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Abstract

We study the dynamics of team production with unknown true prospects. Team mem-

bers receive interim feedback that is informative of their current effort levels and the

project’s prospects. We show that the presence of uncertainty alleviates inefficiencies

arising from free-riding. Team members exaggerate their effort to influence the interim

feedback signal, which in turn, affects their partners’ beliefs about the prospects and con-

sequently affects their future effort choices. The free-riding problem can vanish in the

limit where feedback is sufficiently responsive. Our result implies that introducing un-

certainty into team production can be welfare improving. Utilizing the tractability of our

framework, we analyze various implications for optimal team design, such as the effects

of team flexibility and asymmetric information among team members.
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1 Introduction

The fast evolution of the modern economic environment creates considerable uncertainty

about the prospects of many economic activities. In this light, many firms increasingly uti-

lize small teams as more agile and adaptable means of production, moving away from rigid

and highly structured means.1 Understanding the dynamics of team incentives under uncer-

tainty is therefore of central economic interest. These dynamics are complex: as uncertainty

resolves over time, positive feedback boosts team members’ confidence and subsequent ef-

fort, while setbacks undermine team morale. At the same time, individual team members may

have incentives to keep their teammates motivated by exerting themselves in order to improve

feedback.

In this paper, we present a framework of dynamic team production that enables us to

analyze various features of team dynamics in the presence of uncertainty. The questions we

address include: How does the dynamic resolution of uncertainty interact with the classic free-

riding that naturally arises in teams? What is the effect of uncertainty on team welfare? Are

there implications for optimal team design?

We consider a team of agents working on a joint project with unknown true prospects

and finite horizon.At the end of the project, agents share the common output. This inherently

creates free-riding incentives. Each agent’s effort level is unobservable by the others. Over

time, the agents receive interim public feedback about team performance. This feedback is

noisy but informative about the agents’ efforts and the project’s prospects: both high effort

and good prospects (statistically) improve feedback.

Such dynamic models, where the learning process interacts with unobservable actions,

are typically not tractable. Specifically, the characterization of behavior off the equilibrium

path is severely complicated as a deviation by an agent may cause her private belief about the

prospects to diverge from the public belief. Moreover, in such environments, effort incentives

1To quote an article from the Economist: “...a network of teams is replacing the conventional hierarchy. The
fashion for teams is driven by a sense that the old way of organising people is too rigid for both the modern
marketplace and the expectations of employees. Technological innovation puts a premium on agility.” (“Team
spirit”, 2016) Using survey data,Osterman(1994, 2000) estimates that among private, for-profit establishments
that have at least 50 employees, approximately 40% have at least half of their employees organized in teams.
Similarly, Lawler et al.(2001) reports that 47% of Fortune1000 companies make use of self-managed teams.
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can be confounded by incentives to experiment. This paper contributes to the literature by

proposing a model that overcomes these difficulties while isolating and highlighting the main

economic forces at work. In particular, the marginal product of effort depends on uncertain

prospects, while feedback is additively separable in effort and prospects with Gaussian noise.

The former aspect guarantees that the dynamics of agents’ incentives are linked with the evo-

lution of their beliefs—thus remaining relevant to our central economic question—while the

latter eliminates motives for experimentation, rendering our analysis tractable.

Two aspects of our equilibrium characterization deserve emphasis. First, our model ad-

mits a unique perfect Bayesian equilibrium (PBE). Second, the equilibrium strategies have a

particularly simple and intuitive structure. Namely, the agents’ effort choices after any history

(both on and off the equilibrium path) are a linear function of the mean of their own private

belief. Here, the coefficient multiplying the posterior mean—the belief sensitivity of effort—

captures the impact of uncertainty on effort incentives. Utilizing the simple structure of the

unique PBE, we describe the non-stationary dynamics of a team project whose true prospects

are gradually revealed.

Our first main result is thatthe presence of uncertainty alleviates the free-riding prob-

lem. The presence of uncertainty boosts the effort incentives of the agents, because work-

ing harder today improves the interim feedback, rendering team members more optimistic

about the project. Optimistic agents exert more effort in the subsequent phases because better

prospects provide the agents with a higher marginal product. Essentially, the presence of un-

certainty endogenously generates strategic complementarity between one agent’s current effort

and the other agents’ future efforts.2 This strategic complementarity leads to an equilibrium

effort level that is higher than the myopically optimal level.3

The main result of this paper leads to an important corollary:Introducing uncertainty into

2By strategic complementarity we refer to the following: Fix all agents’ expectations about the effort choice
of a given agent. Then,provided that the effort is unobservable, an increase in the agent’s effort level would lead
to an increase in the expected marginal returns to the other agents’ future efforts. Although this is not precisely
the standard definition of strategic complementarity (Bulow et al., 1985), we use the term with some abuse, as
we believe that it effectively captures the essence of the mechanism we identify.

3This mechanism can be interpreted as a novel application of “signal jamming,” which has been identified in
various contexts, including early work in industrial organization (Riordan, 1985; Fudenberg and Tirole, 1986)
and the seminal paper ofHolmstr̈om(1999) in the context of agency theory. We discuss our contribution relative
to these models in the literature review below.
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team production can be welfare improving.While uncertainty always entails a cost resulting

from uninformed action choices, the benefit from mitigating the free-riding problem could

outweigh that cost. In this case, adopting a project with uncertain prospects—even without a

premium on returns —would lead to a Pareto improvement for the team members.4

After characterizing the unique equilibrium, we conduct several comparative statics ex-

ercises. We show that the effort-boosting impact of uncertainty is stronger when the project

uncertainty is higher, the interim feedback is more precise, and the agents are more patient.

Moreover, there exists a share structure under which the free-riding problemvanisheswhen

interim feedback is sufficiently responsive to the agents’ effort.

We also consider an infinite-horizon version of our model in which the project’s prospects

evolve stochastically over time. We construct a Markov perfect equilibrium whose structure

is similar to that of the unique PBE of our main model. In analyzing the Markov perfect

equilibrium, we show when the state is stochastic, the effort boosting impact of uncertainty

exists permanently so that the equilibrium belief sensitivity of effort remains higher in the

presence of uncertainty than in its absence.

The tractability of the framework we propose can help answer various economic questions.

We take advantage of this feature in our discussion ofoptimal team design, focusing on the

following four aspects:

• Role of imperfect monitoring: If individual effort choices are perfectly observable, then

exerting more effort does not create an optimistic bias in others’ beliefs. Therefore, the

effort-boosting impact of uncertainty disappears. From the perspective of team design,

this result implies that in environments in which monitoring is costly, it may be benefi-

cial to choose a project with uncertain prospects instead of investing in the monitoring

structure and establishing formal contracts.

• Optimal level of project uncertainty: Suppose that a team faces a choice of projects with

4Our result provides a novel explanation of risk-taking behavior in entrepreneurial organizations. Risk tak-
ing is considered one of the main elements of entrepreneurial behavior (Miller , 1983), and the economics lit-
erature has suggested various motivations for risk-taking behavior, such as the desire to receive a higher pre-
mium (Heaton and Lucas, 2000) or the desire to smooth out the entrepreneur’s value as a function of wealth
(Vereshchagina and Hopenhayn, 2009). In this paper, we identify an alternative motivation related to team in-
centives.
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various levels of uncertainty regarding their prospects. We demonstrate that there exists

an optimal level of project uncertainty that balances the trade-off between the benefit of

alleviating free-riding problem and the cost of uninformed effort choices.

• Effect of team flexibility: We show that if an organization is more flexible—that is,

if team members receive feedback more frequently and adjust their actions—the free-

riding is further alleviated in equilibrium. This result provides an interesting contrast to

the repeated partnership literature in which the scope of cooperation could be limited

when actions are flexible (Abreu et al., 1991; Sannikov and Skrzypacz, 2007).

• Effect of asymmetric information among team members: We consider an asymmetric in-

formation model in which some team members are “experts” who are perfectly informed

about the prospects. We show that the essential structure of the unique equilibrium of

our model extends to these cases. Additionally, using the asymmetric information mo-

del, we discuss the interaction between the incentives of the informed experts and those

of the uninformed agents. The main trade-off arises between the speed of learning and

the strength of effort incentives. When a team member is replaced by an expert, learning

takes place faster as the expert’s informed actions lead to more informative feedback.

However, team members’ effort incentives become weaker since it is not possible to ma-

nipulate the expert’s beliefs. Either side of the trade-off may dominate in equilibrium,

depending on various aspects of the economic environment.

The remainder of the paper is organized as follows. Section1.1 discusses the related

literature. Section2 formally describes the model. Section3 characterizes the equilibrium and

undertakes the comparative statics exercises. Section4 extends the main model to an infinite-

horizon version. Section5 analyzes the implications for team design. Section6 concludes.

The Appendix contains all the omitted proofs. The supplementary material analyzes a two-

period example, discusses the potential non-monotonicity of the belief sensitivity and analyzes

a continuous-time version of the main model.
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1.1 Literature Review

This paper contributes to the literature on free-riding in groups (Olson, 1965; Alchian and

Demsetz, 1972; Holmstr̈om, 1982). The literature generally suggests that cooperation can

be sustained by “punishments” based on past behavior in the form of either lower monetary

transfers or future non-cooperation from other team members.5 Our paper analyzes dynamic

moral hazard in team production with uncertainty over a project’s prospects and demonstrates

that the presence of uncertainty could alleviate free-riding.

Our paper is related to the literature on experimentation in teams. The literature focuses

on the effect of either a pure informational externality (Bolton and Harris, 1999; Keller et al.,

2005; Rosenberg et al., 2007) or combinations of information and payoff externalities (Bonatti

and Ḧorner, 2011; Guo and Roesler, 2016; Halac et al., 2017). In contrast, our model considers

a pure payoff externality: In our model, the speed of learning is independent of the agents’

actions, and thus, the agents do not have incentives for experimentation. Moreover, the welfare

effect of uncertainty is typically negative in the literature—the equilibrium payoff is higher if

the state is known—but we show that uncertainty mitigates the free-riding problem, possibly

leading to a welfare improvement.

In this literature, the closest papers to ours areBolton and Harris(1999) andBonatti and

Hörner(2011). Bolton and Harris(1999) consider a multi-agent experimentation problem in

which agents’ actions are observable and the agents share the information, but not the payoff,

resulting from experimentation. Their symmetric Markov perfect equilibrium demonstrates

that the possibility of eliciting future experimentation by others encourages current experi-

mentation. While our unique equilibrium exhibits similar incentives, the underlying channels

are distinct. Whereas inBolton and Harris(1999), the agents are encouraged to demonstrably

generate new information (convincing), in our model, the agents’ incentives are generated by

secretly manipulating the feedback (cheating). Indeed, for the “encouragement effect” to exist

in our case, it is essential that the agents’ effort choices are unobservable.Bonatti and Ḧorner

(2011) consider dynamic moral hazard in teams with an uncertain state. In their paper, the

5In the literature on contracts with many agents, a group contract based on total output can mitigate moral
hazard in teams (Holmstr̈om, 1982; Legros and Matthews, 1993); in repeated partnership games, the threat of
future non-cooperation following a deviation sustains various equilibrium dynamics (Radner et al., 1986).
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game ends when the common project has a “breakthrough,” the arrival rate of which depends

on the agents’ current effort levels and the unknown quality of the project. This instantaneity

of potential success implies that one agent’s current effort and the others’ future efforts are

strategic substitutes, leading to inefficiencies in the form of procrastination. In contrast, in our

model, uncertainty over the project’s prospects generates a form of strategic complementarity

between an agent’s current effort and the future efforts of others, strengthening the incentives

to exert effort and sometimes leading to an (approximately) socially efficient outcome.

