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In telling the tale of, and analyzing the decisions made by, an heir claimant to a large fortune, Lippman and
McCardle (2004) introduce embedded Nash bargaining, an approach to modeling joint decision making. They

embed several bargaining games in a joint decision tree and calculate the expected payoffs to the two sides
if the Nash bargaining solution is used to generate the intermediate payoffs from bargaining. The purpose of
the current paper is to provide theoretical underpinnings for that approach: we establish some general results
regarding the existence, uniqueness, and comparative statics (with respect to costs, risk aversion, and time
discounting) of the embedded Nash bargaining solution. In particular, when the disagreement payoff is random,
we show that a decision maker’s embedded Nash bargaining payoff decreases with both his risk aversion and
impatience, and it increases with his opponent’s risk aversion and impatience.
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1. Introduction
The scholarly development of game theory and
expected utility theory diverged shortly after their
joint presentation in von Neumann and Morgenstern
(1947). Game theory developed under the aegis
of microeconomic theory, studied and practiced
mainly in economics departments. Noncooperative,
as opposed to cooperative, game theory has dom-
inated. The prevailing attitude toward cooperative
game theory is articulated by Rasmusen (1989, p. 231):
“Cooperative game theory may be useful for ethi-
cal decisions, but its attractive features are inappro-
priate for most economic situations, and the spirit
of the axiomatic approach is very different from
the utility maximization of current economic theory.”
At the same time, expected utility theory developed
into decision analysis, mainly studied and practiced
in operations research departments in engineering
schools or quantitative methods departments in busi-
ness schools. One purpose of the current paper is to
reintroduce game theory and decision analysis to each
other in a narrow context: the division of an asset
between a pair of antagonists where there is uncer-
tainty regarding each individual’s claim. We are cer-

tainly not the first to attempt this reintroduction, but
for the most part the matchmakers have tended to
be economists (game theorists) come to borrow ideas
from decision analysis. We, on the other hand, are
decision analysts borrowing ideas from cooperative
game theory.

The approach studied in this paper, embedded
Nash bargaining, was introduced via example in
Lippman and McCardle (2004). There we applied the
basic mechanism to the analysis of the division of the
contested estate of the late Larry Hillblom, founder
and principal of DHL and apparent father of sev-
eral illegitimate heirs. The current paper adds to the
development of the approach in a more general and
less sensational setting. As decision analysts, our view
is that we are embedding a Nash bargaining model
in a pair of matched decision trees, hence we call it
embedded Nash bargaining. Alternatively, this could be
viewed as imposing subgame perfection on a multi-
stage Nash bargaining game with random transitions,
in which case it would be called subgame perfect Nash
bargaining.

The bargaining applications to which our approach
can be applied entail two parties who must divide
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an asset. The asset could be physical, such as real
estate, or it could be pecuniary, for example, an
income stream associated with intellectual property.
As time passes while the two parties negotiate, costs
are incurred, the asset value shrinks because of dis-
counting, and chance events alter the two parties’
relative shares of the asset. The chance event might
involve discovery of new information or a change in
relative position.

The original paper on Nash bargaining is Nash
(1950). Rubinstein (1982) introduced subgame per-
fection in a noncooperative bargaining model with
alternating take-it-or-leave-it offers. Thompson (1994)
provides an excellent review of the cooperative bar-
gaining literature. For the basics on intertemporal
preferences, see Nachman (1975), Prakash (1977), and
Fishburn and Rubinstein (1982).

