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Abstract

The objective of this paper is to show how ambiguity, and a decision maker (DM)’s
response to it, can be modelled formally in the context of a very general decision model.

We introduce relation derived from the DM’s preferences, called “unambiguous prefer-
ence”, and show that it can be represented by a set of probability measures. We provide
such set with a simple differential characterization, and argue that it represents the DM’s
perception of the “ambiguity” present in the decision problem. Given the notion of ambigu-
ity, we show that preferences can be represented so as to provide an intuitive representation
of ambiguity attitudes.

We then argue that these ideas can be applied, e.g., to obtain a behavioral foundation for
the “generalized Bayesian” updating rule and for the “a-maxmin” expected utility model.

Introduction

When requested to state their maximum willingness to pay for two pairs of complementary bets
involving future temperature in San Francisco and Istanbul (and identical prize of $ 100 in case
of a win) 90 pedestrians on the University of California at Berkeley campus were on average

willing to pay about $ 41 for the two bets on San Francisco temperature, and $ 25 for the two
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bets on Istanbul temperature. That is, on average they would have paid almost $ 16 more to
bet on the (familiar) San Francisco temperature than on the (unfamiliar) Istanbul temperature
(Fox and Tversky [11, Study 4]).

This striking pattern of preferences is by no means peculiar to the inhabitants of San Fran-
cisco. Ever since the seminal thought experiment of Ellsberg [7], it has been acknowledged that
the awareness of missing information, “ambiguity” in Ellsberg’s terminology, affects subjects’
willingness to bet. And several experimental papers, the cited [11] being just one of the most
recent ones, have found significant evidence of ambiguity affecting decision making (see Luce
[22] for a survey). Though Ellsberg emphasized the relevance of aversion to ambiguity, later
work has shown that the reaction to ambiguity is not systematically negative. Examples have
been produced in which subjects tend to be ambiguity loving, rather than averse (e.g., Heath
and Tversky [20]’s “competence hypothesis” experiments). However, the available evidence
does show unequivocally that ambiguity matters for choice.

The benchmark decision model of subjective expected utility (SEU) maximization is not
equipped to deal with this phenomenon: An agent who maximizes SEU cannot care about
ambiguity. Therefore, theory has followed experiment. Several decision models have been
proposed which extend SEU in order to allow a role for ambiguity in decision making. Most
notable are the “maxmin expected utility with multiple priors” (MEU) model of Gilboa and
Schmeidler [19], which allows the agent’s beliefs to be represented by a set of probabilities, and
the “Choquet expected utility” (CEU) model of Schmeidler [30], which allows the agent’s beliefs
to be represented by a unique but nonadditive probability. These models have been employed
with success in understanding and predicting behavior in activities as diverse as investment
(e.g., Epstein and Wang [9]), labor search (Nishimura and Ozaki [28]) or voting (Ghirardato
and Katz [13]).

The objective of this paper is to show how to model formally ambiguity, and a decision
maker (DM)’s response to it, in the context of a general decision model (that, for instance,
encompasses MEU and CEU). It is an objective that in our view has not yet been fully achieved.
For, as we discuss below, the existing literature has either focused on narrower models, or has
not produced a description of ambiguity as complete as the one offered here.

The intuition behind our approach can be explained in the context of the “3-color” experi-
ment of Ellsberg. Suppose that a DM is faced with an urn containing 90 balls which are either
red, blue or yellow. The DM is told that exactly 30 of the balls are red. If we offer him the
choice between a bet r that pays $ 10 if a red ball is extracted, and the bet b that pays $ 10 if

a blue ball is extracted, he may display the preference
r > b.

On the other hand, let y denote the bet that pays $ 10 if a yellow ball is extracted, and suppose
that we offer him the choice between the “mixed” act (1/2)r 4+ (1/2)y and the “mixed” act
(1/2)b+ (1/2)y . Then, we might observe
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a violation of the independence axiom (Anscombe and Aumann [1]). The well known rationale
is the following: the bet y allows the DM to “hedge” the ambiguity connected with the bet
b, but not that connected with r. The DM responds to the ambiguity he perceives in this
decision problem by opting for the “ambiguity hedged” positions represented by the acts r
and (1/2)b+ (1/2)y. Needless to say, we could observe a DM who displays exactly opposite
preferences: she prefers b to r and (1/2)r + (1/2)y to (1/2)b + (1/2)y because she likes to
“speculate” on the ambiguity she perceives, rather than to hedge against it.

In both cases, the presence of ambiguity in the decision problem a DM is facing is revealed
to an external observer (who may ignore the information that was given to the DM about the
urn composition) in the form of violations of the independence axiom. By comparison, consider
a DM who does not violate independence when comparing a given pair of acts f and g. That

is, f %= g and for every act h and weight A,
A4+ (1 =XNh =g+ (1= Nh. (1)

This DM does not appear to find any possibility of hedging against or speculating on the
ambiguity of the problem at hand. We therefore conclude that such ambiguity does not affect
the comparison of f and g: the DM “unambiguously prefers” f to g, which we denote by f >=* g.

The derived relation =* is the stepping stone of this paper. As we now argue, it enables
us to obtain an intuitive representation of ambiguity, which in turn yields a simple description
of ambiguity attitude. And this without imposing strong restrictions on the DM’s primitive

preference »=.

The Perception of Ambiguity and Ambiguity Attitude

Using the traditional setting of Anscombe and Aumann [1], we consider an arbitrary state space
S and a conver set of outcomes X.! We assume that the DM’s preference 3= satisfies all the
axioms that characterize Gilboa and Schmeidler [19]’s MEU model, with the exception of the
key axiom that entails a preference for ambiguity hedging, that they call “uncertainty aversion”.
By avoiding constraints on the DM’s attitude with respect to hedging, we thus obtain a much
less restrictive model than MEU. (For instance, every CEU preference satisfies our axioms,
while those compatible with the MEU model are a strict subclass.) Indeed, one of the novel
contributions of this paper is precisely showing that the preferences satisfying the mentioned
axioms have a meaningful representation.

Given such =, we derive from it the unambiguous preference relation =* as described in
Eq. (1), and show that »>* has a “unanimity” representation in the style of Bewley [2]: there is

a utility u on X and a set of probabilities C (nonempty, closed and convex) on S such that

f =g if and only if /Su(f(s)) dP(s) > /Su(g(s)) dP(s) forall P eC.

!Therefore, an “act” is a map f : S — X assigning an outcome f(s) € X to every state s € S. A “mixed”
act Af + (1 — A)h assigns to s the outcome Af(s) + (1 — A)h(s) € X.



That is, the DM deems f to be unambiguously better than g whenever the expected utility of
f is higher than the expected utility of ¢ in every probabilistic scenario P in C. The set C of
probabilistic scenarios represents, as we shall argue presently, the DM’s revealed “perception of
ambiguity”. We use the term “perception” as a reminder to the reader that no objective meaning
is attached to C.2 That is, nothing precludes two DMs from perceiving different ambiguity in
the same decision problem.

The key motivation for our interpretation of C as perceived ambiguity is the following. It
is simple to see that if a DM’s preference = has a SEU representation, the DM’s probabilistic
beliefs P correspond to the Gateaux derivative of the functional I that represents his pref-
erences.® Intuitively, the probability P(s) is the shadow price for (ceteris paribus) changes in
the DM’s utility in state s. Therefore, in the SEU case we can learn the DM’s understanding
of the stochastic nature of his decision problem — his subjective probabilistic scenario — by
calculating the derivative of his preference functional.

If = does not have a SEU representation but satisfies our axioms, the functional I that
represents = is not necessarily Gateaux differentiable. However, it does have a generalized
derivative, a collection of probability measures, in every point. Such derivative is the “Clarke
differential”, developed by Clarke [6] as an extension of the concept of superdifferential (e.g.,
Rockafellar [29]) to non-concave functionals. We show that the set C obtained as the represen-
tation of =* is the Clarke differential of I at 0. Thus, C is the (appropriately defined) derivative
of I, analogously to what happens for SEU preferences. Thanks to this differential characteri-
zation, we also find that in a finite state space C is (the closed convex hull of) the family of the
Gateaux derivatives of I where they exist. That is, if we collect all the probabilistic scenarios
that rationalize the DM’s evaluation of acts, we find C.

Besides its conceptual import, the differential characterization of C is useful from a purely
operational standpoint. By giving access to the large literature on the Clarke differential, it
provides a different route for assessing the DM’s perceived ambiguity and some very useful
results on its mathematical properties.

Armed with the representation of perceived ambiguity, we turn to the issue of formally
describing the DM’s reaction to the presence of ambiguity. In our main representation theorem,
we show that it is possible to express the DM’s preference functional I so as to associate to
each act f an ambiguity aversion coefficient a(f) between 0 and 1. A surprising feature of the
ambiguity aversion function a(-) is that it displays significantly less variation than we might
expect it to. For instance, the DM must have identical ambiguity attitude for acts that agree on
their ranking of the possible scenarios in C. This restriction does not constrain overall ambiguity
attitude; it can continuously range from strong attraction to strong aversion.

When the DM’s preference = satisfies MEU the set C is shown to be equal to the set of
priors that Gilboa and Schmeidler derive in their representation [19]. This means that a MEU

*We do not carry around the adjective “revealed”. It should be obvious that, since we only use behavioral

data, all the aspects of our mathematical representation are revealed (or better, attributed).
3That is, I such that f %= g if and only if T(u(f)) > I(u(g)).



preference with set of priors C is more averse to ambiguity than any other preference which
perceives the same ambiguity; i.e., with the same C. That is, contrary to what is sometimes
believed, MEU preferences do represent extreme aversion to ambiguity, a conclusion that could
not be drawn without the separate derivation of perceived ambiguity obtained here.

In the last section of the paper, we sketch some extensions and “applications” of the ideas
and results developed earlier. We look at a simple dynamic choice setting and show that the
unambiguous preference relation allows us to obtain a simple characterization of the updating
rule that revises every prior in the set C by Bayes’s rule, the so-called “generalized Bayesian
updating” rule. Next, we discuss the axiomatic characterization of a decision rule akin to
Hurwicz’s a-pessimism rule, known in the literature as the “a-MEU” decision rule. We also
consider the consequences of our theory of ambiguity for the classification of events and acts
into ambiguous and unambiguous. These extensions are fully analyzed in the working paper

version [14], to which we refer the interested reader.

Discussion

It is perhaps useful to mention from the outset some limitations and peculiarities of our analysis
and terminology. We follow decision-theoretic practice in assuming that only the decision
problem (states, outcomes and acts) and the DM’s preference over acts are observable to an
external observer (e.g., the modeller). We do not know whether other ancillary information may
be available to the external observer. Hence, we do not use such information in our analysis.

