz. Substituting

+ [

Uk with (18), eliminating additive terms that are independenaoénd replacinglix with its

expectation whenever appropriate, agémproblem is rewritten as

& (hi) = argmax s fiy

T ) k-1 2
1+ y e "A( U;Ejkpk [1 A-&n) a-G—.
k=11 = I=t41

It is clear that the problem is concaveammnd has a unique solution. The first-order condition

36



immediately yields the desired result.

Proof of Proposition 2

First, we show that there exists a unique solution2p (hich defines an autonomous
first-order nonlinear system of differential equations. Defifig = (&1(t),...,En (1), v(t));
thendu(t) = F(u(t)), whereF is a Lipschitz continuous function given af¥a, Kg,r, Ne, Ng)-
Then, by the Picard-Lindef theorem Teschl(2012, Theorem 2.2), there exists a unique
solution to this system in the domdi® T| with the boundary value§ (1) = s/c; for all i.

To establish monotonicity, we first observe tt&a(tr) < 0. Suppose, for a contradiction,
that there existandf € [0, T) such that; (f) > 0. By the continuity of; (t), there existd; > 0
such that; (t) <Ofort e (T —A,1] andéi(r — Ay) = 0. Without loss of generality, assume
thati = 1 attains mifA;|i = 1,---,N}, with the convention tha&j = oo if é,- (t) < O for allt.
This in particular implies thazfi(r —Al) < Ofori# 1.

Next, we claim thaﬁl(r —Al) > 0. By taking derivatives of both sides d)(and using

&(1—Ay) =0, we obtain

2,3 N
= NeKgKa NeKpKa S1

N
~ S1 ~ ) - -
&(1-01) = — > §(T—01) = &(T—L1)° | —————5— > &(T—4q).
(Vo-l— l’)gtKg)z C1 gl J Vo + r’etKg C1 ]Zl ’
Since over(T — A1), & is strictly decreasingy (T — A1) > s1/c1. Therefore, the first additive

term in @) is positive. Theng1(T —A;) = 0 implies by ) that

This, together Withéj(r —Ay) <0, establishes our claim thd(t — A7) > 0. Now, since
él is continuousfl(r —Al) =0 andél(r —Al) > 0, there existg > 0 such thaél(t) >0
whenevet € (1 —A; —¢,7—A,), a contradiction establishing that for gli& < 0.

Monotonicity immediately implies the lower bound éit). Again, & (t) <0 implies, by
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(9), that the term in parentheses on the right-hand side must be positive. That is,
N
=Y &) > &2

Taking the square roots of both sides, summing o\ard rearranging establishes the upper
bound. The above argument implies that a solution does not blow up in finite time; therefore,

a solution exist¥'T € [0, ).

Proof of Proposition 6

By (9), whenevek;(t) is less than the upper bour{ﬁl(t) — —00 aSKa — 0. Together with
monotonicity shown in Propositio, this implies tha€;(t) converges pointwise to its upper

bound, which is fc; under the specified sharing rule.

Proof of Proposition 7
Dynamic Programming

Recall from (0) and (L1) that the mean and the precision of the periqalblic belief is

recursively defined as

Ko (M AKENe) Mo
Vi +AK2N, A (vi+DAK3Ne) + o’

MUe+1 =

wherez = y; —AKa 3 ai*(ﬁf) andai*(ﬁ}) is the equilibrium strategy given that the agents have
never deviated in the past. The private belief of ageatharacterized by the mean and
precisionvi—is updated using the same Gaussian updating process but with thezignal ~
Yt —DKa(@it + 3 j4i aT(thj)) instead ofz. Note that the public and private beliefs have the same
precision(v; = Vi for anyt), andv; is independent after any public history.

Now, consider the agent’s optimization problem. Given the linear Markovian strategy
a; = &[lit, the agent’'s expected continuation payoff is a functioh g and . Denote the

agent’s period-continuation payoff a%; (i, 4 ). Then, agent's the optimization problem is
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written as

2
. a2 .
Vi (fit, ) = max%(aJr (N=D)ép) — - +e "BEt M1 (g1, o))

Suppose that there exist constaats1, ot+1 and i1 such thadi1(flit+1, H41) = @1+
O’t+1ﬁi2,t+1 + Besaflit+1tk+1- Then, we have
[lit a?