In the next section we introduce the basic model
of a negotiation between two decision makers, DM1
and DM2, and we review a standard noncooperative
approach in which one of the DMs has the ability to
make take-it-or-leave-it offers to the other. In §3 we
introduce embedded Nash bargaining. In contrast to
the modeling perspective of a noncooperative game,
the Nash bargaining approach is axiomatic: a set of
axioms is proposed, and solutions that satisfy these
axioms are analyzed. There is no attempt to model
or constrain the give-and-take (or take-it-or-leave-it)
process of the bargaining. An example shows that the
embedded Nash bargaining solution provides a mid-
dle ground between the two alternative noncoopera-
tive models in which one of the DMs issues all of the
take-it-or-leave-it offers. We focus on exponential util-
ity in our numerical examples, but the basic results
are established more generally.1

The embedded Nash bargaining model is first
detailed for time-insensitive DMs. The penultimate
section considers the effects of discounting. To pro-
vide comparative statics on the embedded Nash solu-
tion, we first prove a simple but important result:
when the disagreement payoff for a standard Nash

1 Exponential utility is widely used in decision analysis applications
and models. For instance, Corner and Corner (1995) find it to be the
most widely used model of utility in the applications they review.
It exhibits constant absolute risk aversion, hence, is wealth inde-
pendent and analytically tractable. It also allows easy comparison
of the risk attitudes of the DMs.

bargaining game is random, the Nash bargaining pay-
off to a DM decreases with increases in that DM’s
risk aversion.2 Comparative statics on the embedded
Nash bargaining solution are then established to show
that the payoff to a DM increases with increases in
the risk aversion, the costs, or the discount rate of the
opponent. Along the way we consider an alternative
bargaining solution concept, the dictatorial solution,
which yields payoffs equivalent to the noncooperative
solution discussed in the next section.

2. Model
There are two decision makers, DM1 and DM2, whose
task is to divide between themselves an infinitely
divisible asset with value v > 0. Let X = 84x11x252 x1 +

x2 ≤ v9 be the set of feasible divisions of the asset.
The utilities of the DMs to their individual payoffs are
denoted u14x15 and u24x25. We assume they are each
risk averse: u1 and u2 are concave and strictly increas-
ing. Let ì be the nonempty set of possible utility
pairs: ì = 84u14x151u24x2552 4x11x25 ∈ X9. If they agree
to a division 4x11x25 that is feasible, i.e., 4x11x25 ∈

X, they each get the agreed-to shares and the game
is over. If they fail to agree, the fallback position is
the disagreement point 4d11d25, measured in utilities.
We assume 4d11d25 ∈ ì. Denote the certainty equiva-
lent of a gamble Y by CEi4Y 5 so ui6CEi4Y 57= Eui4Y 5.

The decision makers’ claims to the asset involve
several uncertainties (chance events). For ease of
exposition, we include only two chance events, A

and B, each of which has two possible outcomes, a

and ã and b and b̃, respectively. Event A precedes
event B. The probabilities are completely specified by
P4a5, P4b � a5, and P4b � ã5. Resolving each of the uncer-
tainties requires time (and hence induces a delay) and
furthermore imposes a cost on decision maker i = 112
of ci4A5 and ci4B5, respectively. It is straightforward
to allow the costs of resolving B to vary not only
by decision maker but also based on the outcome of

2 Researchers have suggested a variety of reasons as to why risk
aversion might vary: Howard (1988) suggests corporate risk toler-
ances modeled with exponential utility vary with equity book value
of the firm; in the studies reviewed by Kirkwood (2004), risk aver-
sion varies depending on the size of the DM’s customary budget;
and Bickel (2006) analyzes the impact of varying levels of finan-
cial distress, the costs of external financing, and principal–agent
concerns.
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A: ci4B1a5 need not equal ci4B1 ã5. Our results also fol-
low through in a relatively straightforward manner
to more complex situations than the two-uncertainty,
two-states-per-uncertainty model detailed here.

The DMs can divide the asset prior to any of the
uncertainties being resolved. If they fail to agree to
a division, two things happen: they pay for uncer-
tainty A to be resolved, and they wait for its resolu-
tion. Once event A is resolved, they can again attempt
to reach an agreement on the division of the asset.
Knowing how A was resolved, if they fail a second
time to agree to a division of the asset, two things
happen: they pay for uncertainty B to be resolved,
and they wait for its resolution. Then the disagree-
ment point is reached and payoffs are determined.