Our paper is also related to the literature on dynamic contributions to public goods.Admati

and Perry(1991) andMarx and Matthews(2000) show that a public project can be completed

by agents who contribute small amounts from time to time.Yildirim (2006) andGeorgiadis

(2014) assume that the payoff is realized only when the project’s state reaches a pre-specified

threshold. In these papers, the threshold-payoff assumption implies that the effort choices at

different points in time are strategic complements, which plays a key role in mitigating the

free-riding problem.6 Importantly, these papers do not feature uncertainty over the project

type. In contrast, our repeated partnership game does not assume a completion threshold, and

the complementarity between current and future effort arises endogenously because an agent’s

effort affects the inferences of others.

As noted above, the signal-jamming mechanism of our paper has been investigated in var-

ious contexts. SinceHolmstr̈om (1999), the literature on career concerns has analyzed the

“market-based” incentives of a manager who attempts to affect the market belief about his in-

nate ability.Riordan(1985) (oligopoly) andFudenberg and Tirole(1986) (entrant-incumbent

game) consider cases in which a firm has a signal-jamming incentive to make the competing

firm more pessimistic about future profitability. In this paper, we identify the role of such a

mechanism in the context of team production and optimal team design.Cisternas(2017b) ex-

pands the career concerns model to allow general (non-linear) payoffs for the long-run player

in a stationary environment. Using the first-order approach, he shows how “ratchet effect”

shapes player’s equilibrium incentives.7 Compared toCisternas(2017b), we describe the dy-

6See alsoGeorgiadis(2016) for how deadlines and the frequency of the monitoring affect free-riding incen-
tives.

7Cisternas(2017a) generalizes the career concerns model along another dimension by allowing investment in
human capital.
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namics of the ratchet behavior in anon-stationarymodel with a specific form of non-linear

payoffs.8

Our infinite-horizon model in Section4 is closely related to the literature on repeated

games with frequent actions.9 SinceAbreu et al.(1991), the literature has shown how fre-

quent actions can be detrimental to cooperation (Sannikov and Skrzypacz, 2007; Fudenberg

and Levine, 2007, 2009). In contrast, we show that frequent actions increase the level of

cooperation in our model.

2 Model

A team ofN agents undertakes a common project. Timet = 0, . . . ,T is discrete and fi-

nite. Each period has lengthΔ > 0, andτ = TΔ is the real-time length of the project. At the

beginning of the game, nature draws a persistent state of the worldθ from a Gaussian distri-

butionN (μ0,1/ν0), which defines the initial common prior aboutθ .10 In each period, agent

i chooses an effort levelait ∈ R. Each agent’s effort level is not observable by others. We

assume that agenti incurs a quadratic cost of effortΔcia2
it/2, whereci > 0. The agents have a

common discount factorδ = e−rΔ, wherer > 0.

At the end of each period, the agents publicly observe feedbackyt . This can be the outcome

of an internal review or feedback from an employer. We assume that the period-t feedback is

yt = Δ

[

κθ θ +κa

N

∑
i=1

ait + εt

]

,

whereεt ∼ N (0,1/νε) is a stochastic noise term with precisionνε = Δηε , andκθ ,κa > 0

are positive constants. We interpretηε as the information disclosure rate. Note that the infor-

mativeness of feedback increases inΔ.11 The parametersκa andκθ determine how sensitive

feedback is to agents’ actions and to the realization of the true state, respectively. We assume

8This result is in contrast to the outcome inHolmstr̈om (1999)’s model, where the optimal effort level of the
long-run player may diverge as the horizon becomes longer.

9Recently,Iijima and Kasahara(2015) prove an equilibrium uniqueness result for a class of finite horizon
frequent action games which however does not include our finite horizon model.

10In Section4, we extend our result to the case of a stochastic state.
11As Δ → 0, a linear interpolation of the feedback processyt converges in distribution todYt =(

κθ θ +κa ∑N
i=1ai,t

)
dt+ 1√ηε

dWt , whereWt is a standard Brownian motion (Whitt, 1980).
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that theεts are independent and identically distributed over time.

Total productionP is realized at the end of periodT and is given by

P = erτ
T

∑
t=0

e−rtΔPt ,

wherePt = Δθ ∑N
i=1ait is period-t production anderτ is a normalization term.12 Note thatPt

is linear in each agent’s period-t effort, and the stateθ is the marginal product. Further, note

that in this specification, output is additively separable in effort across agents and over time.

The agents share total production according to a rule(s1, ∙ ∙ ∙ ,sN), wheresi represents agent

i’s share of the total output with∑N
i=1si = 1 andsi > 0 for all i. The agents are risk-neutral

expected utility maximizers, with agenti maximizing

U = E

[

sie
rτP−

T

∑
t=0

e−rtΔΔci
a2

it

2

]

=
T

∑
t=0

Δe−rtΔE

[

siθ
N

∑
j=1

ajt −ci
a2

it

2

]

.

Remark 1. The agent’s payoff in our model isnot additively separable in the agent’s action

(ait ) and the state(θ). Such complementarity between the action and the state is crucial for

generating our main result. Without this complementarity, the agent’s marginal benefit of

effort—and, therefore, the optimal effort level—would be independent of the state; thus, the

incentive to manipulate others’ beliefs would disappear.

Remark 2. The agent’s action and the state enter in an additively separable way into feed-

back yt . As we demonstrate in a two-period example in the supplementary material, such

additive separability is not necessary for our results, but it renders our dynamic model very

tractable. In particular, as Section 3 clarifies, this assumption implies that the speed of learn-

ing is independent of agents’ actions, and thus, the agents in our model do not have incentives

12Our assumption that output is realized at the end of the game is not essential for our main mechanism. This
assumption allows the linear feedback to be the only source of belief updating throughout the game and, thus,
significantly simplifies the analysis. Nevertheless, one can find various real-world examples in which the returns
to effort are realized at a specific future date, such as the release of a new product or the issuance of an IPO.
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for experimentation. This makes the underlying mechanism of the model different from those

in the literature on experimentation in teams (Bonatti and Ḧorner, 2011; Keller et al., 2005).

A public historyht ∈H is a feedback sequence{yk}
t−1
k=0. Agenti’s private historyht

i ∈H i

is the combination of the public history and the sequence of his own past effort choices, that is,

ht
i = {(aik,yk)}

t−1
k=0.13 A pure strategy for agenti is a functionai : Hi → R, whereait = ai(ht

i )

is agenti’s effort level in periodt. We focus on pure strategy profiles.

The solution concept is perfect Bayesian equilibrium (PBE).14 A PBE is a strategy profile

a = (a1, . . . ,aN) and a belief system such that the beliefs on and off the equilibrium path are

derived using Bayes’ rule from the strategies whenever possible, and each player’s strategy is

optimal given his beliefs and the strategies of others.

Benchmark cases We conclude this section by considering two benchmark cases for future

reference. The proofs are straightforward and thus omitted.

1. Static setting(T = 0): Agent i’s effort in the unique equilibrium of the static setting is

a∗i,static = E[θ ] = si
ci

μ0. Note that the socially efficient level of effort (the one without

free-riding) is 1
ci

μ0.

2. Complete information case (ν0 = ∞): Suppose that the state of the worldθ is perfectly

known. Then, the unique equilibrium profile isa∗it = si
ci

θ for anyt = 0, . . . ,T, while the

socially efficient level is1
ci

θ .

3 Equilibrium

In this section, we derive the unique PBE of our model. We also discuss the resulting

equilibrium dynamics and the mechanisms underlying these dynamics.

13As usual, we defineh0 = h0
i = /0 for all i.

14For the formal definition of PBE, seeFudenberg and Tirole(1991) Definition 8.2.
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3.1 Belief Updating

We first analyze the evolution of beliefs on and off the equilibrium path. Observe that

the agent’s deviation is never detected because of the full-support assumption for feedback.

Thus, any public historyht is on the equilibrium path, and hence, the posterior belief is pinned

down by Bayes’ rule. Then, the Gaussian information structure of the game implies that

all posteriors are also Gaussian; thus, any posterior belief is characterized by its mean and

precision.

Define thepublic belief as the common posterior belief under the expectation that the

agents follow the equilibrium strategy profile. Formally, leta∗ = (a∗1, . . . ,a
∗
N) be an equilib-

rium strategy profile, and given a public historyht = {yk}
t−1
k=0, defineh̄t

i = {(āik,yk)}
t−1
k=0 recur-

sively as ˉai0 = a∗i ( /0) andāit = a∗i (h̄
t
i ). Note thath̄t

i is a private history of agenti in which he

follows the equilibrium strategyfor all t ′ < t. Then, given the expectation of “no-deviation,”

an element of feedbackyt that is purely informative about the stateθ is

zt ≡ yt −Δκa∑
i

a∗i (h̄
t
i),

Note that if the agents follow the equilibrium strategy for allt ′ < t, the signalzt follows a

normal distribution with meanΔκθ θ and precisionηε/Δ.

In each period, the public belief is updated based onzt . Let μt andνt be the mean and the

precision, respectively, of the public belief in periodt. Then, by standard Gaussian updating,

μt andνt are recursively determined by

μt =
νt−1μt−1 +κθ ηεzt−1

νt−1 +Δκ2
θ ηε

and νt = νt−1 +Δκ2
θ ηε . (1)

Theprivate beliefof agenti does not necessarily follow the public belief, as he privately

knows his effort level. Specifically, agenti updates his private belief based on the signal

ẑit ≡ yt −Δκa

(

ait + ∑
j 6=i

a∗j (h̄
t
j)

)

,

whereait is the actual effort choice of agenti, which can be different froma∗i (h̄
t
i ). Then, the

10



meanμ̂it and precision̂νit of the private belief in periodt are recursively determined by

μ̂it =
νt−1μ̂it−1 +κθ ηε ẑit−1

νt−1 +Δκ2
θ ηε

and ν̂it = νt . (2)

Note thatμ̂it = μt as long as agenti follows the equilibrium strategy. In contrast, once

an agent deviates from his equilibrium effort choice, his private belief and the public belief

diverge. For example, suppose that agenti deviates in periodt and playsait = a∗i (h̄
t
i)+ α for

someα > 0 and, thereafter, follows the strategy that the other agents anticipate (that is, he

playsa∗i (h̄
s
i ) for anys= t +1, . . . ,T).15 Then, for all future periods, the public belief is more

optimistic than agenti’s private belief. In particular, for anys> t,

μ̂is = μs−ρsα ,

where

ρs =

(
s

∏
τ=t+2

∂ μτ+1

∂ μτ

)

∙
∂ μt+1

∂zt
∙

∂zt

∂ait
=

Δκaκθ ηε
νs

is the rate at which the deviation in periodt < s affects the belief divergence.16

Note that agenti’s deviation does not bias his own belief about the state, since he discounts

feedback according to his actual effort level. However, agenti’s deviation biases the public

belief, which discounts the observed feedback through the equilibrium action. Specifically,

by devoting greater effort, each agent can increase the mean of the public beliefμs (for any

realization of noiseεt) at a rate ofρs. This is precisely the mechanism that leads each agent to

have additional incentives to increase his effort.

Finally, note that the precision of the posterior belief is deterministic and independent of

any history. Since the speed of learning is independent of the action, the agents in our model do

not have incentives for experimentation in choosing their optimal effort levels. This property

greatly simplifies our equilibrium analysis, as becomes clear in the next subsection.