Mi(fie, p) = maxes (@t (N—1)éep) — =

8 (@y + O a B[4 1) + BeyaFa g akha]) -

Since
Etlyi] = Alkgfit +Ka(@+ (N—1)& )]
Et[z] = Ei[yt —AkaN&i ] = AlKgflit + Ka(@— &tpht)]
Et[2] = K[yt —Aka(a+ (N—1)& k)] = Aol
Ee[zez] = By — By Aka(NE e + (a+ (N — )& ) +A%KE (a+ (N — 1)& )N i
= (Etlyt] — Aka(a+ (N —1)& k) (Ex[yi] — AkaN&; ) +Vary ()
= BEt[Z]Ei[z] +Van(y)
Ei(Z] = (Byf2i])®+Var(y),

AZKEZ, A
T ner we have

whereVar (i) = A%[k3Var (&) +Var (&)] =

N 5 N\ 2 2
. Ve it + K j N K
Et[“iz,t+1] = K [(tu't—eznez't) ] = IJi?Jr (9—’72) Vari(yt),

Vt+AK9ng Vt+AK9’7£

. Ve it + KoNeZit\ [ Vilk + KoNeZ
Fe[ - E
A t[( Vt+AK5’7£ ) ( Vt+AK5’7£ >}

~ Vil +DKgNe (K +K a-— K 2
g vk oM (Ko it + Ka( Et“t))Jr( 6’782 ) Vari(yt).-
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Therefore, the first-order condition faryields

1 _ AKeKar’g ~
K ~4e rA _=nghalie it
% (N At Vt+AK5f7£> t

which is linear infi, with

1

_ AKgK
f= e M e (19)

Ve +AK3Ne

Plugging ina; = & [l into the payoff function, we have

~ 2
i) = B (N D& - S B

0 2

~D Kghe

4+ | — V

1 t+1 (ult (Vt A g 5) art(Yt)))

Vel + DKgNe (Ko flit + Ka&t (flit — L)) ( KoNe )2
- Vv .
+B[+l <<I’llt Vi +AK§ng + Ve +AK5’7£ art (yt)

+e—rA

Simplifying, we have the following recursive equations fax, oy, 3 ):

2
_ Kgne
— A 4 (0 + (—) Var,
W <wt+1 (Ot+1+ Br+1) v+ AK2s t(Wt)

¢t ft TN ( AKgNe(Kg + Kaét)
a = ——t e a
t N t+1+ Bt e+ K21
N—-1 _ Wt — DAKgKaNeét
= +e . 20
B N ¢t Bii1 Ui+ D21, (20)

Combining @9) and @0) yields the formula of3 in terms ofé;, which is

2
e (e (21)

Then, by pluggingZ1) back into 0), we derive the recursive formulation féy:

1

i e—rA;2 (AK@Karle(EtJrl - Et2+l) Vi1 (EH_l B N)) . 22

1
&=
N Vi +AKgNe
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Equilibrium Profile

Given the recursive formation, we conduct the phase diagram analysis to construct linear

Markov perfect equilibrium. Equatior2®), combined with the recursive equation fgr

(vt +DKENe) No
A (v +DKENe) +No’

Vt41 = (23)

determines the evolution @fx, &) in equilibrium. EquationZ3) implies that given an initial

precisionvg > 0, the sequencegv; };> , is deterministic and is independent of the strategy
AVtZJFAKg”th*Kg’?ErIU
A(W+DK3Ne)+No

2
ngKe 2 Ang ine@Ytl No
VAES ( A+, /A +ng;<g>' Furthermore, smcgm = <A(vt+AK§ng)+no> € (0,1) for

anyv; > 0, the sequencgv; } converges to* ast — o for any value ofvg > 0.