Throughout this paper, the value v of the asset does
not vary. Nevertheless, in light of the twin burdens
imposed by disagreement, namely, the direct costs
ci4 · 5 and the time delays (and hence discounting),
it is not incorrect to view disagreement as causing the
value v of the asset to shrink.

2.1. Noncooperative Equilibrium
To model the division of the asset as a decision, we
begin by arbitrarily assigning DM2 the power to make
take-it-or-leave-it offers to DM1. To keep the discus-
sion simple, we begin by assuming that both deci-
sion makers are time indifferent, an assumption we
relax later.

We rely on the following assumptions:

Assumption vNM. The preferences of the DMs satisfy
the von Neumann and Morgenstern (1947) axioms.

Assumption CK. The probabilities, payoffs, and utili-
ties of the DMs are common knowledge.

Consider a standard decision analytic approach to
this problem from DM1’s point of view as presented
in Figure 1. At the first decision node, DM1 has the
choice between accepting and rejecting DM2’s offer of
x1. If he accepts the offer, he gets x1, DM2 gets the rest
of v (i.e., v−x1), and the game comes to an end. If he
rejects the offer, he pays c14A5 and waits to observe
the outcome of the chance event A. Once the outcome
of event A has occurred and has been revealed to both
DMs, DM2 makes a second offer, either x14a5 or x14ã5,
at which time DM1 is faced with a second decision:
accept or reject the second offer. If he accepts the sec-
ond offer, the game comes to an end. If he rejects the

second offer, he pays c14B5 to observe the outcome of
the chance event B, either b or b̃, which determines his
ultimate share of v. We assume disagreement entails
a loss in value, i.e., all of the costs are nonnegative.

Let x14a1 b5 denote the share of v received by DM1
if both chance events are resolved and a ∩ b occurs.
Define x14a1 b̃5, x14ã1 b5, and x14ã1 b̃5 analogously. Let
Ex14A1B5 denote the expected share of v received by
DM1 in disagreement, where the expectation is taken
over A and B; let Ex14a1B5 denote the expected share
received by DM1 in disagreement conditioned on the
event A= a; and let Ex14ã1B5 be the expected share to
be received by DM1 in disagreement conditioned on
the event A= ã.

Once the probabilities and values for each of the
branches have been specified, DM1’s choices are sim-
ple and clear: accept an offer if and only if its utility
is at least as large as the expected utility of rejecting
it. Equivalently, DM1 accepts an offered share if and
only if it is at least as large as the certainty equivalent
of the payoff earned by rejecting it.

Turn now to the decisions faced by DM2. The struc-
ture of the uncertainties for DM2 is the same as for
DM1, but rather than a decision between accepting
and rejecting an offer, DM2 must choose a set of
optimal offers. DM2, knowing that DM1 will accept
any offer greater than or equal to DM1’s certainty
equivalent of the event that follows, will offer exactly
that amount. The values of the offers are chosen in
the usual backward, iterative, dynamic-programming
fashion.3

For example, suppose that event A = a has
occurred. Using the probabilities at the end of the
subtree following the “reject offer x14a5” branch of

3 Alternative approaches are possible absent the assumption of
common knowledge. Without common knowledge, DM2 would
assign subjective probabilities to the events that DM1 accepts each
potential offer and then would choose the offers that maximized
the expected value. Kadane and Larkey (1982) take the subjective
approach and provide a general criticism of Assumption CK and of
game theoretic modeling more broadly; Harsanyi (1982) provides a
rejoinder. Also see Brandenburger (1992) for a detailed review. For
models of noncooperative bargaining absent Assumption CK, see
Harsanyi and Selten (1972) and Chatterjee and Samuelson (1983).
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Figure 1 Decision Tree from DM1’s Perspective When DM2 Makes Take-It-or-Leave-It Offers
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Figure 1, DM2 computes d14a5, the expected utility
received by DM1 when DM1 rejects offer x14a5:

d14a5 = Eu16x14a1B5− c14B5− c14A57

= P4b � a5u16x14a1 b5− c14B5− c14A57

+ P4b̃ � a5u16x14a1 b̃5− c14B5− c14A570 (1)

This characterization allows for wealth-dependent
utility functions—the final utility is for the share of the
asset net of costs. The specific utility function, how-
ever, depends on initial wealth; we ignore changes to
wealth outside the asset division being modeled. If
DM1 rejects the offer, DM2 gets the expected utility
d24a5= Eu26v− x14a1B5− c24B5− c24A57.