15Clearly, playinga∗i (h̄
s
i ) need not be optimal for agenti following a deviation, as his belief off the equilibrium

path may be distinct from the public belief. In Subsection3.2, we provide a detailed discussion of the off-
equilibrium behavior in the unique PBE.

16We define∏s
τ=t+2

∂ μτ+1
∂ μτ

= 1 for s= t +1.
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3.2 Equilibrium

We first state our main result.

Proposition 1. There exists a unique perfect Bayesian equilibrium. In equilibrium, agent i’s

period-t action is

a∗i (h
t
i ) = ξit μ̂it , (3)

whereξiT = si/ci, and

ξit =
si

ci

[

1+
T

∑
k=t+1

e−r(k−t)Δ ∑
j 6=i

ξ jkρk

k−1

∏
l=t+1

(1−ξil ρl )

]

, (4)

for t = 0, . . . ,T −1.

The unique PBE of our model has a remarkably simple structure:After any history, the

equilibrium action of each agent is linear in the mean of his private posterior belief.17 We call

the coefficientξit agenti’s belief sensitivity of effortin periodt: It captures the rate at which

the agent responds to changes in his belief (μ̂it ). Note thatξit is deterministic and varies only

with the calendar timet. If the agents are homogeneous (that is,ci = c andsi = 1/N for all

i), thenξit s are identical across agents and the unique PBE becomes symmetric. However, the

agents may choose different actions off the equilibrium path, as their beliefs could diverge.

In the Appendix, we formally prove Proposition1. Here, we provide an intuitive explana-

tion. First, note that since we assume a quadratic cost functioncia2/2, agenti’s optimal effort

level equals his expected marginal benefit divided byci . Rewriting equations (3) and (4), we

express the marginal benefit of effort as follows:

cia
∗
it = si μ̂it︸︷︷︸

myopic benefit

+e−rΔsi μ̂it ∑
j 6=i

ξ j,t+1ρt+1

︸ ︷︷ ︸
effect on periodt +1

+e−2rΔsi μ̂it ∑
j 6=i

ξ j,t+2ρt+2(1−ξi,t+1ρt+1)

︸ ︷︷ ︸
effect on periodt +2

+ ∙ ∙ ∙

︸ ︷︷ ︸
signal-jamming

.

(5)

17This result can be explained as follows: Due to the Gaussian signal structure, the marginal impact of in-
creased effort on belief is independent of the level of others’ beliefs. Moreover, the marginal payoff gained from
the belief divergence is constant due to the quadratic cost function.
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The first term in (5) captures the (direct) myopic benefit of effort, which is equal to the ex-

pected social benefit(μ̂it ) times agenti’s share(si). The rest of the right-hand side captures

the (indirect) benefit from manipulating others’ future beliefs. Specifically, this term captures

the extent to which (agenti’s share of) expected output increases as a result of an increase in

i’s effort in periodt followed by optimal effort choices based on his private belief.

To understand the benefit from the signal-jamming effect, consider an upward deviation

by agenti in periodt in which he choosesait = a∗it + α , with α > 0. For any realization of

εt , such a deviation increases the mean of the period-(t + 1) public belief (μt+1) by ρt+1α.

Then, in the next period, each agentj 6= i would increase his effort byξ j,t+1ρt+1α (recall

that ξ jt is the response rate of agentj ’s effort to a change in the posterior mean he holds in

periodt). Therefore, agenti’s expected benefit from this increase in others’ effort ise−rΔsi μ̂it ∙

(∑ j 6=i ξ j,t+1ρt+1α). Since the benefit from deviation is linear inα , the marginal benefit is

constant and equal to the second term of (5).

For periodt + 2 (and thereafter), the effect of a deviation in periodt becomes more

complicated because the agents’ beliefs diverge off the equilibrium path. If agenti plays

ait = a∗it + α in periodt, his private belief in periodt + 1 is more pessimistic than the public

belief: μ̂i,t+1 = μt+1−ρt+1α. Then, in periodt +1, the equilibrium effort level of agenti is

smaller than what the others anticipate:

a∗i,t+1 = ξi,t+1μ̂i,t+1 = ξi,t+1(μt+1 −ρt+1α
︸ ︷︷ ︸
divergence

).

This divergence of agenti’s effort makes the public belief in periodt +2 downward biased. In

particular,μt+2 is smaller byρt+2 ∙ ξi,t+1ρt+1α than its level would have been had the agent

taken the anticipated action. Consequently, belief divergence in periodt +1 negatively affects

agenti’s incentive in periodt. We refer to this negative incentive as theratchet effect,as the

agent’s current incentive to work is affected by the other agents’ expectations for the future.18

As a result, the agent’s marginal benefit of effort consists of the (positive) direct signal-

18The ratchet effect—the effect of potentially causing high future expectations of the agent’s current
incentives—is extensively analyzed in the literature on dynamic agency models with asymmetric information
(Weitzman, 1980; Freixas et al., 1985) and dynamic moral hazard with learning and symmetric uncertainty
(Bhaskar, 2014; Prat and Jovanovic, 2014; Cisternas, 2017b; Bhaskar and Mailath, 2016).
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jamming effect and the (negative) ratchet effect. Note that similar to its effect on periodt +1,

agenti’s deviation in periodt directly increasesμt+2 by ρt+2α . Therefore, agenti’s deviation

in periodt, followed by the corresponding equilibrium strategy in periodt +1, has a net effect

of




 ξ j,t+2ρt+2︸ ︷︷ ︸

direct signal-jamming

− ξ j,t+2ρt+2ξi,t+1ρt+1︸ ︷︷ ︸
ratcheting




α = ξ j,t+2ρt+2(1−ξi,t+1ρt+1)α

on agentj ’s period-(t +2) effort choice. Summing over all agentsj 6= i, multiplying bysi μ̂it

and discounting yields the coefficient (ofα) equal to the third term of (5). Iterating this

reasoning yields the expression in Proposition1.

Remark 3. The direct signal-jamming effect in periodt is linear in eachξ jk (k > t). By

devoting greater effort, each agent can directly change the future posterior to which the other

agents respond in a linear way. However, the ratchet effect is (at least) quadratic inξik and

ξ jk: A deviation creates belief divergence in future periods, and the resulting divergence in

the expected effort level in turn leads to belief distortion in periods further in the future. The

implication of this difference becomes more evident when we consider the continuous-time

limit of the equilibrium below.

We prove uniqueness by backward induction. Note that the above argument for the marginal

benefit holds after any history, regardless of whether an agent has previously deviated. In the

final period (t = T), after any historyhT
i , each agent has a unique best responsea∗i (h

T
i ) =

(si/ci)μ̂iT , which is linear in the mean of the private belief. Now, suppose that for somet,

the equilibrium strategy after any historyhk
i is linear in μ̂ik for all k = t + 1, . . . ,T. Then,

each agent’s best response in periodt is unique since the cost of effort is convex while the

benefit is linear. Furthermore, our linear-quadratic-Gaussian structure implies that the unique

best response is also linear inμ̂it . In the Appendix, we present a formal proof based on this

argument.
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(a) A realization of the equilibrium efforta∗it (b) Belief sensitivityξt

Figure 1: Dynamics of the unique PBE with the homogeneous agents(N = 3,T = 20)

Equilibrium dynamics Figure1 illustrates the dynamics of the unique PBE when the agents

are homogeneous (ci = 1 andsi = 1/N for all i). Note that with homogeneous agents, the

unique PBE is symmetric; i.e.,ξit = ξt for all i. The left panel shows a realization of the

equilibrium effort on the equilibrium path (wherêμit = μt). The equilibrium effort levela∗it =

ξt μt is stochastic and typically non-monotonic over time. This is because the dynamics of the

posterior meanμt depend on realized feedback. However, the coefficient of the equilibrium

action (belief sensitivity of effort) is deterministic and has more consistent properties. In what

follows, we analyze the equilibrium properties by mainly focusing on the dynamics of the

belief sensitivity.

The dynamics of a symmetricξt over time are depicted in the right panel of Figure1.

Recall that the myopically optimal level of belief sensitivity—that is, the level without the

signal-jamming effect—issi/ci = 1/N (lower dashed line), while the socially efficient level

is 1/ci = 1 (upper dashed line). In the graph, the equilibriumξt decreases over time and lies

between the two dashed lines.

The intuition for decreasing belief sensitivity is twofold. First, ast increases, there are

fewer remaining periods during which coworkers make effort choices, and thus, the agents’

return to influencing the others’ beliefs declines. Second, as the agents learnθ more precisely

over time, they place a smaller weight on new feedback in updating their beliefs, making it

more difficult to affect this belief by changing the effort level.
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Although the above intuition suggests that the equilibriumξit should generally be mono-

tonic, this is not always the case. Non-monotonicity may result when the ratchet effect dom-

inates the direct signal-jamming effect. Such a phenomenon may occur when the belief sen-

sitivity in the next period is large. For example, suppose that the (homogeneous) agents in

period t expect a very large (symmetric)ξt+1 (wheret + 1 < T). Then, contributing more

effort in periodt creates a very large divergence in expectations ofai,t+1 between agenti and

the other agents, which in turn, downward biases the period-(t + 2) public belief by a large

amount. This quadratic ratchet effect may dominate the direct signal-jamming effect, and thus,

ξt may be lower thanξt+1. In the supplementary material, we discuss this issue in detail.

Such non-monotonicity disappears when the “real-time” length of a period becomes shorter.

Note that as the period length becomes shorter, the agents receive more frequent feedback and

can frequently adjust their effort levels. In this case, as we solve the equilibrium by back-

ward induction, the equilibriumξit cannot exhibit large “sudden jumps”. Therefore, although

the ratchet effect strengthens gradually (ast goes backward), it does not dominate the signal-

jamming effect, leading to monotonic dynamics.

In the next subsection, we consider the continuous-time limit of the model where the period

length becomes arbitrarily small. In this limiting environment, we establish the monotonicity

of ξit and conduct comparative statics.

3.3 Continuous-Time Limit and Comparative Statics

In this subsection, we consider a continuous-time limit in which feedback (and the cor-

responding effort adjustment) is arbitrarily frequent. Specifically, we fix the real-time length

τ = TΔ of the game and consider the limit of equilibrium behavior asΔ → 0.

3.3.1 Equilibrium in the Continuous-Time Limit

To derive the continuous-time limit of the equilibrium, we first describe the equilibrium

strategies in recursive form. DefineSi j ,t(t = 0, . . . ,T) recursively as

Si j ,t = ξ j,t+1ρt+1 +e−rΔ (1−ξi,t+1ρt+1)Si j ,t+1, (6)
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with Si j ,T = 0. The variableSi j ,t captures the effect of agenti’s signal-jamming in periodt,

resulting from changes in agentj ’s effort level. Then, (4) can be rewritten as

ξit =
si

ci

[

1+e−rΔ ∑
j 6=i

Si j ,t

]

. (7)

Summing (6) over j 6= i and substituting for∑ j 6=i Si j ,t and∑ j 6=i Si j ,t+1 from (7) yields a recur-

sive formulation forξit :

ξit =
si

ci
+e−rΔ

[
si

ci
∑
j 6=i

ξ j,t+1ρt+1 +(1−ξi,t+1ρt+1)

(

ξi,t+1−
si

ci

)]

. (8)

Then, writing the variables in terms ofΔ, re-arranging, and takingΔ → 0, we obtain the

following system of differential equations: Fori = 1, . . . ,N,

ξ̇i(t) = r

(

ξi(t)−
si

ci

)

︸ ︷︷ ︸
discounting

−
ηεκθ κa

ν0 +ηεtκ2
θ

(
si

ci

N

∑
j=1

ξ j(t)−ξi(t)
2

)

︸ ︷︷ ︸
signal-jamming

. (9)

Together with the terminal conditionsξi(τ) = si/ci , the above system of differential equations

fully describes the equilibrium dynamics over time.19,20 In the supplementary material, we

formulate the continuous-time counterpart of the main model and show that (i) there exists an

equilibrium of the continuous-time model that is described by (9) and (ii) the unique PBE of

the discrete-time model (weakly) converges to that continuous-time equilibrium asΔ → 0.