This assumption entails some limitations in the accuracy of the terminology we use. First,
we may end up attributing no perception of ambiguity to a DM who is aware of ambiguity but
disregards it. For, it follows from our definition of unambiguous preference that if the DM never
violates the independence axiom, by definition we attribute to him no perception of ambiguity.
Such DM behaves as if he considers only one scenario P to be possible (i.e., his C = {P}),
maximizing his subjective expected utility with respect to P. He may just not be reacting
to the ambiguity he perceives, but we cannot distinguish between these situations given our
observability assumptions. As we are ultimately interested in modelling the ambiguity that is
reflected in behavior, we do not believe this to be a serious problem.

Second, and more important, we attribute every departure from the independence axiom to
the presence of ambiguity. That is, following Ghirardato and Marinacci [18] we implicitly assume
that behavior in the absence of ambiguity will be consistent with the SEU model. However, it is
well-known that observed behavior in the absence of ambiguity — that is, in experiments with
“objective” probabilities — is often at spite with the independence axiom (again, see Luce [22]
for a survey). As a result, the relation >* we associate with a DM displaying such systematic
violations overestimates the DM’s perception of ambiguity. His set C describes behavioral traits
that may not be related to ambiguity per se.

As extensively discussed in [18], this overestimation of the role of ambiguity could be avoided

by careful filtering of the effects of the behavioral traits unrelated to ambiguity. But such



filtering requires an external device (e.g., a rich set of events) whose non-ambiguity is primitively
assumed, in violation of our observability premise. For conceptual reasons outlined in [18], in
the absence of such device we prefer to attribute all departures from independence to the
presence of ambiguity. However, the reader may prefer to use a different name for what we
call “perception of ambiguity”. We hope that it will be deemed to be an object of interest
regardless of its name.

An aspect of our analysis which may appear to be a limitation is our heavy reliance on
the concept of mixed acts. Indeed, the existence of a mixture operation is key to identify-
ing the unambiguous preference relation. As the traditional interpretation of mixtures in the
Anscombe-Aumann [1] framework is in terms of “lotteries over acts”, it may be believed that
our model also relies on an external notion of ambiguity. However, this is not the case, for it
has been shown by Ghirardato, Maccheroni, Marinacci and Siniscalchi [16] that, if the set of
outcomes is sufficiently rich, for any mixture of acts it is possible to construct an act whose
state-contingent utility profile replicates perfectly that of the mixture. Our analysis can be fully

reformulated in terms of such “subjective mixtures”, and hence requires no external device.

The Related Literature

In addition to the mentioned paper of Gilboa and Schmeidler [19], there are several papers that
share features, objectives, or methods with this paper.

Our approach to modelling ambiguity is closely related to that of Klaus Nehring. In particu-
lar, Nehring was the first to suggest using the maximal independent restriction of the primitive
preference relation, which turns out to be equivalent to our >=*, to model the ambiguity that a
DM perceives in a problem. He spelled out this proposal in an unpublished conference presenta-
tion of 1996, in which he also presented the characterization of the set C representing ambiguity
perception for MEU and CEU preferences when the state space is finite and utility is linear.*

In the recent [27], Nehring develops some of the ideas of the 1996 talk. The first part of that
paper moves in a different direction than this paper, as it employs an incomplete relation that
reflects probabilistic information exogenously available to the DM. The second part is closer to
our work. In a setting with infinite states and consequences, Nehring defines a DM’s perception
of ambiguity by the maximal independent restriction of the primitive preferences over bets. He
characterizes such definition and shows that under certain conditions it is equivalent to the one
discussed here and in his 1996 talk (see footnote 10 below). His analysis mainly differs from
ours in two respects. The first is that his preferences induce an underlying set C satisfying
a range convexity property. The second is that he also investigates preferences that do not
satisfy an assumption that he calls “trade-off consistency”, that is satisfied automatically by the
preferences discussed here. A consequence of the range convexity of C is that CEU preferences

can satisfy trade-off consistency only if they maximize SEU, a remarkable result that does not

4«Preference and Belief without the Independence Axiom”, presented at the LOFT2 conference in Torino

(Italy), December 1996. (The slides are available from the author upon request.)



generalize to the preferences we study (whose C may not be convex-ranged).

A final major difference between Nehring’s mentioned contributions and the present paper
is that he does not envision any differential interpretation for the set of probabilities that
represents the DM’s ambiguity perception. To the best of our knowledge, the only papers
that employ differentials of preference functionals in studying ambiguity averse preferences are
the recent Carlier and Dana [4] and Marinacci and Montrucchio [25].> Both papers focus on
Choquet preference functionals, and they look at the Gateaux derivatives of Choquet integrals
as a device for characterizing the core of such capacities [25], or for obtaining a more direct
computation of Choquet integrals in optimization problems [4].

In a recent paper, Siniscalchi [33] characterizes axiomatically a special case of our preference
model (that we later call “piecewise linear” preferences), whose representation also involves a
set of probabilities. The relation between his set P and our C are clarified in subsections 5.1 and
6.4. He does not explicitly focus on the distinction between ambiguity and ambiguity attitude.
On the other hand, unlike us he emphasizes the requirement that each prior in the set yield the
unique SEU representation of the DM’s preferences over a convex subset of acts.

There exist several papers that propose behavioral notions of unambiguous events or acts
(e.g., Nehring [26] and Epstein and Zhang [10]), but do not address the distinction between
ambiguity and the DM’s reaction to it. We refer the reader to [15] for a more detailed comparison
of our notion of unambiguous events and acts with the ones proposed in these papers. Here, we
limit ourselves to underscoring an important difference between our “relation-based” approach
to modelling ambiguity and the “event-based” approach of these papers. Suppose that f and
g are ambiguous acts such that f dominates g statewise. Then we do obtain the conclusion
that f is unambiguously preferred to g, but the “event-based” papers do not. That is, there
are aspects of ambiguity that a “relation-based” theory can describe, but the “event-based”
theories cannot. We are not aware of any instance in which the converse is true.

As to the papers that discuss ambiguity aversion, the closest to our work is Ghirardato
and Marinacci [18]. They do not obtain a separation of ambiguity and ambiguity attitude,
but we show that once that separation is achieved by the technique we propose, their notion
of ambiguity attitude is consistent with ours. In light of this, we refer the reader to the
introduction of [18] for discussion of the relation of what we do with other works that address

the characterization of ambiguity attitude.

Outline of the Paper

The paper is organized as follows. After introducing some basic notation and terminology
in Section 1, we present the basic axiomatic model in Section 2. Sections 3 and 4 form the
decision-theoretic core of the paper. First, we discuss the unambiguous preference relation and

its characterization by a set of possible scenarios. Then, we present a general representation

®The works of Epstein [8] and Machina [23] are more distant from ours, as they take derivatives “with respect

to sets”, rather than “with respect to utility profiles”, as we do.



theorem and the characterization of ambiguity attitude. The differential interpretation of the
set of possible scenarios and related results are presented in Section 5. Finally, Section 6 sketches
the extensions that are presented in detail in the working paper version of this work [14].

The paper has two appendices. Appendix A presents some functional analytic results that
are employed in most arguments, along with further technical detail on Clarke differentials and
their properties. Appendix B contains proofs for the results in the main body of the paper, in

order of appearance.

1 Preliminaries and Notation

Consider a set S of states of the world, an algebra > of subsets of S called events, and
a set X of consequences. We denote by F the set of all the simple acts: finite-valued
Y-measurable functions f : S — X. Given any z € X, we abuse notation by denoting x € F
the constant act such that z(s) = x for all s € S, thus identifying X with the subset of the
constant acts in F. Finally, for f,g € F and A € ¥, f A g denotes the act which yields f(s) for
s€ Aand g(s) for s € A°= S\ A.

For convenience (see the discussion in the next section), we also assume that X is a convex
subset of a vector space. For instance, this is the case if X is the set of all the lotteries on a
set of prizes, as it happens in the classical setting of Anscombe and Aumann [1]. In view of the
vector structure of X, for every f,g € F and A € [0, 1] as usual we denote by Af + (1 — \)g the
act in F which yields A\f(s) + (1 — \)g(s) € X for every s € S.

We model the DM’s preferences on F by a binary relation =. As usual, = and ~ denote
respectively the asymmetric and symmetric parts of >=.

We let By(X) denote the set of all real-valued ¥-measurable simple functions, or equivalently
the vector space generated by the indicator functions 14 of the events A € ¥. If f € F and
u: X — R, u(f) is the element of By(X) defined by u(f)(s) = u(f(s)) for all s € S. We
denote by ba(X) the set of all finitely additive and bounded set-functions on X. If ¢ € By(X)
and m € ba(X), we write indifferently [ ¢ dm or m(¢). A nonnegative element of ba(X) that
assigns value 1 to S is called a probability, and it is typically denoted by P or Q.

Given a functional I : By(X) — R, we say that [ is: monotonic if I(¢) > I(¢) for all
, 9 € By(X) such that ¢(s) > 1¢(s) for all s € S; constant additive if I(¢ +a) = I(¢) + a
for all ¢ € By(X) and a € R; positively homogeneous if I(ap) = al(p) for all ¢ € By(X)

and a > 0; constant linear if it is constant additive and positively homogeneous.

2 Invariant Biseparable Preferences

In this section, we introduce the basic preference model that is used throughout the paper, and
show that it generalizes all the popular models of ambiguity-sensitive preferences.

The model is characterized by the following five axioms:



Axiom 1 (Weak Order) For all f,g,h € F: (1) either f = g or g = f, (2)if f = g and
g = h, then f = h.

Axiom 2 (Certainty Independence) If f,g € F, x € X, and X € (0, 1], then
frg=A+0-Nx=Xg+(1—Nz.

Axiom 3 (Archimedean Axiom) If f,g,h € F, f > g, and g = h, then there exist \,u €
(0,1) such that
MAA=Nh>=gand g puf+ (1 —p)h.

Axiom 4 (Monotonicity) If f,g € F and f(s) = g(s) for all s € S, then f = g.
Axiom 5 (Non-degeneracy) There are f,g € F such that f >~ g.

With the exception of axiom 2, all the axioms are standard and well understood. Axiom 2
was introduced by Gilboa and Schmeidler [19] in their characterization of MEU preferences. It
requires independence to hold when the acts being compared are mixed with a constant act x.

The following representation result is easily proved by mimicking the arguments of Gilboa
and Schmeidler [19, Lemmas 3.1-3.3].

Lemma 1 A binary relation = on F satisfies axioms 1-5 if and only if there exists a monotonic,
constant linear functional I : By(X) — R and a nonconstant affine function u : X — R such
that

[z g I(u(f)) = I(u(g)) (2)

Moreover, I is unique and u unique up to a positive affine transformation.