If DM1 accepts an offer of x14a5 after A= a has been
revealed, then his utility is u16x14a5 − c14A57. Thus,
DM2 offers x14a5 that makes DM1 indifferent between
accepting and rejecting: u16x14a5− c14A57= d14a5 or

x14a5 = u−1
1 4d14a55+ c14A5

= CE16x14a1B5− c14B5− c14A57+ c14A50 (2)

DM2 retains the rest, v − x14a5 (though DM2 has
already paid c24A5). The power to make take-it-or-
leave-it offers enables DM2 to garner all of the surplus
created by the foregone costs and the risk of resolving
event B. Similar calculations yield the payoffs when
the event A= ã occurs.

Taking one step back in the decision tree of Fig-
ure 1, we arrive at DM1’s first decision node. If DM1
rejects the initial offer, he receives the disagreement
payoff d1 given by

d1 = Eu16x14A5− c14A57

= P4a5u16x14a5− c14A57+ P4ã5u16x14ã5− c14A570 (3)

Once again, DM2 offers just enough to entice DM1 to
accept: DM2 offers

x1 = u−1
1 4d15 (4)

to DM1 at the first decision node. DM1 accepts that
offer, whence DM2 retains v− x1, the remainder.

Coupling the choices of the two decision mak-
ers results in a noncooperative game. Each decision
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maker’s choice is a best response to the choice of
the other; hence, their choices are in equilibrium.
The dynamic nature of the choices leads to subgame
perfection.

The solution presented in (2) is similar to the solu-
tion of Rubinstein’s (1982) sequential offers game in
that the person making the offers, in this case DM2,
benefits from the avoidance of future costs. If, in
the case just presented, DM1 rejects an offer, costs
are incurred, and, because one of the outcomes in
A will occur, the DMs face the risk of an unfavor-
able outcome. At each decision node, DM1 compares
the utility of the proffered share of the not-yet-cost-
reduced asset with the expected utility of the cost-
reduced risky share yielded by disagreement. DM2
chooses offers that make DM1 indifferent, and then
DM2 keeps all of the surplus (the associated costs of
resolving the uncertainty) to himself. A similar solu-
tion obtains if we assume either that DM1 has the
power to make take-it-or-leave-it offers that DM2 then
accepts or rejects, in which case all of the potential
surplus accrues to DM1, or that the decision makers
make alternating offers, which are then accepted or
rejected by the other decision maker, in which case
the surplus is (unevenly) split between the two DMs.

2.2. A Numerical Example
Suppose the decision makers are litigating over an
asset with value v = $1,000,000. Event A reveals the
outcome of legal discovery (the evidence potentially
relevant to the outcome of a trial that is revealed
before the start of the trial), and event B reveals the
outcome of the trial itself. Suppose P4a5 = 002 and
P4b � a5 = P4b � ã5 = 005, and let the payoffs to DM1 in
the four states of the world be

x14a1 b5= 90010003 x14a1 b̃5= 75010003

x14ã1 b5= 50010003 x14ã1 b̃5= 10010000
(5)

DM1’s expected share is Ex14A1B5 = 4051000, so the
expected share of DM2 is 595,000. The outcome A= a

represents good news for DM1 in that his expected
share is larger if A = a occurs: Ex14a1B5 = 8251000 >

3001000 = Ex14ã1B5.
Suppose both DMs have exponential utility, ui4x5=

1 − e−x/Ri , and DM1 is more risk averse: DM1 has a
risk tolerance of R1 = 251000, whereas DM2 has a risk
tolerance of R2 = 510001000. Let the costs of discovery

be c14A5 = 11000 and c24A5 = 11200, and let the costs
of the trial be c14B5= 101000 and c24B5= 151000.