The differential equation (9) has a simple and intuitive form. The first term captures the

effect of discounting. Note that wheneverξi(t) is above the myopically optimal level (si/ci),

the first term is positive, and thus, the discounting effect decreases the incentive in the earlier

phases (bear in mind that we computeξi(t) backwards fromt = τ). The second term captures

the effect of signal jamming, and its coefficient is a function of the information parameters

(ν0,η ,κθ andκa). It consists of a linear component and a quadratic component, which capture

the direct signal-jamming effect and the ratchet effect, respectively.

19In this subsection, we slightly abuse notation and refer tot as real time in the game.
20This system is a backward Riccati equation. In the proof of Proposition2, we show the existence and

uniqueness of the solution. Whensi andci are the same for alli, the system has a closed-form solution expressed
by confluent Hypergeometric and Laguerrel functions.
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ξ1(t) = ξ2(t) ≡ ξ (t)

(a) Homogeneous agents (c1 = c2 = 1)

ξ1(t)

ξ2(t)

(b) Heterogeneous agents (c1 = 1,c2 = 0.6)

Figure 2: Equilibriumξi(t) under the continuous-time limit(N = 2,τ = 10,si = 1/2)

Figure2 illustrates the evolution of belief sensitivity in the limit, whereΔ → 0, with homo-

geneous agents (left panel) and heterogeneous agents (right panel). It shows that the signal-

jamming effect remains nontrivial in the continuous-time limit. In what follows, we use the

simple form of (9) to further analyze the properties of the equilibrium.

3.3.2 Equilibrium Properties

We begin by establishing the monotonicity of equilibrium belief sensitivityξi(t).

Proposition 2. For any i, ξi(t) is monotonic and decreasing over time. Moreover, for any

t ∈ [0,τ ], ξi(t) ∈ [ξ
i
, ξ̄i), where

ξ
i
=

si

ci
, ξ̄i =

√
si

ci

N

∑
j=1

√
sj

cj
.

The intuition for a monotonically decreasingξi(t) is provided in the previous subsection.

In addition, Proposition2 establishes lower and upper bounds on the equilibriumξi(t). The

lower boundξ
i
is the myopically optimal level that would be attained in the absence of signal-

jamming incentives.

The existence of the upper bound̄ξi is due to the ratchet effect, which appears in the

quadratic term of (9). Suppose that we solve (9) backwards from the terminal pointt = τ. At
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t = τ, asξi(τ) = si/ci , the linear term (si
ci

∑N
j=1ξ j(t)) is greater then the quadratic term (ξi(t)2),

and thus, the signal-jamming incentive becomes greater ast goes backward. However, asξi(t)

becomes larger, the quadratic term catches up to the linear term, which prevents the belief

sensitivity from being greater than̄ξi .21

The next proposition states the equilibrium properties with respect to the cost parameter

and the share structure. Its proof is straightforward from equation (9), and Proposition2 and

thus is omitted.

Proposition 3. Consider the continuous-time limit of the unique PBE.

1. For any t∈ [0,T], ξi(t) decreases in ci.

2. For any t∈ [0,T), ξi(t) decreases in cj( j 6= i).

3. Suppose that the share structure s∗ = (s∗1, . . . ,s
∗
N) is set by s∗i ≡

1
ci

∑N
j=1

1
cj

. Then,ξ̄i = 1/ci

for all i = 1, . . . ,N.

The intuition for part 1 is straightforward: The agent contributes less effort when his

marginal cost increases. Perhaps more interestingly, part 2 states that agenti’s effort level

decreases in the marginal cost of other agents. This is because the agent’s marginal benefit of

effort is increasing in the other agents’ belief sensitivity, which is decreasing in their own cost.

This effect is illustrated in Figure2. The left panel illustrates the symmetricξ (t) of a homo-

geneous two-person team, and the right panel showsξ1(t) andξ2(t) when agent 2’s marginal

cost has decreased. Note thatbothξ1(t) andξ2(t) lie above the symmetricξ (t) (black dotted

line in the right panel): If one agent’s cost is reduced, then both agents choose higher effort.

Part 3 shows that there exists a sharing rule that makes the upper bound on agenti’s belief

sensitivity (ξ̄i) coincide with the socially efficient level (1/ci). Figure2 (right panel) shows

that, generally,̄ξi does not coincide with 1/ci (depicted as dashed lines of the respective color):

ξ1(t) initially lies above the socially efficient level, while agent 2 always underinvests in his

21In contrast, inHolmstr̈om (1999)’s career concerns model, the ratchet effect does not preclude equilibrium
action from diverging under limits (e.g.,κa → ∞). This is because in our model, the return to jamming the
feedback signal is endogenous and based on others’ belief sensitivity, which is also subject to the ratchet effect.
The reduction in others’ belief sensitivity due to the ratchet effect compounds the negative impact on each agent’s
effort choice, eventually bounding it.
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effort. If an agent’s cost is higher than that of the other agents, his signal-jamming incentives

may be inefficiently strong, as the other agents are more responsive to belief changes.

The next proposition establishes the comparative statics results for the discount rate and

the information parameters.

Proposition 4. In the unique PBE of the model, for any t∈ [0,τ),

1. ξi(t) decreases in r.

2. ξi(t) decreases inν0 and increases inηε .

3. ξi(t) increases inκa but is non-monotone inκθ .

Thatξi(t) decreases inr is intuitive: A largerr makes the future less important and thus

decreases the signal-jamming incentive. The intuition for parts 2 and 3 can be explained by

the coefficient
(

ηε κθ κa

ν0+ηε tκ2
θ

)
of the second term of (9): This coefficient becomes larger when

future beliefs become more sensitive to variations in current effort, and consequently, the

marginal benefit of current effort increases. This, in turn, happens when the impact of effort

on feedback (κa) increases or when future beliefs become more sensitive to feedback either

due to a decrease in initial precision (ν0) or an increase in the signal precision (η). The

effect ofκθ on the signal-jamming incentives is non-monotonic. Specifically, signal-jamming

incentives disappear whenκθ is too low (feedback contains almost no information aboutθ )

or too high (feedback is extremely precise). This implies that there is an interior value ofκθ

that maximizes the belief sensitivity of effort.

The next proposition establishes the effect of team size, and it states that as the individual

effort level decreases inN, the total effort level increases. The result follows immediately by

inspecting (9) and is therefore stated without proof.

Proposition 5. If the agents are homogeneous (ci = c and si = 1/N for all i), then for any

t ∈ [0,T], ξ (t) decreases in N, and for any t∈ [0,T), Nξ (t) increases in N.
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Figure 3: Equilibriumξ (t) in the homogeneous agents case, with different values ofκa

3.3.3 Vanishing Free-riding Problem

Finally, we identify a limit condition under which the free-riding problem vanishes. The

following proposition shows that with the share structure established in Proposition3, the

equilibriumξi(t) can be arbitrarily close to the socially efficient level in certain limiting cases.

Proposition 6. Suppose that the share structure s∗ = (s∗1, . . . ,s
∗
N) is set as

s∗i ≡
1
ci

∑N
j=1

1
cj

.

Then, asκa → ∞, the agents’ equilibrium belief sensitivityξi(t) for any t∈ [0,τ) converges

(pointwise) to1/ci.

Figure3 shows the equilibriumξ (t) in the homogeneous agents case with different values

of κa (κa = 1,5,50). Note that if the agents have the sameci , thens∗i = 1/N; thus, the equal

share structure induces the socially efficient effort level whenκa is large. Note that asκa

increases, the equilibriumξ (t) becomes arbitrarily close to the socially efficient level (1/c =

1) for almost the full length of the horizon.
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4 Stationary Model

In this section, we construct an infinite-horizon version of our model in which the stateθ

evolves stochastically over time. We show that our main result and underlying strategic in-

centives continue to hold in the infinite-horizon environment. Moreover, the stationary model

generates an equilibrium with a simpler structure, providing a framework for a broader set of

applications.22

Assume that the time horizon is infinite (t = 0,1, . . .) and that each period has lengthΔ >

0.23 Let θt be the state of the world in periodt. We assume thatθt follows a random walk

θt+1 = θt +σt ,

whereσt is independently and identically drawn from the distributionN (0,Δ/ησ ), andησ >

0 is the persistence of the state. Similar to the main model, the period-t feedback is given

by yt = Δ
[
κθ θt +κa∑N

i=1ait + εt
]
, whereκθ ,κa > 0 are constants andεt ∼ N (0,1/Δηε).

Assume thatσt andεt are independent of one another. For simplicity, we consider a case with

homogeneous agents(ci = 1) and equal share structure(si = 1/N).

As in our main model, the posterior belief about the state after any history follows a normal

distribution. Letμt and νt be the mean and precision of the public belief aboutθt at the

beginning of periodt, and letμ ′
t andν ′

t describe the public beliefafter feedbackyt is realized.

Then, we haveμ ′
t = νt μt+κθ ηε zt

νt+Δκ2
θ ηε

andν ′
t = νt +Δκ2

θ ηε , wherezt = yt −Δκa∑i a
∗
i (h̄

t
i) is the signal

for updating the public belief given the equilibrium strategya∗i and the “no-deviation” history

h̄t
i (defined in Subsection3.1). Taking into account the effect ofσt , the period-(t + 1) public

22In Subsections5.3and5.4, we conduct the analysis using the stationary model.
23In the infinite-horizon model, we reinterpret the discount factore−rΔ as the probability of project survival:

In each period, the project ends with probability 1−e−rΔ, and the team members share the total production.

22



belief is characterized by24

μt+1 = μ ′
t =

νt μt +κθ ηεzt

νt +Δκ2
θ ηε

, (10)

νt+1 =

(
1
ν ′

t
+

Δ
ησ

)−1

=

(
νt +Δκ2

θ ηε
)

ησ

Δ
(
νt +Δκ2

θ ηε
)
+ησ

. (11)

It is easy to show that, for any value of the initial precisionν0, ast goes to infinity,νt converges

to a stationary levelν∗, which is given by25

ν∗ =
ηεκ2

θ
2

(

−Δ+

√

Δ2 +
4ησ

ηεκ2
θ

)

. (12)

We are interested in constructing a Markov perfect equilibrium that has a structure similar

to the unique PBE of our main model: In equilibrium, the agent’s action is linear in the mean

of his private belief, that is,a∗i (h
t
i ) = ξt μ̂it .

Even though we construct such Markov perfect equilibrium in general environments, for

heuristic purposes, let us first consider the environment with stationary precision, that is,νt =

ν∗ for all t. In this case, there exists a Markov perfect equilibrium with a stationary sensitivity

level, that is,ξt = ξ ∗ for all t. To computeξ ∗, consider the effect of a deviation in period

t on the future beliefs in this equilibrium. Suppose that agenti deviates toa = ξ ∗μ̂it + α .