Axiom 2 is responsible for the constant linearity of the functional I. As we show in [15], it is also
necessary for the independence of the preference functional I from the chosen normalization of
u. While the axiom may restrict ambiguity attitude in some fashion, such separation of utility
and (generalized) beliefs is key to the analysis in this paper.

We call a preference = satisfying axioms 1-5 an invariant biseparable preference. The
adjective biseparable (originating from Ghirardato and Marinacci [18, 17]) is due to the fact
that the representation on binary acts of such preferences satisfies the following separability
condition: Let p: ¥ — R be defined by p(A) = I(14). Then, p is a normalized and monotone
set-function (a capacity) and for all x,y € X such that z = y and all A € ¥,

I(u(z Ay)) = u(x) p(A) + u(y) (1 — p(A)). 3)

The adjective invariant refers to the mentioned invariance of I w.r.t. utility normalization,

which is not necessarily true of the more general preferences in [17] (see [15] for details).
Some of the best known models of decision making in the presence of ambiguity employ

invariant biseparable preferences. However, these models incorporate additional assumptions

on how the DM reacts to ambiguity, i.e., whether he exploits hedging opportunities or not.



Axiom 6 For all f,g € F such that f ~ g:

(a) (Ambiguity Neutrality) (1/2)f + (1/2)g ~ g.

(b) (Comonotonic Ambiguity Neutrality) (1/2)f + (1/2)g ~ g if f and g are comono-

tonic.5

(c) (Ambiguity Hedging) (1/2)f + (1/2)g = g.

Axiom 6(c) is due to Schmeidler [30], and it says that the DM will in general prefer the mixture,

possibly a hedge, to its components. © The other two are simple variations on that property.
The following result, which follows immediately from known results in the literature, shows

the consequence of these three properties for the structure of the functional I in Lemma 1 (and

its restriction p).®
Proposition 2 Let = be a preference satisfying axioms 1-5. Then

e = satisfies aziom 6(a) if and only if p is a probability on (S,X) and I(¢) = [ pdp for all
¢ € By(2).

e = satisfies axiom 6(b) if and only if I(p) = [@dp for all € By(X).

e = satisfies ariom 6(c) if and only if there is a nonempty, closed and convex set D of
probabilities on (S,%) such that I(¢) = minpep [ @ dP for all ¢ € By(X). Moreover, D

1S UNIQUE.

Thus, a DM who satisfies axioms 1-5 and is indifferent to hedging opportunities satisfies the
SEU model. A DM who is indifferent to hedging opportunities when they involve comonotonic
acts (but may care otherwise) satisfies the CEU model of Schmeidler [30].

On the other hand, a DM who uniformly likes ambiguity hedging opportunities chooses
according to a “maxmin EU” decision rule. Indeed, axioms 1-5 and 6(c) are the axioms proposed
by Gilboa and Schmeidler [19] to characterize MEU preferences — that for reasons to be made
clear below are henceforth referred to as 1-MEU. It is natural to interpret the probabilities
in D as a reflection of the ambiguity that the DM perceives in the decision problem, but a
problem with such interpretation is the fact that the set D appears in Gilboa and Schmeidler’s
analysis only as a result of the assumption of ambiguity hedging. It therefore seems that the
DM’s perception of ambiguity cannot be disentangled from his behavioral response to such
ambiguity.

In the next section, we show that it is possible to separate the revealed perception of ambi-

guity from the DM’s reaction to its presence. For the sake of better assessing such separation,

8f and g are comonotonic if there are no states s and s” such that f(s) = f(s") and g(s) < g(s').
"He calls this property “uncertainty aversion”. See Ghirardato and Marinacci [18] for an explanation of our

departure from that terminology.
8We refer the reader to [17] and [15] for additional examples and properties of invariant biseparable preferences.

10



it is important to notice here that axioms 1-5 do not impose ex ante constraints on the DM’s
reaction to ambiguity (as, say, ambiguity hedging does).

We reiterate that the choice to retain the classical Anscombe-Aumann setting used by
Gilboa and Schmeidler is motivated only by the intention of putting our contribution in sharper
focus. Ghirardato et al. [16] show that if the set X does not have an “objective” vector
structure (i.e., it is not convex) but is sufficiently rich, it is still possible to define mixtures
in a subjective yet operationally well-defined sense. They use these “subjective mixtures” to
provide an axiomatization of invariant biseparable preferences in a fully subjective setting, and
they could be similarly used to extend the analysis in this paper.

Unless otherwise indicated, for the remainder of this paper = is tacitly assumed to be an
invariant biseparable preference (i.e., to satisfy axioms 1-5), and I and w are the monotonic,

constant linear functional and utility index that represent 5= in the sense of Lemma 1.

3 Priors and Perceived Ambiguity

3.1 Unambiguous Preference

As explained in the introduction, our point of departure is a relation derived from 3= that
formalizes the idea that hedging/speculation considerations do not affect the ranking of acts f

and g.

Definition 3 Let f,g € F. Then, f is unambiguously preferred to g, denoted f =* g, if
AMAHA=Nh=dg+ (1= Nh

for all X € (0,1] and all h € F.

The unambiguous preference relation is clearly incomplete in most cases. We collect some

of its other properties in the following result.
Proposition 4 The following statements hold:
1. If f =" g then f = g.
2. For every x,y € X, x ="y iff x = y. In particular, =* is nontrivial.
3. =" is a preorder.
4. =" is monotonic: if f(s) = g(s) for all s € S, then f =* g.
5. =" satisfies independence: for all f,g,h € F and X € (0,1],

Frtge= M+ 1 =Mhs* Ag+ (1 - Mh.
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6. =* satisfies the sure-thing principle: for all f,g,h,h' € F and A€ X,
fAR =*gAh << fAR =" gAN.

7. %=* is the mazimal restriction of = satisfying independence.”

Thus, unambiguous preference satisfies both the classical independence conditions. It is a
refinement of the state-wise dominance relation, and the maximal restriction of the primitive
preference relation satisfying independence.

The last point of the proposition shows that if we turned our perspective around and defined
unambiguous preference as the maximal restriction of %= that satisfies the independence axiom,
we would find exactly our »=*. As mentioned earlier, this second approach was suggested by
Nehring in a 1996 talk (see footnote 4).!° While eventually the approaches reach the same
conclusions, we prefer the approach taken in this paper as it is directly linked to more basic

behavioral considerations about hedging and speculation.

3.2 The Perception of Ambiguity

We now show that the unambiguous preference relation =* can be represented by a set of
probabilities, thus extending to an arbitrary state space a result of Bewley [2]. (An alternative

generalization is found in Nehring [27].)

Proposition 5 There exists a unique nonempty, weak™ compact and convex set C of probabil-
ities on X such that for all f,g € F,

f%*g<:>/su(f)dP2/Su(g)dP for all P €C. (4)

In words, f is unambiguously preferred to g if and only if every probability P € C assigns
a higher expected utility to f in terms of the function u obtained in Lemma 1. It is natural to
refer to each prior P € C as a “possible scenario” that the DM envisions, so that unambiguous
preference corresponds to preference in every scenario. Given an act f € F, we will refer to
the mapping {P(u(f)) : P € C} that associates to every probability P € C the expected utility
of f as the expected utility mapping of f (on C).

In our view, the set C of probabilities represents formally the ambiguity that the DM sees in
the decision problem. Hereafter we offer a couple of remarks in support of this interpretation. In
Section 5 we provide further argument in favor of this interpretation by showing the differential
nature of C.

Consider two DMs with respective preference relations =1 and =5 (whose derived relations

are subscripted accordingly). Given our interpretation of »=*, it is natural to posit that if a DM

9That is, if »=**C 3 and =** satisfies independence then =**Ci=".
ONehring [27] independently introduces $=* and observes, in a setting with infinite states, its equivalence to

the approach taken in 1996 talk. He also provides further motivation for his approach.
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has a richer unambiguous preference, it is because he feels better informed about the decision

problem. Formally, =1 perceives more ambiguity than =, if for all f,g € F:
frI9= [y

It turns out that this comparative definition of perceived ambiguity is equivalent to the inclusion

of the sets of priors C;’s.
Proposition 6 The following statements are equivalent:

(i) =1 perceives more ambiguity than =o.

(7i) uy is a positive affine transformation of uy and C; 2 Cs.

In words, the size of the set C measures the DM’s perception of ambiguity. The larger C is,
the more ambiguity the DM appears to perceive in the decision problem.

When does a DM behave as if he does not perceive any ambiguity in the decision problem
he is facing? Intuitively, it is when his unambiguous preference relation =* coincides with his
preference relation »=. This is clearly tantamount to saying that = is itself independent. More
importantly for our interpretation of the set C, it is also equivalent to saying that there is only

one possible scenario:

Proposition 7 The following statements are equivalent:
(1) ===".

(7i) = is independent.

(1it) C ={P}.

(tv) = has a SEU representation with probability P.

Summarizing the results obtained so far, we have shown that C represents what we call
the (subjective) perception of ambiguity of the DM, and we have concluded that the DM
perceives some ambiguity in a decision problem if C is not a singleton. Such characterization
of perceived ambiguity does not rely on any assumption on the DM’s reaction to his perception
of ambiguity. We now turn our attention to the latter, which is the force that drives the relation

between the expected utility mapping and the DM’s evaluation of an act.

4 Enter Ambiguity Attitude: The Representation

We begin our discussion of ambiguity attitude with the following observation.

13



Proposition 8 Let I and u be respectively the functional and utility obtained in Lemma 1, and
C the set obtained in Proposition 5. Then
min P(u(f)) < I(u(f)) < max P(u(f)). (5)

PeC PeC

That is, the functionals on F defined by minpec P(u(-)) and maxpec P(u(-)) — that re-

¢

spectively correspond to the “worst-” and “best-case” scenario evaluations within the set C —
provide bounds to the DM’s evaluation of every act. We now use this sandwiching property to
obtain a nontrivial formal description of the ambiguity attitude of the DM, via a decomposition

of th functional I.

4.1 Crisp Acts

It is first of all important to illustrate that the perception of ambiguity already partitions F
into sets of acts with “similar ambiguity”. The following relation on the set F is key: For any
f,g € F, write f < g if there exist a pair of consequences z,z’ € X and weights A\, \" € (0,1]
such that

Af+ A =Nz~*Ng+(1-XN)a, (6)

where ~* denotes the symmetric component of the unambiguous preference relation. Such

relation =< can be simply characterized in terms of the expected utility mappings of the acts:

Lemma 9 For every f,g € F, the following statements are equivalent:'*

(i) f=g.