If the take-it-or-leave-it offers made by DM2
leave DM1 indifferent between accepting or reject-
ing, substitution in (2) yields the equilibrium offer
of x14a5= 7571266, and a similar calculation yields
x14ã5= 1071329. Substitution in (4) then demonstrates
that the subgame perfect payoffs are x1 = 1111907
to DM1 and x2 = 8881093 to DM2. Alternatively, if
DM1 makes take-it-or-leave-it offers that DM2 either
accepts or rejects, calculations yield equilibrium offers
of x24a5 = 1591438 and x24ã5 = 6811001; the sub-
game perfect payoffs are x1 = 4281955 to DM1 and
x2 = 5711045 to DM2. In both versions the first offer is
accepted so no costs are incurred.

The two payoffs to DM1 (111,907 if DM2 makes the
offers and 428,955 if DM1 does) straddle his expected
share of 405,000; the difference is determined by the
costs and risk tolerances of each of the decision mak-
ers. Observe also that because DM2 is much less risk
averse than DM1, the benefit to DM2 of being the
offer maker (8881093 − 5951000 = 2931093) relative to
his expected share exceeds the relative benefit to DM1
of being the offer maker (4281955 − 4051000 = 231955).

3. Embedded Nash Bargaining
As is standard in noncooperative models of bargain-
ing, the foregoing analysis assumes that one of the
decision makers has the power to make take-it-or-
leave-it offers to the other. In cooperative game theory,
the negotiation process is left unmodeled; henceforth
in this paper, we follow this course. Rather than a pair
of actions, a solution is a mapping from the feasible
set to a point, where the mapping satisfies a set of
axioms. We impose the Nash bargaining solution. It is
easiest to understand via example.

3.1. Nash Bargaining Solution for
Final Decision Nodes

Suppose that at the decision node following the
event A = a, the decision makers fail to agree to a
division of the asset. From Equation (1), disagree-
ment leads to utility d14a5 = Eu16x14a1B5 − c14B5 −

c14A57, or equivalently, the share y14a5 = u−1
1 4d14a55

for DM1 and y24a5 = u−1
2 4d24a55 for DM2, where

d24a5= Eu26x24a1B5− c24B5− c24A57. If they can agree
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at the decision node, they can share the surplus
v− 6y14a5+ y24a57≥ c14B5+ c24B5.

Assume for the moment that the DMs are risk neu-
tral, so y14a5 = d14a5 = Ex14a1B5 − c14B5 − c14A5, and
y24a5 = d24a5 = Ex24a1B5− c24B5− c24A5. The potential
surplus is c14B5+ c24B5. The Nash bargaining solution
for risk-neutral DMs evenly divides this surplus and
adds it to each DM’s disagreement payoff. For exam-
ple, DM1 receives

s14a5= d14a5+
c14B5+ c24B5

2
1 (6)

and DM2 receives

s24a5= d24a5+
c14B5+ c24B5

2
0 (7)

As explained below, the idea is similar for risk-averse
decision makers: evenly split the surplus from avoid-
ing disagreement, where the even splitting is utility
adjusted.

To arrive at his solution, Nash (1950) begins
by assuming that the decision makers are rational
(i.e., their preferences satisfy Assumption vNM). The
Nash bargaining solution is the unique outcome that
satisfies an additional set of axioms: (1) the solu-
tion is invariant to positive linear transformations of
the individual utilities; (2) the solution is not Pareto
dominated; (3) the solution satisfies independence of
irrelevant alternatives; and (4) the solution does not
depend on the labeling of the players. Let s4ì1d5 be
a solution to the bargaining problem 4ì1d5. In terms
of s, the four axioms just listed are as follows:

Axiom N1. Let �i > 0 and �i be arbitrary constants,
i = 112. Let ì′ = 84�1u1 + �11�2u2 + �252 4u11u25 ∈ ì9

and d′ = 4�1d1 +�11�2d2 +�25. If s = 4s11 s25 is a solution
to 4ì1d5, then s′ = 4�1s1 +�11�2s2 +�25 is a solution to
4ì′1d′5.