Then, the period-(t +1) public posterior mean is given byμt+1 = μ̂i,t+1 + Λaα, whereΛa ≡
∂ μt+1

∂at
= Δηε κθ κa

ν∗+Δηε κ2
θ
. From period(t + 2) onward, the public belief and agenti’s private belief

diverge, creating a ratchet effect. A similar calculation as one in the main model yieldsμt+k =

μ̂i,t+k + Λa(Λμ − ξ ∗Λa)k−1α for any k ≥ 2, whereΛμ ≡ ∂ μt+1
∂ μt

= ν∗

ν∗+Δηε κ2
θ
. Therefore, the

optimal effort level (which equals the marginal benefit of effort) is given by

a∗it = ξ ∗μ̂it =
μ̂it

N

(

1+(N−1)ξ ∗
∞

∑
k=1

e−rΔkΛa(Λμ −ξ ∗Λa)
k−1

)

.

24Similar to Section3, the private belief of agenti is updated using the same Gaussian updating process as
(10) and (11) but with the signal ˆzit = yt −Δκa(ait +∑ j 6=i a

∗
j (h̄

t
j)) instead ofzt .

25The stationary level ofν∗ is derived by settinght = νt+1 = ν∗ in equation (11):

ν∗(Δ
(
ν∗ +Δηε κ2

θ
)
+ησ ) = (ν∗ +Δηε κ2

θ )ησ .

This quadratic equation has a unique positive solution, as shown above.
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Simplifying, we have a quadratic equation forξ ∗:

N(ξ ∗)2−N(1−Γ)ξ ∗ −Γ = 0, (13)

whereΓ = 1−e−rΔΛμ
e−rΔΛa

. There exists a unique positive solution forξ ∗, which is given by26

ξ ∗ =
1−Γ+

√
(1−Γ)2 +4Γ/N

2
. (14)

The next proposition states the general result that forany initial precisionν0 under a suffi-

ciently smallΔ, there exists a linear Markov perfect equilibrium in which the belief sensitivity

of effort converges to the stationary level.

Proposition 7. Fix ν0 > 0. There exists̄Δ > 0 such that for anyΔ < Δ̄, there exists a se-

quence{ξt}∞
t=0 such that the agent’s Markovian strategy a∗

it (μ̂it ) = ξt μ̂it is a Markov perfect

equilibrium. Moreover,ξt → ξ ∗ as t→ ∞, whereξ ∗ is given by(14).

In the Appendix, we provide the detailed construction of the linear Markov perfect equi-

librium. First, we construct an agent’s dynamic programming problem withμt andμ̂it as the

state variables. Making use of our linear-quadratic-Gaussian framework, we guess a quadratic

value function and a linear policy of the agent. Then, solving the problem yields recursive

equations for the coefficients. Using a phase diagram, we show that for anyν0, there exists a

unique value ofξ0 such that the corresponding sequence{ξt} converges toξ ∗. We show that

this sequence satisfies the transversality condition and therefore constitutes an equilibrium

strategy profile.

From (14), it is easy to derive various properties of the stationary belief sensitivityξ ∗,

which we state in the next proposition.

Proposition 8. In the stationary Markov perfect equilibrium,

1. for any N≥ 2, ξ ∗ ∈ (1/N,1);

26Note that asΔ → 0, Γ converges to
(

r
√

ησ
ηε

+κθ

)
/κa. Therefore, the equilibrium in the continuous-time

limit satisfies the “square-root law”: The effect of doubling the discount rate on equilibrium behavior is equivalent
to the effect of multiplying the volatility of the stochastic process by

√
2. A similar property is observed in various

continuous-time models (Faingold and Sannikov, 2011; Daley and Green, 2012; Frei and Bernard, 2015).
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2. ∂ξ ∗

∂N < 0;

3. ∂ξ ∗

∂ r < 0;

4. ∂ξ ∗

∂κθ
< 0;

5. ∂ξ ∗

∂κa
> 0; and limκa→∞ ξ ∗ = 1.

Part 1 implies that the main result in Section3—that the presence of uncertainty alleviates

the free-riding problem—-does not depend on the existence of a deadline. Moreover, it shows

that the signal-jamming incentives arepermanentwith stochastically evolving states.

The comparative statics results of Parts 2-5 are analogous to the results in Section3. Only

Part 4 differs from the results of the main model, where the impact ofκθ onξt is non-monotone

(Proposition4). In the main model, the signal-jamming incentive disappears whenκθ is too

low, as feedback becomes uninformativerelative tothe prior belief about the persistent state

θ . With stochastic states, however, the stationary precisionν∗ also becomes smaller asκθ

decreases. In this case, feedback remains informative relative to the existing information,

leading to a monotonic relationship betweenκθ andξ ∗.

5 Discussion: Team Design

Our analysis implies that the dynamics of the agents’ incentives depend on the design of

team structures, especially ones that affect the agents’ beliefs and learning processes. In this

section, we take advantage of the tractability of our framework to address questions concerning

optimal team design. We discuss the following four aspects of teams: (1) imperfect monitoring

of effort; (2) uncertainty of a project; (3) flexibility of a team; and (4) asymmetric information

among team members. For the last two items, we conduct the analyses using the stationary

model introduced in Section4.

To keep the analysis simple and transparent, we assume throughout the section that the

agents are homogeneous(ci = 1) and that they share the output equally(si = 1/N) unless

otherwise stated.

25



5.1 Role of Imperfect Monitoring

Our results highlight a mechanism whereby the presence of uncertainty indirectly induces

signal-jamming incentives that alleviate free-riding. This mechanism contrasts with direct

reward/punishment schemes that are extensively studied in the classic literature on teams

(Alchian and Demsetz, 1972; Radner et al., 1986). It is interesting to note that while accurate

performance measures enhance the effectiveness of direct reward schemes, such measures are

detrimental in our model. In fact, our assumption that the agent’s effort level is unobservable

is crucial for the existence of the signal-jamming incentive. The following proposition shows

that if ait is perfectly observable to others, then each agent chooses the myopically optimal

effort level. Its proof is straightforward and is thus omitted.

Proposition 9. In the perfect monitoring case, there exists a unique PBE where for any t=

0, . . . ,T,

a∗it =
si

ci
μt .

From the perspective of team design, Proposition9 highlights the role of signal-jamming

incentives as an alternative to standard reward/punishment schemes. In the classic literature

on teams, the inability to monitor individual effort (or its high cost) is typically considered

a major obstacle to inducing cooperation.27 Proposition9 suggests that if the monitoring of

individual effort is indeed costly, it may be advantageous to choose a project with uncertain

prospects instead of investing in the monitoring structure and establishing formal incentive

schemes.28

5.2 Optimal Level of Project Uncertainty

Risk taking is considered one of the main elements of entrepreneurial behavior. The liter-

ature suggests various explanations for risk-taking behavior, such as the higher premiums or

27For example,Alchian and Demsetz(1972) write, “...In team production, marginal products of cooperative
team members are not so directly and separably (i.e., cheaply) observable...The costs of metering or ascertaining
the marginal products of the team’s members is what calls forth new organizations and procedures.”

28Bonatti and Ḧorner(2011) also show that perfect monitoring may lead to more inefficient outcomes. Never-
theless, the mechanism underlying their result differs from that in our paper. InBonatti and Ḧorner(2011), when
it is observedthat an agent worked hard, the agents are incentivized against contributing effort in the future. In
contrast, in our paper, the agent’s effort shows strategic complementarity over timewhen effort is unobservable,
which provides positive incentives under imperfect monitoring.
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risk-loving preferences of entrepreneurs. In this paper, we identify an alternative motivation:

undertaking an uncertain project can benefit organizations by mitigating the free-rider prob-

lem. Our result indicates a natural trade-off between such a benefit and the standard cost of

uncertainty due to the potential mismatch of the effort level and the state. In this subsection,

we show that there exists an optimal level of uncertainty that balances the trade-off.

Suppose that the manager of a team faces a choice of projects with varying uncertainty.

The team manager tries to maximize the ex ante total payoff of the team. To clarify our

analysis of the trade-off, we consider the case in which all projects havethe same ex ante

value under complete information. Recall that if the project stateθ is perfectly observed at

the beginning, then the equilibrium action isa∗i (t) = θ/N for all t ∈ [0,T]. Since the state

θ is normally distributed with meanμ0 and precisionν0, the agent’s ex ante expected payoff

beforethe realization ofθ is

E0

[∫ T

0

(

θ ∙a∗i (t)−
(a∗i (t))

2

2

)

dt

]

=
T
N

(

1−
1

2N

)

E0
[
θ 2]

=
T
N

(

1−
1

2N

)(

μ2
0 +

1
ν0

)

.

Note that the payoff structure of our model implies that the value of project is convex inθ .

Therefore, choosing a risky project (one with a smallν0) is always beneficial under complete

information.

Now, consider the original model whereθ is unknown. We consider the optimal choice of

uncertaintyν0 subject to a constraintμ2
0 + 1

ν0
= k for somek > 0. This constraint requires that

the mean of the project decreases as its level of uncertainty increases, offsetting the inherent

benefit of risk taking described above.
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Figure 4: Ex ante payoff as a function ofν0, with different levels ofκθ

Given the constraint, the ex ante expected equilibrium payoff is given by29

E0

[∫ T

0

(

θ ∙ai(t)−
(ai(t))2

2

)

dt

]

=
∫ T

0
ξ (t)

(

1−
ξ (t)

2

)

E0
[
μ(t)2]dt.

=
∫ T

0
ξ (t)

(

1−
ξ (t)

2

)(

k−
1

ν(t)

)

dt.

Note that as the project uncertainty becomes larger, the cost of uncertainty (captured by the

term 1/ν(t)) increases, while the free-riding problem is alleviated sinceξ (t) uniformly in-

creases inν0 for all t ∈ (0,T).

Figure4 illustrates that the trade-off between the two effects leads to an interior optimal

level of uncertainty. The optimal level of uncertainty naturally depends on other parameters of

the model. For example, Figure4 shows that the larger isκθ , the larger is the optimal level of

uncertainty. Intuitively, a largerκθ means that learning takes place faster. Therefore, the cost

of uncertainty (via a mismatch between effort levels and the state) quickly disappears, leading

to a higher optimal level of uncertainty.

29The second equality is derived by the distribution of equilibrium posterior meanμt : Sincezt = θ +εt on the

equilibrium path, and theεts are independent across time, we have∑t−1
s=0zs = tθ +∑t−1

s=0 εs ∼ N
(

tμ0,
t2
ν0

+ t
νε

)
.

Sinceμt = ν0
νt

μ0+ νε
νt

∑t−1
s=0zs, μt ∼N

(

μ0,
(

νε
νt

)2(
t2
ν0

+ t
νε

))

= N
(

μ0,
1
ν0
− 1

νt

)
. This result naturally extends

to the continuous-time limit.
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5.3 Effect of Flexibility

Another interesting question regarding team design is how the ability to frequently receive

feedback and adjust actions accordingly affects the dynamics of team incentives. In our model

of dynamic team production, flexibility is captured by (the inverse of) the period lengthΔ. In

the literature on repeated games with imperfect public monitoring, it is well known that in the

limit of flexible actions(Δ → 0), cooperation may weaken (Abreu et al., 1991) or completely

break down (Sannikov and Skrzypacz, 2007). In sharp contrast to these results, we show in

this subsection that the degree of free-riding diminishes as the team becomes more flexible.

This result highlights an interesting contrast between the signal-jamming mechanism in our

paper and the classic punishment mechanism in the repeated games literature.

In our formal analysis of team flexibility, we use the stationary model developed in Section

4. Recall that in the stationary model, there exists(ξ ∗,ν∗) such that ifν0 = ν∗ there exists

a stationary Markov perfect equilibrium in whicha∗it = ξ ∗μ̂it and νt = ν∗ for all t. Next,

the proposition states that as the agents’ actions become more flexible, the signal-jamming

incentives in the stationary equilibrium become stronger.