profile. Sincevi;1— v = — , there exists a unique positive fixed point

To analyze the dynamics &f, we rewrite 22) as

1 1 _
& — N € rA/\ut (ft+1 - N) +e " Nat (Et+1 - Et2+l) ’ (24)
whereA; = ﬁ? and/\g = fﬁ—%’%’%—i. Solving foré&. 1 yields
(/\pt+/\at)+\/(/\pt+/\at)2 41\% (E %A/\m)
Et(rl)(ft) = 2A ,
éi1(&) = R T (25)
o) (/\yt+/\at)—\/(/\yt+/\at)2 4/\"’2 (Eﬁ#)
\€t+l(ft) = 2t :

Note that botfft(jl)(ft) andft(;f(ft) are well defined if and only i§ < E where

Ny (= 1—e A : 1A e™(Au+Aa)?
2 at B ut _ _ ut ut at
(At +Nat) o TA ( N > 0= ¢ N 4Nat )
~ ),z Apt+/N\
and&() (&) = &.1(8) = M.

Fix v > 0. Then, it is easy to check that for any> 0, there existé such that ifA < A,

then/A\,t > 1— € and/Ay < € for any v > V. Moreover, Iirmﬂoét—ﬂ— =

41

HE _

: 45 > 1. Thus, for



sufficiently smallj, Et(jl)(f) > f > 1 for anyv; > V. Sinceét(fl)(ft) > 5&1)(5) forall & < f
if we seté;i 1 = Et(jl)(ft), thenéi 1 > E soéi2 is not well defined. Therefore, in order for
the sequencéé; } to be well defined, it must be thét, ; = ft(;]?(‘ft).

On the other hand, fron24) we have

Eir1— & = € PAat(Ei1 — E(W) (& — E(W)), (26)
where
R 1-T 1—T{)2+4r /N
E(w) = t+/( . t)°+4rt/ ’
_ 1-Ti—/(A-T)2+4ryN _ L ™Au _ (KGN (i+AKgNe+H(1-e ) vo) i
§w) = 2 ,andry = e*m/\atu - (Vt—le—AKgng+VU§e_rAAK9Kang >0.Itis

easy to check theﬁ(vt) € (1/N,1) andé(v) < 0.

2
The above argumentimplies th@t 1, &+1) = G(w, &), whereGy (v, &) = A(Vt+AK9’7£)nU

(vi+0k3Ne)+no’
andGy (v, &) = Et(gl)(ft). Figure9 describes the phase diagrany of, &) induced byG. Note

that the space is divided into four regions by the two lines v* andé; = é(vt). The hori-

zontal linev; = v* illustrates the dynamics of: If v < v*(w; > v*), thenvi,1 is greater than
(smaller than); but vi,1 never crosses*. Therefore, regardless of the initial precisief
the sequencév; } is monotone and convergesud ast — . On the other hand, the dynamics
of & are depicted by the ling = f(vt). Note thaté(vt) is downward sloping and intersects
with thev; = v* line at(v*,&*).34

Then, by the continuity of the vector field, there must exist a unique curv that
passes througfv*, £*) such that if(w, &) € &2, thenG(w, &) € <. Note that?? must lie
on the upper-right and lower-left regions. In Fig@eZ? is depicted as a blue line. Thet?

34To prove that (v) is downward sloping, note that

08 1 —(1-T)2+ 2

(1-Tp)2+ 2T
O _ (DR +2vo(vi+-Bk)ne) +(1-e™)vE
ow (Vi + AK3)Ne + Vo ) 2e "2 AKgKaNe ’
and thus, R R
0¢& 0& oIy
EARERARAA P
dV’[ drt th <
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&t

1 v
E(Vt)

v*

Figure 9: Phase diagram 0f, &)

defines a functiox : Ry — R such that for anyg > 0, (v, =(Vp)) € &2. Therefore, for any
initial precisionvy, there exists a unique valigVvp) such that the corresponding sequence
{w, & }2 o converges tqv*,&*). Since the sequence satisfies the transversality condition, it

constitutes the Markov perfect equilibrium.