(1) The expected utility mappings {P(u(f)) : P € C} and {P(u(g)) : P € C} are a positive
affine transformation of each other: there exist « > 0 and 3 € R such that

P(u(f)) = aP(u(g)) + B forall P eC.

(1it) The expected utility mappings {P(u(f)) : P € C} and {P(u(g)) : P € C} are isotonic: for
Wl P.QeC,
P(u(f)) = Qu(f)) <= P(u(g)) = Q(u(g))-

Statement (i7) of the lemma implies that < is an equivalence. Statement (iii) is helpful
in interpreting <. Two functions on a set are isotonic if they order its elements identically.
Therefore, f =< g is tantamount to saying that f and g order possible scenarios identically: the
best scenario for f is best for g, the worst for g is worst for f, etc. From the vantage point of
the DM’s perception of ambiguity, f and g have identical dependence on the existing ambiguity.

As it will be seen presently, the equivalence classes of < play a key role in our representation.

Given f € F, denote by [f] the equivalence class of < that contains f and by F,- the quotient

11 As inspection of the proof quickly reveals, the result is true under the assumption that there exist a function

u and a set C that represent =" in the sense of Eq. (4), without any additional conditions on the primitive »=.
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of F with respect to x<; i.e., the collection of all equivalence classes. Clearly, [f] contains all
acts that are unambiguously indifferent to f (take A =1 in Eq. (6)), but it may contain many
more acts.

It follows immediately from the lemma above that all constants are =<-equivalent; that is,
for all z,y € X, we have y € [z]. However, the class [z] contains also acts which are not
constants. The following behavioral property of acts, inspired by a property that Kopylov [21]
calls “transparency” (as his terminology suggests, he interprets it differently from us), is key in

understanding the structure of [z].
Definition 10 The act k € F is called crisp if for all f,g € F and X\ € (0,1),
frg=Af+1-Nk~Ag+(1-N)E.

That is, an act is crisp if it cannot be used for hedging other acts. Intuitively, this suggests
that a crisp act’s evaluation is not affected by the ambiguity the DM perceives in the decision

problem. The following characterization validates this intuition:
Proposition 11 For every k € F, the following statements are equivalent:
(i) k is crisp.
(1i) k=< x for some x € X.
(iii) For every P,Q € C, [u(k)dP = [u(k)dQ.
(iv) For every f € F and X € [0,1],

Tu(k + (1= X) f)] = A (u(k)) + (1 = A I(u(f)).

Statement (i7) shows that [z], the equivalence class of the constants, is the collection of all the
crisp acts. Moreover, notice that it follows from statement (iv) of this proposition and (iz) of
Proposition 7 that if every act is crisp, the DM perceives no ambiguity (i.e., he satisfies SEU).

4.2 The Representation Theorem

We now have all the necessary elements to formulate our main representation theorem, wherein
we achieve the formal separation of perceived ambiguity and the DM’s reaction to it. Interest-
ingly, it turns out to be a generalized Hurwicz a-pessimism representation in which the set of

priors is generated endogenously.
Theorem 12 Let = be a binary relation on F. The following statements are equivalent:

(i) = satisfies axioms 1-5.
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(13) There exist a nonempty, weak* compact and convex set C of probabilities on ¥ and a
nonconstant affine function u : X — R that represent the induced =* in the sense of
Eq. (4). There exists a function a : (F/= \ {[z]}) — [0,1] such that 3= is represented by
the monotonic functional I : By(X) — R defined by

a([f)) minpec [ u(f)dP + (1 = a([f])) maxpec [u(f)dP if f & [z]

I(u(f)) = { Ju(f)dP for some P €C if f € [z].

Moreover, C is unique, u is unique up to a positive affine transformation, and a is unique if C

s not a singleton.

In other words, the theorem proves that the functional I derived in Lemma 1 has the form:

I(u(f)) = a([f]) min /S u(f) dP + (1 - a([f])) max /S u(f) dP (7)

pPeC pPeC

when restricted to noncrisp acts. Clearly, the 1-MEU preference model and more generally
the a-MEU preference model (that we characterize axiomatically in Section 6), in which a is
a constant « € [0, 1], are special cases of the representation above. Also, observe that when
C = {P} every act is crisp. Hence, the function a disappears from the representation, which
reduces to SEU.

Two analytical observations on this representation are in order. First, notice that if f and
g are noncrisp acts and f =< g, then a([f]) = a([g]): If f and g have identical dependence on
ambiguity, the DM’s reaction to the ambiguity of f is identical to his reaction to the ambiguity
of g. Second, observe that for any f € F \ [z], the coefficient a([f]) only depends on the
expected utility mapping {P(u(f)) : P € C} of f on C. As a result, the same is true of DM’s
evaluation I(u(f)) of any act f € F: The profile of expected utilities of f (as a function over C)
completely determines the DM’s preference. This is a key feature of our representation, which

is also enjoyed by the model studied by Siniscalchi in [33].

4.3 An Index of Ambiguity Aversion

It is intuitive to interpret the function a as an index of the ambiguity aversion of the DM: The
larger a([f]), the bigger the weight the DM gives to the “pessimistic” evaluation of f given
by minpec P(u(f)). The following simple result verifies this intuition in terms of the relative
ambiguity aversion ranking of Ghirardato and Marinacci [18]. In our setting, the latter is
formulated as follows: =1 is more ambiguity averse than =5 if for all f € F and all z € X,

f =1 x implies f =9 .

Proposition 13 Let =1 and =5 be invariant biseparable preferences, and suppose that =1 and

=9 perceive identical ambiguity. Then, =1 is more ambiguity averse than %o if and only if

ar([f]) = ax([f]) for every f € F\ [z].
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(Recall from Proposition 6 that »=; and =2 perceive identical ambiguity if and only if C; = Co
and u; and ug are equivalent.) We conclude that the function a is a complete description of
the DM’s ambiguity attitude in relation to the perception of ambiguity described by C.

In closing this section, we observe that it follows from Proposition 13 that there are always
DMs which are more and less ambiguity averse than the DM whose preference is »=. In fact, the
best- and worst-case scenario evaluations define invariant biseparable preferences that satisfy
these conditions, since they correspond to a(-) constantly equal to 0 and 1 respectively. In a
sense, they describe the DM’s “ambiguity averse side” and his “ambiguity loving side”. However,
as these DMs do not necessarily satisfy the SEU model, they may not make the preference

ambiguity averse in the sense of Ghirardato and Marinacci [18].

5 Perceived Ambiguity is a Differential

In this section we turn back to the set C derived in Proposition 5, showing that it is equal to
the Clarke differential at 0 of the functional I obtained in Lemma 1. This provides further
backing to our interpretation of C, and at the same time yields a separate, operational, route
for constructing a preference’s set of possible scenarios.

Suppose first that the DM’s preferences satisfy axioms 1-5 and 6(a). In such a case, the DM
satisfies the SEU model; i.e., there is a probability P on ¥ such that I(u(f)) = P(u(f)). Being
linear, such I is Gateaux differentiable everywhere, with derivative constantly equal to P. The
DM’s beliefs can thus be found by calculating the Gateaux derivative of I in any ¢ € By(X%),
for instance in ¢ = 0.

In contrast, if the DM’s preferences only satisfy axioms 1-5, the functional I may not be
Gateaux differentiable everywhere, and where it is the Gateaux derivatives may be different.
That is, because of the presence of ambiguity, the shadow price for state s could depend on the
structure of the act being evaluated.

One way out of this difficulty is to generalize the notion of derivative used. For instance,
suppose that the DM’s preferences satisfy axioms 1-5 and 6(c), so that as shown in Proposition 2
it can be represented by maxmin expected utility with a set of priors D. Then, the functional
I is monotonic, constant linear and concave. It is not necessarily Gateaux differentiable, but
it does possess directional derivatives and a nonempty superdifferential, as defined below (see,

e.g., Rockafellar [29]).

Definition 14 Given a concave functional I : Bo(X) — R, its directional derivative in ¢
in the direction £ is defined by

The superdifferential of I at ¢ is the set of linear functionals that dominate the directional
derivative dI(p;-). That is,

DI(¢) = {m € ba(%) : m(€) > dI(:€), ¥E € Bo(%)}.
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Interestingly, given a monotonic, constant linear and concave I, if we calculate its superdif-
ferential OI(0) at 0, we find that D = 0I(0). That is, the superdifferential of I at 0 (which
contains 0I(yp) for every ¢ € By(X)) corresponds with the set of priors obtained in the repre-
sentation of I of Proposition 2. In this perspective, as the superdifferential of such I coincides
with its Gateaux derivative when the latter exists, SEU corresponds to the special case in which
0I(0) = {P}.

The question, though, is what to do with a preference = that only satisfies axioms 1-5. The
functional I that represents = is only monotonic and constant linear, so that the existence of
right-hand derivatives and superdifferentials is not guaranteed. As such a functional must be
Lipschitz, we can use the following generalized notions due to Clarke [6], which are well known

in the literature on nonsmooth optimization. (See Appendix A for further details.)

Definition 15 Given a Lipschitz functional I : By(X) — R, its Clarke (lower) directional

derivative in @ in the direction £ is defined by

Iy +1t8) — 1Y)
p :

I,(p; &) =liminf
P—p
t10
The Clarke differential of I in ¢ is the set of linear functionals that dominate the Clarke
derivative I,(p;-). That is,

Ol(p) = {m € ba(X) : m(§) = L(;§), V& € Bo(¥)}.

Clarke differentials are nonempty for every Lipschitz functional, and for concave functionals
they coincide with superdifferentials (see Clarke [6]). (This justifies our usage of the same
symbol to denote both sets.) Moreover, when I is monotone and constant linear, its Clarke
differential is a set of probability charges; that is, all the m € 9I(p) are normalized and positive
(Prop. 31 in App. A).

We now show that the set C is equal to the Clarke differential of I in 0.

Theorem 16 Let = be a binary relation satisfying axioms 1-5, and I and C respectively the

functional and set of probabilities presented in Theorem 12. Then
C =0I(0).

Thus we see that, if we employ the appropriate notion of derivative, the set C of possible
scenarios coincides with the derivative of I at 0 (which again contains 0I(p) for every ¢ €
By(X)). That is, our generalized notion of “beliefs” can be obtained from the functional I by
differentiation, much in the same way as we did in the SEU case.

Clearly, this calculus characterization is useful in providing an operational method for as-
sessing a DM’s perception of ambiguity C, based on the computation of the Clarke differential
at 0. However, it proves enlightening also for purely theoretical reasons. We next discuss these

features in more detail.
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5.1 An Operational Consequence

To present a useful operational consequence of the characterization of C as a Clarke dif-
ferential, we consider the important special case in which the state space S is finite; i.e.,
S ={s1, s2,...,8n}. (However, we remark that an analogous result can be proved in the infinite
case, see subsection 6.4 for details.)