Proposition 10. In the stationary Markov perfect equilibrium,∂ξ ∗

∂Δ < 0.

The intuition is straightforward. Suppose thatΔ is arbitrarily large so that the agents are

not able to frequently adjust their effort levels. Then, the effect of information on the future

effort level would occur far in the future, and thus, the signal-jamming incentive vanishes.

However, asΔ becomes smaller, the agents have more frequent opportunities to manipulate

others’ beliefs, leading to a higher benefit of effort.

Proposition10 contrasts with the results in the classic literature on repeated games.San-

nikov and Skrzypacz(2007) consider a repeated partnership game with imperfect public mon-

itoring (but no uncertainty regarding the underlying state). They show that as asΔ → 0, it is

impossible to achieve cooperation using the punishment scheme. Under flexible actions, any

strategy profile must punish the agents based on the noisy information, which increases the

cost of type I error, which eventually outweighs the benefit from future cooperation. In con-

trast, the equilibrium strategy profile of our paper does not involve any direct punishment, and

the incentives become stronger as a team becomes more flexible. Our result suggests that the
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Figure 5: Ex ante payoff as a function ofΔ

signal-jamming incentive in our model may work better than the standard punishment scheme

under certain conditions of organizations.

To analyze welfare, note that in the stationary equilibrium, given any realization ofθt , the

mean of the public beliefμt follows a normal distribution with meanθt and variance 1/ν∗.

Therefore, conditional on the true state beingθt , each agent’s expected stage payoff is30

ξ ∗
(

1−
ξ ∗

2

)

θ 2
t −

ξ ∗2

2ν∗ . (15)

Observe that the variableΔ can impact the payoff through two channels: (i) its impact on effort

incentives (ξ ∗); and (ii) its impact on the stationary level of uncertainty (1/ν∗). As discussed

above, more flexibility improves effort incentives. Moreover, inspecting (12) reveals that more

flexibility increases the stationary precisionν∗. As a result, increased flexibility (i.e., smaller

Δ) is generally welfare improving, as depicted in Figure5.31

30Note that we analyze the welfare outcomes by computing an expected stage payoff given a fixed stateθt .
The ex ante payoff of the stationary model is not well defined, sinceθt follows a random walk so that the long-
run expectation ofθ 2

t diverges. Yet, we claim that our exercise is valuable. First, ifθt follows a mean-reverting
process, the expectation ofθ 2

t would not diverge. In this case, we conjecture that the welfare result is consistent
with our analysis. Second, for any initial finite number of periods, the expectation ofθ 2

t is finite, and in this case,
the above qualitative discussion remains valid.

31This discussion ignores a second-order effect that appears in welfare calculations: asξ ∗ increases, the cost
of mismatch increases (as captured by the second term of (15)). If θ 2

t is sufficiently large, such a negative effect
becomes relatively weaker than the benefit from highξ ∗.
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5.4 Asymmetric Information: Role of Experts

SinceHermalin(1998), the economics literature on leadership has analyzed the effect of

information transmission and incentive provision by an informed member (leader) of a team.32

Our framework enables us to analyze such effects of leadership in dynamic environments. For

this, we extend the stationary model presented in the previous subsection to the asymmetric

information case in which some team members perfectly know the true state. We refer to such

team members asexperts. The other team members, ornovices, are uninformed, as in the

previous model.

Consider a team withNe experts andNn novices(Ne+Nn = N). We assume that the state

θt follows a random walk, as in the previous subsection. The experts are perfectly informed

of θt in each period, while the novices update their beliefs based on feedback. The period-t

feedback is given byyt = Δ [κθ θt +κa(Neae
t +Nnan

t )+ εt ] , whereae
t andan

t are the period-t

effort levels of experts and novices, respectively. We assume that the experts do not have a

direct method of communication.

We construct an equilibrium in Markovian strategies in which the expert’s effort level is

linear in the current state and the novice’s effort level is linear in the mean of his private belief,

that is,

ae
t = γtθt , an

t = ξt μ̂it .

Then, a sequence{(γt ,ξt)}∞
t=0, combined with a sequence of belief precision levels{νt}∞

t=0,

completely describes the equilibrium strategy profile.

Note that under asymmetric information, the experts’ actions can affect the precision of

novices’ beliefνt . Given the above linear Markovian strategy profile (and the belief that

the novices have never deviated in the past), the novices understand that feedbackyt on the

equilibrium path is given by

yt = Δ[mtθt +κaNnξt μt + εt ],

32In the leadership literature,Hermalin(1998) andKomai et al.(2007) show two different channels through
which an expert can improve the overall welfare of a team. In the former paper, expert effort (perfectly monitored)
provides extra information that reduces the payoff loss resulting from uncertainty. In the latter paper, by working
hard, the expert canencourageother members to work hard. In our model, both channels are present.
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ξ ∗

γ∗

ν∗

Figure 6: Value of(γ∗,ξ ∗,ν∗) whenNe = 0, . . . ,4 (N = 5)

wheremt = κθ + κaNeγt . Therefore, as the experts’ response rate(γt) increases, feedbackyt

becomes more informative aboutθt , leading to more precise novice beliefs.

We show that there exists a unique stationary Markov perfect equilibrium of the asymmet-

ric information model, as stated in the next proposition.

Proposition 11. There exists a unique triplet(γ∗,ξ ∗,ν∗) such that ifν0 = ν∗, the linear

Markovian strategies

ae∗
it (θt) = γ∗θt , an∗

it (μ̂it ) = ξ ∗μ̂it ,

constitute a Markov perfect equilibrium. In this equilibrium,νt = ν∗ after any history.33

Figure6 plots the equilibrium values ofξ ∗ andγ∗ and the stationary precisionν∗ against

the number of experts(Ne) on a 5-person team. First, note that asNe increases, the team mem-

bers’ incentives (captured byξ ∗ andγ∗) decrease. The intuition is straightforward: As there

are fewer novices who are influenced by feedback, the incentives for signaling (for experts)

and signal-jamming (for novices) decrease. However, the stationary precisionν∗ increases in

the number of experts, as the experts’ efforts make feedback more informative about the state.

To measure the welfare effect of team composition as in the previous subsection, we cal-

culate the expected stage payoff of the experts and the novices in the stationary equilibrium.

33For a general value ofν0, finding a sequence(γt ,ξt ,νt) that converges to the stationary value is analytically
intractable. However, the numerical simulations suggest that, similar to the analysis in Section4, the continuity
of the vector field may lead to the existence of such a sequence.
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(a) aAs a function ofκθ (b) As a function ofησ

Figure 7: Welfare of a team with(Ne,Nn) = (0,5) (blue lines) and a team with(Ne,Nn) =
(1,4) (red lines)

Given the period-t stateθt , the sum of expected payoffs of all agents is given by

NeE

[
θt

N
(Neγ∗θt +Nnξ ∗μt)−

γ∗2θ 2
t

2

]

+NnE

[
θt

N
(Neγ∗θt +Nnξ ∗μt)−

ξ ∗2μ2
t

2

]

= Ne

(

γ∗ −
γ∗2

2

)

θ 2
t +Nn

[(

ξ ∗ −
ξ ∗2

2

)

θ 2
t −

ξ ∗2

2ν∗

]

.

The above argument implies that having an expert helps a team when the benefit of provid-

ing more information outweighs the cost of an increasing free-riding effect. Figure7 illustrates

the impact of feedback responsivenessκθ (left panel) and state persistenceησ (right panel)

on the expected payoff of two teams: one with five novices (blue lines) and another with one

expert and four novices (red lines). When feedback is uninformative of the state (smallκθ )

or the state is less persistent (smallησ ), then the informational contribution of an expert is

important, so the team with an expert does better than the all-novice team. This advantage of

having an expert disappears asκθ becomes large (so that the team members receive precise

information even in the absence of an expert) or whenησ becomes large (so that there is not

much uncertainty).

Finally, we consider the impact of the share structure between experts and novices on team

welfare. Figure8 plots the total welfare of a team with(Ne,Nn) = (1,4) as a function of the
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Figure 8: Team welfare as a function of the expert’s share

expert’s share, assuming that the remaining output is shared equally among the novices. Note

that the optimal share structure is asymmetric, with the expert’s share exceeding 1/N = 0.2

(dashed line). Intuitively, the impact of increasing the share of experts is similar to that of

replacing a novice with an expert. Thus, when the informational contribution of an expert

becomes important (such as with smallκθ andηθ ), the expert receives a larger share in the

optimal share structure. Our numerical analysis is preliminary, and analyzing the optimal

share structure (which may be history dependent) is left for future research.

6 Concluding Remarks

The main insights of our paper, along with the tractability of the linear-quadratic-Gaussian

framework, present new opportunities for future research. Here, we discuss three potential

research directions.

First, one could set up a model in which the payoff and informational externalities can be

disentangled, and thus, the agents’ efforts over time exhibit either strategic substitutability or

complementarity conditional on the parameter values. This would provide a unified analysis

of the effect of uncertainty on dynamic team production.

Second, it may be interesting to consider the case with private feedback. Suppose that the

agents receive private feedback in addition to public feedback. Then, in contrast to our main
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model, other agents’ beliefs also become relevant to making the effort choice, as they convey

additional information about the true state. Then, in addition to signal-jamming, there will

be a signaling incentive for each agent. Extending our model to this case would allow us to

analyze additional issues, such as the optimal design of feedback structures in organizations.

Finally, comparison between the signal-jamming mechanism in our paper and the standard

punishment mechanism deserves further exploration. In the infinite-horizon model, there exist

many other non-Markovian equilibria that rely on a trigger mechanism to induce cooperation.

Following the insight ofSannikov and Skrzypacz(2007), we conjecture that such trigger equi-

libria would not survive under flexible production, whereas the Markovian equilibrium of our

paper would survive and continue to exhibit cooperation. Comparing other aspects of the two

mechanisms and analyzing possible combinations of the two are left for future research.

Appendix

Proof of Proposition 1

First, recall that given any pure strategy profile, the Gaussian belief updating process

(equations1 and2) implies that the agents’ beliefs after every period-t history can be sum-

marized by(μt ,(μ̂1t , . . . , μ̂Nt)), whereμt and μ̂it are the mean of the public belief and agent

i’s private belief in periodt, respectively. Furthermore, since every public history is on the

equilibrium path, all agents believe that the others have not deviated after any history, and

thus, agenti believes that̂μ jt = μt for all j 6= i.

We employ backward induction to prove the proposition. In the last period, each agent

maximizes his stage payoff:

a∗i (h
T
i ) = argmax

a
ET

[

Δsiθ

(

a+ ∑
j 6=i

a∗jT

)]

−Δci
a2

2
= argmax

a
si μ̂iT

(

a+ ∑
j 6=i

a∗jT

)

−ci
a2

2
.

The first-order condition yields agenti’s unique equilibrium efforta∗iT = (si/ci)μ̂iT = ξiT μ̂iT .