Proof of Proposition 8

(Parts 1-2) Sincé is independent oN, it is straightforward from 14) that* decreases
in N. Definef(x) = Nx®—N(1—T)x—T, then for anyN > 2, f(1/N) = —1+1/N < 0 and
f(1) = (N—21)I > 0. Thus, the solution tal@) must lie between AN and 1.

(Parts 3-5) Notice that

* —(1-T1)2+ 2
ok _ 1y, —arRg
r (1-T)2+4r

1 (1-T)2+ 2 —1+3)
= E(‘”\/ a-rpsar ) <°
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Then, from
1_ep, (@D (E 1), /14 e,

e AN, 2 Ka'

it is easy to show thag- > 0, j—,g) >0, andc;’—Kra < 0. The limit result fork, is obtained from

the fact that ling o &* = 1 and thal” — 0 askg — .

Proof of Proposition 10

) =C (em+1+(em—1),/1+ %) ;

whereC; = 2"—& andC, = #1o. Then, we have,
¢}

Rewritel as

NekK,

_ 3
() = C rem+rem\/1+%+(em—1) C2/8
Vit
C 1-e™ C
_ A J1e 22— 2
= C€ <r+ 1+A (r A A2+C2>)>O’

sincer > 1—e"2/A for anyA > 0. Since% < 0, (see the proof of Propositid) we have

the desired result.

Proof of Proposition 11

Given a linear Markovian strategy profig = y* 6 anda = £*[Iit, and given the belief
that the novices have never deviated in the past (which implies y for alli=1,...,N),

the novices understand that feedbggcls of the following form:

Vi = A[Kgl +Ka(NaF+N"a]") + &],
= A[m*@t —+ KaNnE*Ht —+ Et],

wherem* = kg + kKaN®y*. Then, after observing;, the novices use the signal = y; —

AkaN"E* L to update the public belief about the state. [t vi) and (4, v/) be the mean
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and precision of the periodpublic belief before and after observiyg Then, by standard

Gaussian updating,
p_ ViH Mz

H Ve +Anene
Then, the public belief in period+ 1 is

V= v +An¢ne.

p Vit + M ez

Her1 = Hiy1= Vi +Am2n;

1 A\t (Vt +Am2ne)ng
e = (W*n_o) T A

Solving 27) with vy = vy, 1 = v*, we obtain the stationary precision

*_m*zn&‘ 2 4’70‘
vt = > <A+”A+m*2ne )

(27)

(28)

Similar to the proof of Propositioid, we solve the dynamic programming problems of the

expert and the novice to obtain the valuesyofand £ *. Denote the stationary continuation

payoffs of the expert and the novice under the stationary Markovian profid &8, 1) and

V*( [, Lk ), respectively. Then, we have

2
W* (6, 1) = maax%(a‘f‘(Ne_l)Vkel‘f’an*Ut)_%+erAEte[W*(etJrl;UtJrl)]'

A

V¥ (i, ) = maxa (@4 Ny fie + (N = 1)&" ) —

! 2
N

2

+e "AEp V(i g1, Mr+1)] -

Applying a guess and verify method—similar to one used in the proof of PropoSitien

each dynamic programming problem, we obtain the equatiomsfer kg + kaNey* andé&*:3°

(1_ efrA)V* +Angm*2
m*

(m'—m) = e "Ancki——

1— e "dYy* + An.mt2 1 B N,
( ) ALY SR S rAArleKa(Wf —52),

n* N

35The detailed calculations are available upon request.
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wherem= kg + KaNWe. By dividing (30) by (29) and simplifying, we have

_N° m* — Kg

¢ N M —kg+ NN — 1)Ky’

(31)

Finally, plugging £8) and 31) into (29), we obtain the equation fan* given by

en|n

(€2+1)+(€2-1) 1+ 4 *< ) NEN
m* ( m* —m+

2
2K3%

e/NM)2
Ka> (m*—m) = N E\Il\i ) (m*—Kg), (32)

which has a unique solution that satisfiegs> m.
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