When S is finite, the Clarke differential at 0 can be given the following sharp representation

in terms of the standard gradients of I (see Theorem 32 in App. A):
01(0) =co{VI(y) : p € 0}, (8)

where () is any subset of R™ such that I is differentiable on 2 and €2¢ has Lebesgue measure
zero — by Rademacher’s Theorem it can simply be the domain of differentiability of I.

Eq. (8) provides us with further motivation for our interpretation of the set C as perceived
ambiguity. For, given a functional I that is not Gateaux differentiable and has (different)
Gateaux derivatives almost everywhere, it is natural to interpret each such derivative as a
“possible probabilistic scenario” that is implicitly used in evaluating a subset of acts. Thus, the
collection of the Gateaux derivatives of I is a set-valued “belief” associated with the preference
functional. Alongside Theorem 16, Eq. (8) shows that the set C is also a “belief” in this sense.

To illustrate the usefulness of Eq. (8), consider a piecewise linear functional I. That is,

a functional for which there exists a family {C;};cy of convex cones such that:
e R" =,
e intCy #( for each [,
o intCyNintCp, =0 if I #h,

e [ is linear on each C;.

For instance, Choquet integrals on finite spaces are piecewise linear functionals. The same
is said of the preference functionals studied by Castagnoli et al. [5] and Siniscalchi [33], when
defined on finite state spaces.

Eq. (8) enables us to simply describe the set 9(0) for this class of functionals. As I is linear
on each cone C}, there is a probability vector P; corresponding to the unique linear extension
of I, to R™. By Eq. (8), we then have (see after Theorem 32 in App. A) that

dI(0) =co{P :le L. 9)

This shows that there exists a simple direct connection between our C and the collection of
probabilities P; derived in the cited [5] and [33].
Indeed, for Choquet preferences we can use Eq. (9) to retrieve C from the capacity p, as

explained in the next example.

19



Example 17 Let I be a Choquet integral with respect to a capacity p. Set

Co = {(P eR": 90(80'(1)) 2 (p(SU(Z)) =2 @(Sa(n))}

for each permutation o of {1,...,n} and observe that I is linear on each convex cone C,. In

fact,
I(¢)=/sodp:/s0dP",
S S

where P? is the probability defined by

P7(s6(1)) = P({50(1) 80(2)s -+ So(i)}) = P{Sa(1)s So(2)s 5 Sa(i-1)})

for each v = 1,....,n. Hence, I is piecewise linear with respect to the collection {CU}JGPeT(n)7
where Per(n) is the set of all the permutations of {1,...,n}. By Eq. (9), we then have

C =co{P? : 0 € Per(n)}. (10)

In other words, in the Choquet case (with finite states) the set C is simply the convex hull of
the set of all the P?; that is, the convex hull generated by the probabilities used in calculating
the Choquet integral as we vary the monotonicity of the act being evaluated. We thus generalize
a result obtained, in the case of linear utility, by Nehring in a 1996 talk (see footnote 4).

Indeed, when the functional I is also concave — i.e., when I(¢) = [¢dp, with p super-
modular!? — Eq. (10) easily reduces to C = Core(p). Thus, the well-known characterization of
the core of a supermodular capacity due to Shapley [31] is also a consequence of Theorem 16.

Proposition 19 in the next subsection says more on this.

5.2 Other Consequences

We next discuss some consequences of Theorem 16 of a more theoretical nature. First of all,
from the mentioned equivalence of the Clarke differential and the superdifferential for concave
1 it follows immediately that C = D whenever = satisfies ambiguity hedging. In other words,
for a 1-MEU preference the set of priors corresponds to the set of possible scenarios. We thus
generalize a result that was proved for finite S by Nehring, as reported in his 1996 talk (see
footnote 4, and cf. his alternative generalization in [27]).

We can also use the differential characterization to draw some conclusions on the relation
between the comparatively based notion of ambiguity aversion of Ghirardato and Marinacci [18]

and the ideas in this paper. Begin by considering the following two subsets of SEU preferences.
Definition 18 Given a functional I : By(X) — R, the core of I is the set

Core(I) = {m € ba(X) : m(&) > I(§), V&€ € Bp(X)}.
The anti-core of I is the set

Eroc(I) = {m € ba(X) : m(&) < I(§), Y& € Bo(X)}.

12A capacity p is supermodular if p(AU B) + p(AN B) > p(A) + p(B) for every A, B € .
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As our choice of terminology suggests,!®> when I is a Choquet integral with respect to a

capacity p, we have [18, Corollary 13| that
Core(I) = Core(p) and Eroc(I) = Eroc(p).

However, these notions apply also to preferences which are not CEU. Indeed, if = is a 1-MEU
preference, then [18, Corollary 14] Core(I) = D. Clearly, both Core(I) and Eroc(I) could be
empty, and they are simultaneously nonempty if and only if I is linear.

The elements of Core(I) (resp. Eroc(I)) correspond to SEU preferences > which are less
(resp. more) ambiguity averse than > in the sense of Ghirardato and Marinacci [18]: for all
feFandze X, x> f=x=f (resp. x = f = x > f). We now show that they correspond

to some possible scenario.

Proposition 19 Let I be a monotonic, constant linear functional. Then
Core(I) U Eroc(I) C 0I(0).

Moreover, Core(I) = 0I(0) if and only if I is concave, while Eroc(I) = 01(0) if and only if [

1S convex.

The second statement shows that Core(I) contains all the possible scenarios if and only
if I is concave; that is, = is a 1-MEU preference with set of priors D = Core(I). Hence,
while Ghirardato and Marinacci’s “benchmark measures” of = (the elements of Core(I)) are
all possible scenarios, they exhaust the set C only when = is a 1-MEU preference.

In particular, the DM may not have any benchmark and yet be quite ambiguity averse, in
the sense of having a uniformly high (but not constantly 1) ambiguity aversion coefficient. On
the other hand, if he does have a benchmark measure, then he cannot be too ambiguity loving
(say, have a([f]) < 1/2 for every f € F \ [z], with strict inequality for one f), except in the

trivial case in which he satisfies SEU.

6 Extensions

In this final section we sketch some extensions of our work. We refer the interested reader
to [14] for a thorough discussion of these extensions, as well as for the proofs of the results

reviewed here.

6.1 Perceived Ambiguity and Updating

First, we have a simple dynamic extension of our static decision problem. Suppose that we
can observe our DM’s ex ante preference on F, denoted by %=, and his preference on F after

having been informed that an event A € ¥ obtained, denoted by ’=4. Further assume that

13In Ghirardato and Marinacci [18] these sets are denoted D(3=) and £(3=) respectively.
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the preference = and =4 are invariant biseparable, and that A is not unambiguously null.™

The utility representing =4 on X is denoted by w4. Clearly, the conditional preference =4
also induces an unambiguous preference relation =%. Because =4 is invariant biseparable, it
is possible to represent =% in the sense of Proposition 5 by a nonempty, weak™ compact and
convex set of probability measures C4.
An important property linking ez ante and ex post preferences is dynamic consistency:
for all f,g € F,
fAg=g<f=ag (11)

This property imposes two requirements. The first says that the DM should consistently carry
out plans made ex ante. The second says that information is valuable to the DM, in the sense
that postponing her choice to after knowing whether an event obtained does not make her worse
off (see Ghirardato [12] for a more detailed discussion).

It is possible to find several plausible instances in which the presence of ambiguity explains
behavior that violates dynamic consistency (see Siniscalchi [32] for elaboration). However, we
think that in the absence of ambiguity dynamic consistency retains much of its intuitive appeal.
It thus seems to be a natural exercise to inquire the effect of requiring dynamic consistency of
the unambiguous preference relations =%, with respect to the ex ante =* (that is, requiring
Eq. (11) with = and >4 replaced by =* and =% respectively).

We show that dynamic consistency of the unambiguous preference relations is tantamount
to assuming that the DM updates all the priors in C, a well known procedure that we call

generalized Bayesian updating: the “updated” perception of ambiguity is equal to
C|A=c0" {P4: P € C such that P (A) # 0},

where P4 denotes the posterior of P conditional on A, and 0% stands for the weak* closure

of the convex hull.

Proposition 20 Let = and =4 be invariant biseparable preferences and suppose that A is not

unambiguously null. Then the following statements are equivalent:
(i) For every f,g € F,
f =% 9g<= Pa(u(f)) > Pa(u(g)) for all P € C such that P (A) # 0.
Equivalently, C4 = C|A and us = u.
(it) The relations =* and =% are dynamically consistent.

We thus have a further reason for the interest of the unambiguous preference relation: it

yields a simple and intuitive foundation for the generalized Bayesian updating rule.

171t is not the case that z Ay ~* y for some (all) z £ y € X.
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6.2 «o-MEU preferences

As we observed just after Theorem 12, an interesting class of invariant biseparable preferences
are those whose ambiguity aversion index a is constant, the a-MEU preferences. Here we show
their behavioral characterization.

For any act f € F, we can denote by C(f) the set of the certainty equivalents of f for >=.
That is,

C(f)={xreX: forally € X, y = f implies y = z, f =y implies = = y}.

As = is complete, we have C(f) = {x € X : x ~ f}. We analogously define the set C*(f) of

the certainty equivalents of f for the relation »=*:
C*(f)={zeX: forally e X, y =" f implies y =" =, f =" y implies = =" y}.

Intuitively, these are the constants that correspond to “possible” certainty equivalents of f.
(Recall that = =* y if and only if x = y.)
The following result provides the characterization of C*(f) in terms of the expected utilities

mapping on C:
Proposition 21 For every f € F,

z € C7(f) <= min P(u(f)) < u(z) < max P(u(f)).

Moreover, u(C*(f)) = [minpec P(u(f)), maxpec P(u(f))].

Thus, z € C*(f) if and only if there is a P € C such that u(x) = P(u(f)). That is, u(C*(f)) is
the image of the expected utility mapping of f: the set of possible expected utilities of f as we
range over the scenarios in C.

We can now present the axiom that characterizes a-MEU preferences.
Axiom 7 For every f,g € F, C*(f) = C*(g) implies f ~ g.

The interpretation of the axiom is straightforward. For a DM who satisfies axiom 7, the set
of certainty equivalents of f with respect to =* contains all the information the DM uses in
evaluating f. Notice that the condition C*(f) = C*(g) in the axiom could also be rewritten as
follows: for every x € X, f =" « if and only if g =" x, and x »>* f if and only if z =* g¢.