Now, suppose that the claim of the proposition holds for periodt + 1 onward—that is, in

any equilibrium of the game, agenti playsa∗i (h
k
i ) = ξikμ̂ik for k = t + 1, . . . ,T, whereξik is
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defined in (4). To solve agenti’s optimization problem in periodt, we first compute the impact

of his effort choice on future public beliefs. Recall (from Section3.1) thatāit = a∗(h̄t
i ) is agent

i’s equilibrium effort at public historyht if he has not deviated in the past—that is, the other

agents expect agenti to playāit atht . Suppose that agenti playsa in periodt. Then, using (1)

and (2), we have

μt+1− μ̂i,t+1 =
νt

νt+1
(μt − μ̂it )+

Δκaκθ ηε
νt+1

(a− āit ) =
ρt+1

ρt
(μt − μ̂it )+ρt+1(a− āit ). (16)

For periodst +2 onward, we use the induction hypothesis that in periodl = t +1, . . . ,T agent

i playsail = ξil μ̂il , while the others expect him to play ˉail = ξil μl . Therefore, we have

μk− μ̂ik = (μt+1− μ̂i,t+1)
k−1

∏
l=t+1

(
νt

νt+1
−ξil ρl+1

)

= (μt+1− μ̂i,t+1)
ρk

ρt+1

k−1

∏
l=t+1

(1−ξil ρl ) ,

(17)

for k = t +2, . . . ,T. Substituting (16) into (17) and re-arranging, we obtain

μk = μ̂ik +

(
1
ρt

(μt − μ̂it )+(a− āit )

)

ρk

k−1

∏
l=t+1

(1−ξil ρl ) . (18)

In periodt, agenti’s optimization problem is given by

a∗i (h
t
i) = argmax

a
si μ̂it

(

a+ ∑
j 6=i

a∗j (h̄jt )

)

−ci
a2

2

+ Et

[
T

∑
k=t+1

e−rΔ(k−t)

((

siξik −ci
ξ 2

ik

2

)

μ̂2
ik +si ∑

j 6=i

ξ jkμkμ̂ik

)

| a

]

.

Note thatμ̂ik for k = t + 1, . . . ,T is independent ofa and has expectation̂μit . Substituting

μk with (18), eliminating additive terms that are independent ofa, and replacinĝμik with its

expectation whenever appropriate, agenti’s problem is rewritten as

a∗i (h
t
i) = argmax

a
si μ̂it

[

1+
T

∑
k=t+1

e−rΔ(k−t) ∑
j 6=i

ξ jkρk

k−1

∏
l=t+1

(1−ξil ρl )

]

a−ci
a2

2
.

It is clear that the problem is concave ina and has a unique solution. The first-order condition
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immediately yields the desired result.

Proof of Proposition 2

First, we show that there exists a unique solution to (9), which defines an autonomous

first-order nonlinear system of differential equations. Defineu(t) = (ξ1(t), . . . ,ξN(t),ν(t));

thendu(t) = F(u(t)), whereF is a Lipschitz continuous function given any(κa,κθ , r,ηε ,ηθ ).

Then, by the Picard-Lindelöf theorem (Teschl(2012), Theorem 2.2), there exists a unique

solution to this system in the domain[0,T] with the boundary valuesξi(τ) = si/ci for all i.

To establish monotonicity, we first observe thatξ̇i(τ) < 0. Suppose, for a contradiction,

that there existi andt̃ ∈ [0,τ) such thatξ̇i(t̃) > 0. By the continuity ofξ̇i(t), there existŝΔi > 0

such thatξ̇i(t) < 0 for t ∈ (τ − Δ̂i ,τ ] and ξ̇i(τ − Δ̂i) = 0. Without loss of generality, assume

that i = 1 attains min{Δ̂i |i = 1, ∙ ∙ ∙ ,N}, with the convention that̂Δ j = ∞ if ξ̇ j(t) < 0 for all t.

This in particular implies thaṫξi(τ − Δ̂1) ≤ 0 for i 6= 1.

Next, we claim thaẗξ1(τ − Δ̂1) > 0. By taking derivatives of both sides of (9) and using

ξ̇1(τ − Δ̂1) = 0, we obtain

ξ̈1(τ−Δ̂1)=
η2

ε κ3
θ κa

(
ν0 +ηεtκ2

θ
)2

(
s1

c1

N

∑
j=1

ξ j(τ − Δ̂1)−ξ1(τ − Δ̂1)
2

)

−
ηεκθ κa

ν0 +ηεtκ2
θ

s1

c1

N

∑
j=1

ξ̇ j(τ−Δ̂1).

Since over(τ − Δ̂1), ξ1 is strictly decreasing,ξ1(τ − Δ̂1) > s1/c1. Therefore, the first additive

term in (9) is positive. Then,ξ1(τ − Δ̂1) = 0 implies by (9) that

s1

c1

N

∑
j=1

ξ j(t)−ξ1(t)
2 > 0.

This, together withξ̇ j(τ − Δ̂1) ≤ 0, establishes our claim thatξ̈1(τ − Δ̂1) > 0. Now, since

ξ̇1 is continuous,ξ̇1(τ − Δ̂1) = 0 andξ̈1(τ − Δ̂1) > 0, there existsε > 0 such thatξ̇1(t) > 0

whenevert ∈ (τ − Δ̂1− ε,τ − Δ̂1), a contradiction establishing that for allt, ξ̇t ≤ 0.

Monotonicity immediately implies the lower bound onξi(t). Again, ξ̇i(t) ≤ 0 implies, by
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(9), that the term in parentheses on the right-hand side must be positive. That is,

si

ci

N

∑
j=1

ξ j(t) > ξi(t)
2.

Taking the square roots of both sides, summing overi and rearranging establishes the upper

bound. The above argument implies that a solution does not blow up in finite time; therefore,

a solution exists∀τ ∈ [0,∞).

Proof of Proposition 6

By (9), wheneverξi(t) is less than the upper bound,ξ̇i(t)→−∞ asκa → ∞. Together with

monotonicity shown in Proposition2, this implies thatξi(t) converges pointwise to its upper

bound, which is 1/ci under the specified sharing rule.

Proof of Proposition 7

Dynamic Programming

Recall from (10) and (11) that the mean and the precision of the period-t public belief is

recursively defined as

μt+1 =
νt μt +κθ ηεzt

νt +Δκ2
θ ηε

, νt+1 =

(
νt +Δκ2

θ ηε
)

ησ

Δ
(
νt +Δκ2

θ ηε
)
+ησ

,

wherezt = yt −Δκa∑i a
∗
i (h̄

t
i) anda∗i (h̄

t
i ) is the equilibrium strategy given that the agents have

never deviated in the past. The private belief of agenti—characterized by the mean̂μit and

precisionν̂it —is updated using the same Gaussian updating process but with the signal ˆzit =

yt −Δκa(ait +∑ j 6=i a
∗
j (h̄

t
j)) instead ofzt . Note that the public and private beliefs have the same

precision(νt = ν̂it for anyt), andνt is independent after any public history.

Now, consider the agent’s optimization problem. Given the linear Markovian strategy

a∗it = ξt μ̂it , the agent’s expected continuation payoff is a function oft, μ̂it andμt . Denote the

agent’s period-t continuation payoff asVt(μ̂it ,μt). Then, agenti’s the optimization problem is
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written as

Vt(μ̂it ,μt) = max
a

μ̂it

N
(a+(N−1)ξt μt)−

a2

2
+e−rΔEt [Vt+1(μ̂i,t+1,μt+1)] .

Suppose that there exist constantsωt+1,αt+1 andβt+1 such thatVt+1(μ̂i,t+1,μt+1) = ωt+1 +

αt+1μ̂2
i,t+1 +βt+1μ̂i,t+1μt+1. Then, we have

Vt(μ̂it ,μt) = max
a

μ̂it

N
(a+(N−1)ξt μt)−

a2

2
+e−rΔ (ωt+1 +αt+1Et [μ̂2

i,t+1]+βt+1Et [μ̂i,t+1μt+1]
)
.

Since

Et [yt ] = Δ[κθ μ̂it +κa(a+(N−1)ξt μt)]

Et [zt ] = Et [yt −ΔκaNξt μt ] = Δ[κθ μ̂it +κa(a−ξt μt)]

Et [ẑit ] = Et [yt −Δκa(a+(N−1)ξt μt)] = Δκθ μ̂it

Et [ẑit zt ] = Et [y
2
t ]−Et [yt ]Δκa(Nξt μt +(a+(N−1)ξt μt))+Δ2κ2

a(a+(N−1)ξt μt)Nξt μt

= (Et [yt ]−Δκa(a+(N−1)ξt μt))(Et [yt ]−ΔκaNξt μt)+Vart(yt)

= Et [ẑit ]Et [zt ]+Vart(yt)

Et [ẑ
2
it ] = (Et [ẑit ])

2 +Vart(yt),

whereVart(yt) = Δ2[κ2
θVart(θt)+Vart(εt)] =

Δ2κ2
θ

νt
+ Δ

ηε
, we have

Et [μ̂2
i,t+1] = Et

[(
νt μ̂it +κθ ηε ẑit

νt +Δκ2
θ ηε

)2
]

= μ̂2
it +

(
κθ ηε

νt +Δκ2
θ ηε

)2

Vart(yt),

Et [μ̂i,t+1μt+1] = Et

[(
νt μ̂it +κθ ηε ẑit

νt +Δκ2
θ ηε

)(
νt μt +κθ ηεzt

νt +Δκ2
θ ηε

)]

= μ̂it
νt μt +Δκθ ηε(κθ μ̂it +κa(a−ξt μt))

νt +Δκ2
θ ηε

+

(
κθ ηε

νt +Δκ2
θ ηε

)2

Vart(yt).
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Therefore, the first-order condition fora yields

a∗it =

(
1
N

+e−rΔβt+1
Δκθ κaηε

νt +Δκ2
θ ηε

)

μ̂it ,

which is linear inμ̂it , with

ξt =
1
N

+e−rΔβt+1
Δκθ κaηε

νt +Δκ2
θ ηε

. (19)

Plugging ina∗it = ξt μ̂it into the payoff function, we have

Vt(μ̂it ,μt) =
μ̂it

N
(ξt μ̂it +(N−1)ξt μt)−

ξ 2

2
μ̂2

it

+e−rΔ

[

ωt+1 +αt+1

(

μ̂2
it +

(
κθ ηε

νt +Δκ2
θ ηε

)2

Vart(yt)

))

+βt+1

((

μ̂it
νt μt +Δκθ ηε(κθ μ̂it +κaξt(μ̂it −μt))

νt +Δκ2
θ ηε

+

(
κθ ηε

νt +Δκ2
θ ηε

)2

Vart(yt)

)]

.

Simplifying, we have the following recursive equations for(ωt ,αt ,βt):

ωt = e−rΔ

(

ωt+1 +(αt+1 +βt+1)

(
κθ ηε

νt +Δκ2
θ ηε

)2

Vart(yt)

)

αt =
ξt

N
−

ξ 2
t

2
+e−rΔ

(

αt+1 +βt+1
Δκθ ηε(κθ +κaξt)

νt +Δκ2
θ ηε

)

βt =
N−1

N
ξt +e−rΔβt+1

νt −Δκθ κaηεξt

νt +Δκ2
θ ηε

. (20)

Combining (19) and (20) yields the formula ofβt in terms ofξt , which is

βt = ξt +
νt

Δκθ κaηε

(

ξt −
1
N

)

−ξ 2
t . (21)

Then, by plugging (21) back into (20), we derive the recursive formulation forξt :

ξt =
1
N

+e−rΔ 1

νt +Δκ2
θ ηε

(

Δκθ κaηε(ξt+1−ξ 2
t+1)+νt+1

(

ξt+1−
1
N

))

. (22)
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Equilibrium Profile

Given the recursive formation, we conduct the phase diagram analysis to construct linear

Markov perfect equilibrium. Equation (22), combined with the recursive equation forνt

νt+1 =

(
νt +Δκ2

θ ηε
)

ησ

Δ
(
νt +Δκ2

θ ηε
)
+ησ

, (23)

determines the evolution of(νt ,ξt) in equilibrium. Equation (23) implies that given an initial

precisionν0 > 0, the sequence{νt}∞
t=0 is deterministic and is independent of the strategy

profile. Sinceνt+1 − νt = −Δν2
t +Δκ2

θ ηε νt−κ2
θ ηε ησ

Δ(νt+Δκ2
θ ηε)+ησ

, there exists a unique positive fixed point

ν∗ =
ηε κ2

θ
2

(
−Δ+

√
Δ2 + 4ησ

ηε κ2
θ

)
. Furthermore, since∂νt+1

∂νt
=

(
ησ

Δ(νt+Δκ2
θ ηε)+ησ

)2

∈ (0,1) for

anyνt > 0, the sequence{νt} converges toν∗ ast → ∞ for any value ofν0 > 0.