In terms of the representation in Eq. (7), axiom 7 clearly guarantees that the DM’s evaluation
I(u(f)) of act f depends only on the range [minpee P(u(f)), maxpec P(u(f))] of the expected
utility mapping {P(u(f)) : P € C}, rather than on the expected utility mapping itself. More

surprisingly, such dependence must be linear.
Proposition 22 Let = be a binary relation on F. The following statements are equivalent:

(i) = satisfies axioms 1-5 and 7.
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(13) There exist a nonempty, weak™ compact and convez set C of probabilities on ¥, a noncon-
stant affine function u : X — R and a € [0, 1] such that = is represented by the monotonic
preference functional I : Bo(X) — R defined by

T(u(f)) = amin/ w(f)dP + (1 a) max/ u(f)dP,
S S

peC pPeC

and u and C represent =* in the sense of Eq. (4).

Moreover, C is unique, u is unique up to a positive affine transformation, and « is unique if C

is not a singleton.

6.3 Ambiguity of Events and Acts

We have earlier introduced crisp acts, those whose evaluation is unaffected by the ambiguity
the DM perceives in a problem. Consider in particular crisp bets; i.e., acts of the form z Ay
for x = y. We propose that the event corresponding to a crisp bet be defined unambiguous
(Nehring [27] gives an equivalent definition and shows that the latter is in turn equivalent to

one he earlier studied in [26]):

Definition 23 An event A € ¥ is unambiguous if for some x >~ y, the act x Ay is crisp.

The collection of all the unambiguous events is denoted by A.

The next result shows that unambiguous events have a simple and intuitive characterization
in terms of the probabilities in C, and that if z Ay is crisp for some z = y then 2’ Ay’ is crisp
for every 2’ » y'. This conforms with our intuition that ambiguity is property of events (more

accurately, event partitions), not acts.

Proposition 24 For any A € 3, the following statements are equivalent:
(i) A is unambiguous.
(1i) P(A) = Q(A) for all P,Q € C.

(7i1) For every x ~ y, the act x Ay is crisp.

For all invariant biseparable preferences, the collection A is a (finite) A-system (cf. Zhang
[35] and Nehring [26]): 1) S € A; 2) if A € A then A° € A; 3)if A,B € A and AN B = () then
AU B € A. Nehring [26] offers further results on the structure of A in the CEU case.

Ghirardato and Marinacci [18] propose a behavioral notion of unambiguous event for a
subclass of invariant biseparable preferences, showing that it has a simple characterization in
terms of the capacity p defined just before Eq. (3): an event B is unambiguous in their sense
if and only if p(B) + p(B¢) = 1. It can be shown that in general the set A is a subset of the
set of events satisfying this condition, but for a large class of invariant biseparable preferences
(e.g., those having a(f) > 1/2 for all f € F) the two sets coincide.

In view of the fact that A is a A-system, it is natural to call “unambiguous” the acts whose

upper level sets are unambiguous events (cf., e.g., Epstein and Zhang [10]).
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Definition 25 Act f € F is unambiguous if its upper sets {s € S : f(s) = x} belong to A
forallz € X.

An obvious question to ask at this point is whether crisp acts are unambiguous. It follows
from Proposition 24 (iii) that every binary crisp act is unambiguous. However, it can be seen
that this fact does not generalize to acts which yield more than two nonindifferent prizes. The
issue is that permuting the prizes of a crisp (nonbinary) act may produce a noncrisp act. This
conflicts with our intuition that ambiguity is a property of the event partition with respect to
which an act is measurable.

Indeed, it turns out that the unambiguous acts are basically those acts whose crispness is

not affected by permuting payoffs.

Proposition 26 Let f = {x;; A}, with z1,22,...,2, € X and {A1, As, ..., Ap} a partition
of S in X. If for each permutation o of {1,2,...,n} the act f7 = {x,4; Ai}i_, is crisp, then

f is unambiguous. The converse is true whenever x; »~ x; for every i # j in {1,...,n}.

Notice that a binary act x By satisfies the permutation crispness condition if and only if
B is unambiguous. The non-indifference condition in the converse is the reason of the qualifier
“basically” above. However, it is still possible to use the proposition to obtain a full character-
ization of the relation between crisp and unambiguous acts. In fact, it can be shown that for
any unambiguous f with some indifferent payoffs, there exists an act f’ with non-indifferent

payoffs which is state-wise indifferent to f.

6.4 More on the Operational Consequences

In this subsection we show how to extend the results of Subsection 5.1 when §' is infinite.

Let S be a compact metric space, 3 its Borel o-algebra, B(X) the set of all bounded -
measurable functions, and C(S) the set of all continuous functions on S. Denote by I the
restriction of I to C(S). Let F» be the set all ¥-measurable and >-bounded functions from
S into X; that is, f € Fy if both {s € S : f(s) = 2} and {s € S : f(s) > x} belong to X
for every x € X, and if there exist z,y € X such that = > f(s) = y for all s € S. Notice
that the finite state space case considered in Subsection 5.1 is a special case of this setting.
(The finite S is compact when endowed with its discrete topology; moreover, F = F. and
C(S)=By(X) =B(X)=R")

Following Gilboa and Schmeidler [19], it is possible to show that if = satisfies axioms 1-5 on
F, it has a unique extension which satisfies axioms 1-5 on Fi.. Such relation, also denoted by
%=, is represented by the unique extension I of I to B (X), and the associated subset Cy. satisfies
Cy. = C = dI(0). For this reason, we abuse notation and write I and C instead of I and Cy..

Next, we impose a monotone continuity assumption (see Marinacci, Maccheroni, Chateauneuf

and Tallon [24]), where =* denotes the asymmetric component of >=*.

Axiom 8 (Monotone Continuity) For allz,y,z € X, if A, | 0 and y =* z, then eventually
y ="z A,z
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We can now state our result, based on a “D-representation” of the Clarke differential due
to Thibault [34] (see also [3]).

Proposition 27 Assume that = satisfies axioms 1-5 and 8. Then,
¢ = 01(0) = 0" (Vi) : ¢ € D}, (12)

where V¢ is the Gateaur derivative of Iic, and D C C(S) is the domain of Gateauz differen-
tiability of I c.

According to this result, the set C can be described by just taking the closed convex hull of
the collection of the Gateaux derivatives of the restriction I|¢. In this regard, it is important
to observe that VI is more likely to exist (and simpler to compute) than VI, the Gateaux
derivative of I on the entire space B(¥). Therefore, the fact that only the derivatives VI
appear in Eq. (12) is a positive feature of Proposition 27.

Similarly to what we did for the finite setting, we can illustrate our result by considering
piecewise linear functionals. Here, we say that I is properly piecewise linear if there exists

a family {C;};cr, of convex cones such that:
e B(X)=,C,
e intC;NC(S)#0D for each I,
e intC;NintC,NC(S)=0 ifl#h,
e [ is linear on each Cj.

Interiors are taken in the supnorm topology. We remark that in the finite case this definition
reduces to that introduced in Subsection 5.1, and similarly refer the reader to Castagnoli et al.
[5] and Siniscalchi [33] for decision models with properly piecewise linear representations.

Given a preference = represented by a properly piecewise linear I, Eq. (12) gives a repre-
sentation of 0I(0) which is identical to the one obtained in Eq. (9) for the finite case. In fact,
we have

dI(0)=e" {P : 1€ L},

where P; is the probability representing I on the cone Cj. Therefore, we again find that the
sets of priors obtained in the representation by Castagnoli et al. [5] and Siniscalchi [33] are, up

to convex closure, equal to our C.
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Appendices

A Functional Analysis Mini-Kit

In this appendix we provide/review some functional analytic results and notions that are used
to prove the results in the main text (and in some cases directly mentioned in Section 5). Most

of the proofs are standard, and are thus omitted.'®

A.1 Conic Preorders

We recall that By(X) is the vector space generated by the indicator functions of the elements
of 3. We denote by ba(X) the set of the bounded, finitely additive set functions on ¥, and by
pc(X) the set of the probability charges on ¥. As it is well known, ba(X), endowed with the
total variation norm, is isometrically isomorphic to the norm dual of By(X%).
Given a non singleton interval K in the real line (whose interior is denoted K°) we denote by
By(X, K) the subset of the functions in By(X) taking values in K. Clearly, By(X) = By(Z, R).
We recall that a binary relation 2 on By(X, K) is:

e a preorder if it is reflexive and transitive;
e continuous if " = Y™ for all n € N, ¢" — ¢ and ¥" — ¢ imply ¢ = ;

conic if ¢ 2 9 implies ap + (1 — )0 2 ap + (1 — )0 for all § € By(3, K) and all
a € [0,1];16

e monotonic if ¢ > 1 implies ¢ = 1.

nontrivial if there exists ¢, 9 € By(X, K) such that ¢ 2 v but not ¢ 2 .
Next, we have some useful representation results.

Proposition 28 For i = 1,2, let C; be nonempty sets of probability charges on ¥ and 2; be
the relations defined on By(3, K) by

@Zi@z)@/sﬁdPZ/l/JdP for all P € C;.
S S

Then
¢ziw<:>/¢dpz/¢dp for all P € @™ (),
S S

and the following statements are equivalent:

(1) ¢ 21U =@ 22 for all ¢ and v in By(X, K).

15They are available from the authors upon request.
6Notice that if K = R or Ry and > is a preorder, then > is conic iff ¢ > ¢ implies oo + 0 > ap + 6 for all
0 € Bo(X) and all o € Ry
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(i5) T (C2) C @™ (C1).
(112) [infpec, P(p),suppec, P(¢)] € [infpec, P(¢),suppee, P(¢)] for all ¢ € By(%, K).

Proposition 29 2 is a nontrivial, continuous, conic, and monotonic preorder on By(X, K) if

and only if there exists a nonempty subset C of pc(X) such that
¢Z¢<:>/cde2/¢dP for all P € C. (13)
S S

Moreover, @™ (C) is the unique weak* closed and convex subset of pe(X) representing > in the
sense of Eq. (13).

A.2 Clarke Derivatives and Differentials

A monotonic constant linear functional I : By(¥X) — R is Lipschitz of rank 1. For, given

¢, ¥ € Bo(X), ¢ < ¥+ [l — ¢ implies I() < I() + [l — ||, hence I(p) — I(¥) < [l — ¥];
switching ¢ and v yields |I(¢) —I(¢)| < |[¢ —|. It follows that I is also uniformly continuous.

Thus, given a monotonic constant linear functional I : By(X) — R, we can study its Clarke
derivatives and Clarke differentials (as defined in Clarke [6]):

Definition 30 The Clarke (upper) directional derivative of I in ¢ in the direction v is

I°(p;v) =limsup Hy+tv) - I(zb)

Yp—p t
t10

The Clarke differential of I in ¢ is the set
OI(p) ={m € ba(X) : m(v) < I°(p;v), Yv € By(X)}.

We refer to Clarke [6] for properties of the Clarke derivative and differential. Among them,

the following are especially important:

1. For every v € By(X):

I°(p;v) = .
(p;v) e m(v)

2. (Mean Value Theorem) For all ¢, € By(X), there exist v € (0,1) and m € 9I(ye+ (1 —
v)¥) such that
I(p) = I() =m (e —1).

In Section 5 we defined a Clarke lower derivative, and defined the Clarke differential in

terms of that. The observation that for every ¢, v € By(X)

lolpiv) = ~I(i=v) = min m(v).
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shows that our presentational choice does not make a difference since the set defined in Section 5
coincides with the Clarke differential as defined above. For easier reference to the existing
literature in the rest of this subsection we mostly use the traditional I°.

The following are additional properties of I° and JI(-) that we use below, and hold for a

monotonic and constant linear I.
Proposition 31 Let I : By(X) — R be a Lipschitz functional. Then:

1. If I is positively homogenous, I°(p;-) = I°(ap;-) for all « > 0, and 9I(p) C 0I(0) for
all p € By(X). Moreover,

I°(0;0) = sup I(¥+p)—I(®¥) and I,(0;¢)= inf I(p+¢)—I(1)
YEBY(D) YEB(X)

for all p € By(X).

2. If I is monotone, then for all ¢ € Bo(X) the function I°(p;-) is monotone, and m is
positive for all m € 0I(yp).

3. If I is constant additive, then for all ¢ € Bo(X) the function I°(p;-) is constant linear,
and m(S) =1 for all m € 91(p).

Notice that it follows from this proposition that if I is monotonic and constant linear,
then 0I(p) C 0I(0) C pe(X) for all ¢ € By(X). That is, the Clarke differential only contains
probabilities.

We conclude this appendix by recalling Clarke’s characterization of Clarke differentials in
finite dimensional spaces, and drawing a consequence for positively homogeneous functionals.

Here, By(X) = R™ and, as usual, V denotes a standard gradient.

Theorem 32 Let I : R™ — R be a Lipschitz functional, and let ) be any subset of R™ such
that I s differentiable on Q and Q¢ has Lebesgue measure 0. Then

0I(p) = co { lim VI(g;):¢; €Q, ¢; — ¢, and VI(g;) converges} . (14)
If, in addition, I is positively homogeneous, then
0I(0) =co{VI(p): p € Q}. (15)

Proof. The first statement is a classical result (see, e.g., Theorem 2.5.1 of [6]). As to the
second, suppose that I is differentiable at ¢. Then VI(¢) € 0I(p) and, by positive homogeneity,
0I(p) C QI(0). This proves the inclusion 2 in Eq. (15).
As to other inclusion, by Eq. (14) we have
oI (0) = co{ lim VI(g;) : ¢; € Q, p; — 0, and VI(p;) converges} .

1—00
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But, for all ¢; € Q such that ¢; — 0, we have

lim VI(p;) € {VI(¢) : ¢ € Q} Ceo{VI(p): ¢ €},
as desired. (]

This result allows us to prove Eq. (9) in Section 5 for a piecewise linear I. Let m; be the

unique linear extension of Ij¢, to R"; by (15), we have
oI (0)=co{m;:leL}.

In fact, if ¢ € int C) for some [, then VI(p) = my. Set Q = |J,int C;. Then Q¢ C |, 0C). Notice
that L is at most countable — {int C}} is a disjoint family of nonempty open sets — and so Q¢

has zero Lebesgue measure since each 0C) does.

B Proofs of the Results in the Main Text

We begin with two preliminary remarks and a piece of notation, that are used throughout this

appendix. First, given the representation in Lemma 1, we observe without proof that
{u(f): feF}={p € By(E,R): p =u(f), for some f € F} = By(X,u(X)).

Second, notice that it is w.l.o.g. to assume that u(X) 2 [—1,1]. Finally, given a nonempty,
convex and weak™ compact set C of probability charges on (.5, X), we denote for every ¢ € By(X),

Clp) =min P(p).  Clp) = max P(yp).

B.1 Proof of Proposition 4

Taking A = 1 in the definition proves point 1. Next we prove that =* is monotonic (point
4). Suppose that f(s) = g(s) for all s € S. By axiom 2, for every h € F and X € (0,1],
Af(s) + (1 = XN)h(s) = Ag(s) + (1 — A)h(s) for all s € S. Using axiom 4, we thus obtain that
Af+ (1 =X)h = Ag+ (1 — A)h. This shows that f =* g. If = = y, then the monotonicity of =*
yields z =* y. Along with point 1, this proves point 2. As to point 3, reflexivity also follows
from monotonicity. To show transitivity, suppose that f =* ¢ and g »=* h. Then for all kK € F
and all A € (0,1], we have

AMH+A=Nk=Ag+ (1 =Nk = A+ (1= Nk.

This shows that f >=* h.

Next, we prove the implication = of point 5 (The other implication follows immediately
from the following Proposition 5, and it is not used in the proof of that proposition). Given
fig,h € Fand X € (0,1), suppose that f »=* g. Then for every p € (0,1] and every k € F, we
have

Y 1-—
( mh+ 1

A=Np,  L—p
1— A 1—Ap

1—p l—Auk

(A f+ (1= Ap) k| = (Aw)g+(1—Aw)
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by definition of »=*. Rearranging terms, we find
p(Af + (L= XNh)+ (1 = pk = p(Ag + (1 = M) + (1 = pk,

which implies Af + (1 — A)h =" Ag + (1 — A\)h, since the choice of p and k was arbitrary. The
case A = 1 is trivial. Point 6 follows immediately from the following Proposition 5. (It is not
used in the proof of that proposition.)

Finally, assume that >=** is an independent binary relation such that f »=** g implies f = g.
Then f =** g implies \f + (1 — A\)h =** Ag+ (1 — A)h for all h € F and A € (0,1], hence
M+ (L =XNh=A g+ (1= XNhfor all h € F and A € (0, 1], finally f »=* g. This proves 7.

B.2 Proof of Proposition 5

Notice that f >=* g iff I(Au(f) + (1 — Au(h)) > I(Au(g) + (1 — Au(h)) for all h € F and all
A € (0,1]. Define 2 on By(X,u(X)) by setting

@ > 1h == T(Ap+ (1= N)0) > I(Mp+ (1 — N\)f), V0 € Bo(S,u(X)), VA € (0, 1].

Clearly, f =* g iff u(f) = u(g). It is routine to show, either using the properties of =* or
those of I, that 2 is a nontrivial, monotonic and conic preorder on By(3, u(X)). Moreover, if
o 2 ¢ forall n € N, ' — ¢, o5 — @y, then I(Ap} + (1 — N)0) > I(Aeh + (1 — N)0), for all
A€ (0,1], all @ € Bo(X,u(X)), and all n € N. Since [ is supnorm continuous, it follows that
©1 2 P

We have thus shown that 2 is a conic, continuous, monotonic, nontrivial preorder on
By(X,u(X)). By Lemma 29 it follows that there exists a nonempty, weak™ closed and con-
vex set C of probability charges on 3 such that

¢2¢<:>/cde2/d)dP for all P € C,
S S

which immediately yields the statement.

B.3 Proof of Proposition 6

Lemma 33 Let Y be a vector space and u,v be two nonzero linear functionals on'Y. One and

only one of the following statements is true:

e u=av for some a > 0.
e JycY :u(y)v(y) <O0.

Proof. Clearly the two statements cannot be both true. Assume, by contradiction that both
are false. That is: there exist u,v nonzero linear functionals on Y such that u # av for all
a>0,and u(y)v(y) >0 forally € Y.

Then Y = [uv > 0] U [u = 0]U [v = 0] = [uv > 0] Ukeru U kerv. keru and kerv are
maximal subspaces of Y, hence Y = (z) @ keru for some z € Y such that u(z) > 0. If
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keru = kerv: for ally € Y, exist b € R, x € ker u such that y = bz 4z, whence u(y) = bu(z) =

UEZ; bu(z) = Mv(y), which is absurd. Else: keru # kerv, so there exist 3’ € keru\ ker v and
v(z

v(z)

y" € kerv\ keru (keru and kerv are maximal subspaces), we can choose y' and y” such that
v(y") > 0 and u(y”) < 0. Finally, u(y’ + v")v(y’ +v") = u(y”)v(y’) < 0, which is absurd. O

Corollary 34 Let X be a nonempty convex subset of a vector space and u,v be two nonconstant
affine functionals on X. There exist a € R4 and b € R such that u = av + b iff u(xy) >
u(ze) = v(x1) > v(x2) for every x1,x2 € X.

Proof. Necessity being trivial, we only prove sufficiency. Notice that
YV ={t(x1 —z2) 1t e Ry, 1,0 € X}
is a vector space and the functionals

[T t(w1 — ZCQ) — t(U(«Tl) - u(xQ))v

0tz — x2) — t(v(xr) —v(x2))
are well defined, nonzero, and linear on Y. Moreover,
u(t(ry —x2)) > 0 = u(x1) > u(zr2) = v(z1) > v(xr2) = v(t(x; —x2)) > 0.

Therefore fly € Y such that @(y) 9(y) < 0. By the previous lemma, there exists a > 0 such that
4 = av. Finally, fix 2° € X, for all z € X

u(z) —u(z®) = a(l(z — z°)) = av(1(z — z°)) = av(x) — av(z®)

SO

set b = [u(z°) — av(x®)]. O

Proof of Proposition 6.
(1) = (ii): For all z,y € X,

() >u(y) == 71 Yy = T =] Y = T =5 Yy = T =2 Y <= u2(x) > u2(y).

By Corollary 34, this implies that we can assume u; = ug = u. Moreover, for all f,g € F,
=1 9= f =5 g. Thatis,

P(u(f)) = P(u(g)) VP €Ci = P(u(f)) = P(u(g)) VP €Cy,
which by Lemma 28 (applied to By(X,u(X))) implies C2 C C;.

(73) = (7): Obvious.
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B.4 Proof of Proposition 7

The fact that (ii7) = (iv) follows from the observation that for all f € F, if ¢(f) € C(f),
I(u(f)) = u(e(f)) € u(N(f)) = {P(u(f)) : P € C}. On the other hand, if > has a SEU
representation with probability P (statement (iv)), then = satisfies independence (statement
(44)), which implies that f = g implies f =* g for all f,g € F, so that ==>" (statement (7)).
By the uniqueness of the representation in Eq. (4), it follows that C = {P} (statement (7)),

closing the chain.

B.5 Proof of Proposition 8

The result follows immediately (take 1 = 0) from the following lemma, that will be of further

use.