To analyze the dynamics ofξt , we rewrite (22) as

ξt −
1
N

= e−rΔΛμt

(

ξt+1−
1
N

)

+e−rΔΛat
(
ξt+1−ξ 2

t+1

)
, (24)

whereΛμt = νt+1

νt+Δκ2
θ ηε

andΛat = Δκθ κaηε
νt+Δκ2

θ ηε
. Solving forξt+1 yields

ξt+1(ξt) =






ξ (+)
t+1(ξt) ≡

(Λμt+Λat)+

√

(Λμt+Λat)2− 4Λat
e−rΔ

(

ξt−
1−e−rΔΛμt

N

)

2Λat
,

ξ (−)
t+1(ξt) ≡

(Λμt+Λat)−

√

(Λμt+Λat)2− 4Λat
e−rΔ

(

ξt−
1−e−rΔΛμt

N

)

2Λat
.

(25)

Note that bothξ (+)
t+1(ξt) andξ (−)

t+1(ξt) are well defined if and only ifξt ≤ ξ̃ , where

(Λμt +Λat)
2−

4Λat

e−rΔ

(

ξ̃ −
1−e−rΔΛμt

N

)

= 0 =⇒ ξ̃ =
1−e−rΔΛμt

N
+

e−rΔ(Λμt +Λat)2

4Λat
,

andξ (+)
t+1(ξ̃ ) = ξ (−)

t+1(ξ̃ ) = Λμt+Λat
2Λat

.

Fix ν̂ > 0. Then, it is easy to check that for anyε > 0, there exists̄Δ such that ifΔ < Δ̄,

thenΛμt > 1− ε andΛat < ε for anyνt > ν̂ . Moreover, limΔ→0
ξ (+)

t+1(ξ̃ )

ξ̃
= 2

e−rΔ > 1. Thus, for
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sufficiently smallΔ, ξ (+)
t+1(ξ̃ ) > ξ̃ > 1 for anyνt > ν̂ . Sinceξ (+)

t+1(ξt) > ξ (+)
t+1(ξ̃ ) for all ξt < ξ̃ ,

if we setξt+1 = ξ (+)
t+1(ξt), thenξt+1 > ξ̃ , soξt+2 is not well defined. Therefore, in order for

the sequence{ξt} to be well defined, it must be thatξt+1 = ξ (−)
t+1(ξt).

On the other hand, from (24) we have

ξt+1−ξt = e−rΔΛat(ξt+1− ξ̂ (νt))(ξt+1−ξ (νt)), (26)

where

ξ̂ (νt) =
1−Γt +

√
(1−Γt)2 +4Γt/N

2
,

ξ (νt) = 1−Γt−
√

(1−Γt)2+4Γt/N
2 , andΓt = 1−e−rΔΛμt

e−rΔΛat
=

(νt+Δκ2
θ ηε )(νt+Δκ2

θ ηε+(1−e−rΔ)νσ )
(νt+Δκ2

θ ηε+νσ )e−rΔΔκθ κaηε
> 0. It is

easy to check that̂ξ (νt) ∈ (1/N,1) andξ (νt) < 0.

The above argument implies that(νt+1,ξt+1)= G(νt ,ξt), whereG1(νt ,ξt)= (νt+Δκ2
θ ηε)ησ

Δ(νt+Δκ2
θ ηε)+ησ

,

andG2(νt ,ξt) = ξ (−)
t+1(ξt). Figure9 describes the phase diagram of(νt ,ξt) induced byG. Note

that the space is divided into four regions by the two linesνt = ν∗ andξt = ξ̂ (νt). The hori-

zontal lineνt = ν∗ illustrates the dynamics ofνt : If νt < ν∗(νt > ν∗), thenνt+1 is greater than

(smaller than)νt but νt+1 never crossesν∗. Therefore, regardless of the initial precisionν0,

the sequence{νt} is monotone and converges toν∗ ast → ∞. On the other hand, the dynamics

of ξt are depicted by the lineξt = ξ̂ (νt). Note thatξ̂ (νt) is downward sloping and intersects

with theνt = ν∗ line at(ν∗,ξ ∗).34

Then, by the continuity of the vector fieldG, there must exist a unique curveP that

passes through(ν∗,ξ ∗) such that if(νt ,ξt) ∈ P, thenG(νt ,ξt) ∈ P. Note thatP must lie

on the upper-right and lower-left regions. In Figure9, P is depicted as a blue line. Then,P

34To prove thatξ̂ (νt) is downward sloping, note that

∂ ξ̂
∂Γt

=
1
2



−1+
−(1−Γt)2 + 2

N√
(1−Γt)2 + 4

N Γt



< 0,

∂Γt

∂νt
=

(νt +Δκ2
θ )ηε

2
+2νσ (νt +Δκ2

θ )ηε)+(1−e−rΔ)ν2
σ

(νt +Δκ2
θ )ηε +νσ )2e−rΔΔκθ κaηε

> 0,

and thus,
∂ ξ̂
∂νt

=
∂ ξ̂
∂Γt

∂Γt

∂νt
< 0.
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ξt

νtν∗

ξ ∗

ξ̂ (νt)

Figure 9: Phase diagram of(νt ,ξt)

defines a functionΞ :R+ →R+ such that for anyν0 > 0, (ν0,Ξ(ν0)) ∈P. Therefore, for any

initial precisionν0, there exists a unique valueΞ(ν0) such that the corresponding sequence

{νt ,ξt}∞
t=0 converges to(ν∗,ξ ∗). Since the sequence satisfies the transversality condition, it

constitutes the Markov perfect equilibrium.

Proof of Proposition 8

(Parts 1-2) SinceΓ is independent ofN, it is straightforward from (14) thatξ ∗ decreases

in N. Define f (x) = Nx2−N(1−Γ)x−Γ, then for anyN ≥ 2, f (1/N) = −1+1/N < 0 and

f (1) = (N−1)Γ > 0. Thus, the solution to (13) must lie between 1/N and 1.

(Parts 3-5) Notice that

∂ξ ∗

∂Γ
=

1
2



−1+
−(1−Γ)2 + 2

N√
(1−Γ)2 + 4

NΓ





≤
1
2

(

−1+

√
(1−Γ)2 + 4

N(Γ−1+ 1
N)

(1−Γ)2 + 4
NΓ

)

< 0.
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Then, from

Γ =
1−e−rΔΛμ

e−rΔΛa
=

(erΔ +1)+(erΔ −1)
√

1+ 4ησ
Δ2ηε κ2

θ

2
κθ
κa

,

it is easy to show that∂Γ
∂ r > 0, ∂Γ

∂κθ
> 0, and ∂Γ

∂κa
< 0. The limit result forκa is obtained from

the fact that limΓ→0ξ ∗ = 1 and thatΓ → 0 asκa → ∞.

Proof of Proposition 10

RewriteΓ as

Γ(Δ) = C1

(

erΔ +1+(erΔ −1)

√

1+
C2

Δ2

)

,

whereC1 = κθ
2κa

andC2 = 4ησ
ηε κ2

θ
. Then, we have,

Γ′(Δ) = C1



rerΔ + rerΔ
√

1+
C2

Δ2 +(erΔ −1)
−C2/Δ3
√

1+ C2
Δ2





= C1erΔ

(

r +

√

1+
C2

Δ2

(

r −
1−e−rΔ

Δ
C2

Δ2 +C2

))

> 0,

sincer > 1−e−rΔ/Δ for anyΔ > 0. Since∂ξ ∗

∂Γ < 0, (see the proof of Proposition8) we have

the desired result.

Proof of Proposition 11

Given a linear Markovian strategy profileae
t = γ∗θt andan

t = ξ ∗μ̂it , and given the belief

that the novices have never deviated in the past (which impliesμ̂it = μt for all i = 1, . . . ,N),

the novices understand that feedbackyt is of the following form:

yt = Δ[κθ θt +κa(N
eae

t +Nnan
t )+ εt ],

= Δ[m∗θt +κaNnξ ∗μt + εt ],

wherem∗ = κθ + κaNeγ∗. Then, after observingyt , the novices use the signalzt = yt −

ΔκaNnξ ∗μt to update the public belief about the state. Let(μt ,νt) and(μ ′
t ,ν ′

t ) be the mean
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and precision of the period-t public belief before and after observingyt . Then, by standard

Gaussian updating,

μ ′
t =

νt μt +mtηεzt

νt +Δm2
t ηε

, ν ′
t = νt +Δm2

t ηε .

Then, the public belief in periodt +1 is

μt+1 = μ ′
t+1 =

νt μt +m∗ηεzt

νt +Δm∗2ηε
,

νt+1 =

(
1
ν ′

t
+

Δ
ησ

)−1

=
(νt +Δm∗2ηε)ησ

Δ(νt +Δm∗2ηε)+ησ
. (27)

Solving (27) with νt = νt+1 ≡ ν∗, we obtain the stationary precision

ν∗ =
m∗2ηε

2

(

−Δ+

√

Δ2 +
4ησ

m∗2ηε

)

. (28)

Similar to the proof of Proposition7, we solve the dynamic programming problems of the

expert and the novice to obtain the values ofγ∗ andξ ∗. Denote the stationary continuation

payoffs of the expert and the novice under the stationary Markovian profile asW∗(θt ,μt) and

V∗(μ̂it ,μt), respectively. Then, we have

W∗(θt ,μt) = max
a

θt

N
(a+(Ne−1)γ∗θt +Nnξ ∗μt)−

a2

2
+e−rΔEe

t [W∗(θt+1,μt+1)] .

V∗(μ̂it ,μt) = max
a

μ̂it

N
(a+Neγ∗μ̂it +(Nn−1)ξ ∗μt)−

a2

2
+e−rΔEn

t [V∗(μ̂i,t+1,μt+1)] .

Applying a guess and verify method—similar to one used in the proof of Proposition7—to

each dynamic programming problem, we obtain the equations form∗ = κθ +κaNeγ∗ andξ ∗:35

(1−e−rΔ)ν∗ +Δηεm∗2

m∗ (m∗ −m) = e−rΔΔηεκ2
a

NeNn

N
ξ ∗, (29)

(1−e−rΔ)ν∗ +Δηεm∗2

m∗ (ξ ∗ −
1
N

) = e−rΔΔηεκa

(
Nn

N
ξ ∗ −ξ ∗2

)

, (30)

35The detailed calculations are available upon request.
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wherem= κθ +κa
Ne

N . By dividing (30) by (29) and simplifying, we have

ξ ∗ =
Nn

N
m∗ −κθ

m∗ −κθ + Ne

N (Nn−1)κa
. (31)

Finally, plugging (28) and (31) into (29), we obtain the equation form∗ given by

(erΔ +1)+(erΔ −1)
√

1+4 νσ
Δ2m∗2ηε

2κ2
a

m∗
(

m∗ −m+
NeNn

N
κa

)

(m∗ −m) =
Ne(Nn)2

N2 (m∗ −κθ ), (32)

which has a unique solution that satisfiesm∗ > m.
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