Lemma 35 For all f € F,

o) - ut {r(un+5200) -1 (1520 ) |

=  inf ){I(u(f) +1) = I(¥)}

YEBY (T

and

cutry = sup {1 (utn+ 3 i) -1 (5 ) |

geF
X€(0,1]

= sup {I(u(f)+¢) - I(¥)}.
YEBy(X)

Proof. Clearly {@u(g) g€ F, e (0,1]} € By(X). Conversely, for all ¢ € By(X) there
exists a € (0,1) and g € F such that atp = u(g) hence ¢ = éu(g) Since (1;)‘) ranges from
0 to oo (recall that A € (0,1]), there exists A* such that 1 = (1}5‘*) and 9 = (lgi\*)u(g). We
have thus proved the second equality in both equations.

Given zp;, € X that satisfies u(zmin) = C(u(f)), we have f =* zpin. That is, for all g € F
and A € (0,1]:

I(u(Azmin + (1 = A)g)) < I(u(Af + (1= A)g))

IT(Au(zmin) + (1 = Au(g)) < I(Au(f) + (1 = Mu(g)).

Therefore,
Au(@min) + (1 = Nulg)) < I(Au(f) + (1= Nu(g))

from which we obtain

awin) < 1 () + 25 2000) )~ 1 (15 Mutw)).
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Finally,

s gt {r(un+52u0) -1 (520 }.

Analogously,

sup {1 (ath)+ 1 520)) -1 (5200 | < )

geEF
A€(0,1]

Conversely, let x;,r € X be such that

o) = it {r(wn+52u0) -1 (520 }.

Then,

) < 1 () + 25000 ) -1 (5000

A
for all g € F and X € (0, 1], whence f =* zipe. That is, u(zins) < C(u(f)), or

g {1 (uh+ 5520 - 1 (500 ) b < i Pra)

geF peC
Ae(0,1]
Analogously,
1- A 1A
I .y > max P
s {1(u(9)+ 5 2000) ) ~ 1 (52ut0)) | = max Plu(),
A€(0,1]

which concludes the proof.

B.6 Proof of Lemma 9
(i) = (ii): Suppose that for some A\, \ and z,2’ € X,
Af+A=Nz~*Ng+(1-N)a,
which, applying Eq. (6) of Proposition 5, is equivalent to
AP(u(f))+ (1 =Nu(z)=XNPu(g)+ (1 = X)u(z') forall PeC.
It follows that for all P € C,

P(u(f) = > Pla(g) + 1101~ Xu(a') — (1 - Nu(z)],

so that we get the conclusion by letting

1 / /
a=-—+ and (= X[(l — Nu(z") — (1 = Nu(x)].
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(73) = (it): Suppose that
P(u(f)) = aP(u(g)) + 8 forall P €C.

Suppose first that @ < 1. Then, let A = «. By renormalizing the utility function if necessary,
we can assume that 3/(1 — \) € u(X), so that there is z € X for which u(z) = /(1 — A). It
follows that

[~ Ag+ (1 =Nz

The case of a > 1 is dealt with by rewriting the equation as follows:

P(u(g)) = ! P(u(f))—p forall PeC,

T a
and proceeding as above to get
Af+(1=XNz~"g.
Finally, suppose that « = 1. Having chosen (renormalizing utility if necessary) x,2’ € X such
that u(x) = 0 and u(2’) = 3, it follows that

LU S e
= —x~" —g+ -1
2l T 2915

(7i) = (4ii): Obvious.
(7i1) = (i7): Notice that the expected utility mappings

P o= Pu(f))
P = P(u(g))

are affine functionals on C. Therefore, (by the standard uniqueness properties of affine repre-

sentations) they are isotonic iff one is a positive affine transformation of the other.

B.7 Proof of Proposition 11

(i) = (d¢i7): By Lemma 35,

o) = {r(ww+ 5 ) -1 (5 20) |

= inf {I(u(k)+¢) - I(4)}

wEBY(X)

) = sup {1 () + 25 2ut0)) -1 (5 )}

geF
A€(0,1]

= sup {[(u(k)+v)—1)}.

pEBY(X)

and

Suppose that & is crisp. Then for all f ~ g and A € (0,1],

A+ (1= A f ~Me+ (1= N)g.
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That is,
IQu(k) + (1= Nu(f)) = I(Au(k) + (1 = Au(g)),

or, equivalently since I(u(f)) = I(u(g)),
F(u+ 52 ) -1 (S50 =1 (a0 + 50 ) <1 ()
Therefore, for all 9,8 € By(X) such that I(y) = I(6),
T0u() +0) — 1(0) = I(uk) +6) — ().
If T(4) # I(8), set a = I(sb) — I(8). Then, I(s) = I(6 + a), whence
Hu(k)+ ) — 1) = I(u(k) + 0+ a) — I(0 + a),

so that again
I(u(k) +¢) = I(¢) = I(u(k) + 0) — 1(0).
We conclude that if k is crisp

Clu(k)) = inf {I(u(k)+v)—I(¥)} = sup {I(u(k)+v)—I(¥)}=Clu(k).  (16)

pEBY(Y) ©EBY(X)
(791) = (iv): From Eq. (16) (which is (4i7)) we obtain
I(u(k) +¢) = 1(¢) = I(u(k))
for all ¢ € By (), whence for all A € (0,1] and all g € F:

() + 5520) -1 (5200 ) = 1)

I(u(k) + (1= Nu(g)) = M (u(k)) + (1 = N I(u(g)).
Finally, notice that the above equation is trivially true if A = 0.
(tv) = (i): If f ~gand A € (0,1), it follows from (iv) that
IQu(k) + (1 =Nu(f)) = M(u(k)) + (1 =) (u(f))
= M(u(k)) + (1 = M)I(u(g))
= IQw(k) + (1 = Mu(g)),

or

whence

A+ (1=XN)f ~Xe+(1—XN)g.
(1) = (4i1): Since k < z, there exist A\, \" and y, %’ such that
A+ (1 =Ny~ No+1-XN)y,
which, applying Proposition 5, is equivalent to
AP(u(k)) + (1= X u(y) ~* Nu(z) + (1= N)uy),

for every P € C. This immediately implies (ii7).
(#3i) = (i1): Since P(u(k)) = v for every P € C, we just need to choose x € X such that
u(x) =, and then apply Proposition 5 to see that k ~* x, yielding (i7).
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B.8 Proof of Theorem 12

(1) = (i7): Suppose that = satisfies axioms 1-5. Let I and u respectively be the preference
functional and utility that represent = obtained in Lemma 1, and C the weak® compact and
convex set of probabilities on ¥ that represents =* obtained in Proposition 5.

We have observed in Proposition 8 that C(u(f)) < I(u(f)) < C(u(f)) for all f € F. Hence,
if f is crisp then I(u(f)) = P(u(f)) for every P € C. If f is not crisp, then there exists
a(u(f)) € [0, 1] such that

Such a(u(f)) is unique, for

e T(f) ~ C(uf)
W)= el —Ctuth)

If we now recall the consequence of Lemma 9 and Proposition 11 that [z] is the set of all crisp

acts, we see that the function a(-) provides the sought representation. We are therefore done if
we prove that a can be defined on F,_ \ {[z]}.
Suppose that f =< g. Then, there exist a pair of constants x, 2’ € X and weights A\, \ € (0, 1]
such that
Af+ A =Nz~*Ng+(1-XN)2" (17)

It follows from point 1 of Proposition 4 that Eq. (17) implies
IQwu(f) + (1 = Nu(z)) = I(XNu(g) + (1 = X)u(a"))
so that, by the constant linearity of I
AL(u(f)) + (1 = N u(z) = NI(u(g)) + (1 = X) u(@).
As a consequence,
Hu(f)) = 2 1(u(g) + 0= N) @) — (1= W u(z)]
Tf we set 8 = 1[(1— N)u(z')’ — (1 — Au()] and a = N/, we then obtain
I(u(f)) = al(u(g)) + 5.
Notice that Eq. (17) also implies that for every P € C,
AP(u(f)) + (1 = N u(z) = N'P(u(g)) + (1 = X) u(a’).

That is, P(u(f)) = aP(u(g)) + 8 for every P € C. We conclude that

oy () ~ ()
W)= uth) —cul)
_ al(u(g)) + 8 — maxpec(aP(u(g)) + )
pec(aP(u(g)) T 5) = maxreelaP@) )

= a(u(g))-
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Therefore, a(u(f)) = a(u(g)) whenever f =< g. If, with a little abuse of notation, we let
a([f]) = a(u(f)), we find that a : (F/= \ {[z]}) — [0,1], as claimed.
(73) = (7): Obvious.

B.9 Proof of Proposition 13

Since =1 and =9 perceive identical ambiguity, we have C; = Co = C and we can assume
u1 = ue = u. If C is a singleton, then >=; and %= coincide, hence >=; is more ambiguity averse
than =2 and a1 ([f]) > a2([f]) for every f € F \ [z] = (). Therefore, we assume |C| > 1.

Suppose that =1 is more ambiguity averse than ’=5. Fix f € F\ [z], and let x € X be
indifferent to f for 5. We have:

ax([f1) C(u(f)) + (1 = ax([f]) C(u(f)) = u(2)

That is,

az([f]) (C(u(f)) = C(u(f))) + Clu(f)) = ar([f]) (C(u(f)) = C(u(f))) + Clu(f)),

whence a1 ([f]) > a2([f])-
Conversely, suppose that a1 ([f]) > a2([f]) for every f € F\ [z]. For all x € X,

On the other hand, for all f € [z] and all z € X, we can take P € C to obtain:

vz f e u(@) = Pu(f))
&z f.

B.10 Proof of Theorem 16

For all f € F, Lemma 35 yields

max P(u(f)) = sup {I(u(f)+v)—I@)},

pec ©€Bo(X)

while item 1 of Proposition 31 yields
sup  I(u(f) +v) —I(¥) = I°(0;u(f)) = max P(u(f)).

YEBy(X) PeoI(0)

But, for all ¢ € By(X), there exist A € (0,1) and f € F such that A\¢ = u(f). Hence,

1 1
mer o) =g e (5000) = i, P (5000) = s, P9

Since both C and 0I(0) are weak*-compact and convex subsets of ba(X), we conclude that

¢ = dI(0).
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B.11 Proof of Proposition 19

If m € Core(I), then m(§) > I1(§) > infyep ) (¥ + &) — I(¢) = 15(0;§). Analogously, if

m € Broc(I), then m(€) < I(€) < supyepys) 106 + &) — I() = I°(0:).
If Eroc(I) = 01(0), then

I°(0;¢) = ™ §) = B m () < I(§) <I°(0;¢)

for all £ € By(X), so I°(0;-) = I(-) and [ is convex. Conversely, if I is convex, a standard result

(see Clarke [6]) guarantees that 0I(0) = Eroc(I). (The concave case is analogous.)
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