Axiom N2. If s = 4s11 s25 is a solution to 4ì1d5, then
there does not exist a pair 4u11u25 ∈ ì ∪ 8d9 such that
ui ≥ si for i = 112 and ui > si for at least one i = 112.

Axiom N3. Let 4ìj1d5 and 4ìk1d5 be two bargain-
ing games with the same disagreement point and proposed
solutions sj and sk, respectively. If ìj ⊂ ìk and sk ∈ ìj ,
then sj = sk.

Axiom N4. Let s be a solution to 4ì1d5. Let ì̃ and d̃

be derived from ì and d by a reversal of the indices: ì̃=

84u21u152 4u11u25 ∈ì9, and d̃ = 4d21d15. Then s̃ = 4s21 s15

is a solution to 4ì̃1 d̃5.

Nash proposed a solution s = 4s11 s25 =

arg max84u1 − d154u2 − d252 4u11u25 ∈ ì9; that is, the
Nash bargaining solution maximizes the product of
the respective distances in utilities to the disagree-
ment point. In the risk-neutral case, this means an
even split of the surplus as given in (6) and (7).

Proposition 1 (Nash 1950). The Nash bargaining
solution is the unique solution satisfying Assumption
vNM and Axioms N1–N4.

In our model of the division of an asset with value
v and share x1 going to DM1, with risk-averse DMs,
the Nash product to be maximized is 6u14x15 − d17

· 6u24v− x15− d27.

3.2. Rolling Back the Nash Bargaining Solution
Subgame perfection is a central concept in nonco-
operative game theory. Our proposal is to import
this concept and mix it with Nash bargaining. Sub-
game perfection is commonly asserted in noncoop-
erative games (as in Rubinstein’s (1982) alternating-
offers bargaining model and its variations), but we are
unaware of its application to a cooperative bargaining
model. Note that our structure is different from the
Rubinstein (1982) model.

To compute the possible payoffs at the first joint
decision node, the decision makers must look ahead
to the uncertainties and the potential bargaining
games that ensue if they disagree. Consequently,
they will need to determine the Nash bargaining
solutions to the subgames. Those solutions are prob-
ability weighted and rolled back into the current bar-
gaining situation as the disagreement payoff.

Thus far we have assumed the DMs are time insen-
sitive. More commonly, economic analyses assume
that decision makers have a multiattribute utility
function over time and payoffs. In the most widely
used special case represented by discounted expected
utility, the multiattribute utility is additively separa-
ble across time.4

4 Nachman (1975) developed a general model of time and risk
preferences and introduces the notion of temporal risk aversion.
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There are three time periods in our model: t0 = 0,
the starting time or the time of the first bargaining
attempt; tA, the time of resolution of event A which
is concurrent with the time of the second bargain-
ing attempt; and tB, the time of resolution of event B.
Naturally, 0 < tA < tB. Bargaining is instantaneous and
takes place at times t0 and tA. The DMs’ time pref-
erences are represented by constant discounting with
rate �i: decision maker i’s preference for a series of
three lotteries Y 4j5 that pay off in time periods tj can
be represented by the utility function

Ui4Y 5=
∑

j=01A1B

Eui6�
tj
i Y 4j570 (8)

We assume 0 < �i < 1. The effect of discounting is
similar to the effect due to the costs ci4A5 and ci4B5 in
that both decrease the value of payoffs in the future
relative to the same payoffs today.

Proposition 2. Given Axioms N1–N4 and preferences
given by (8), there is a unique solution to the embedded
Nash bargaining problem. The solution is computed via a
rolling-back procedure in the joint decision tree. At each
decision node, the payoff is the Nash bargaining solution to
the game with disagreement payoffs given by the expected
utility of the discounted payoffs of the subsequent node net
of costs.

For example, suppose event A = a has occurred
(hence, c14A5 and c24A5 have already been expended).
If the DMs disagree, DM1 pays c14B5 to observe the
outcome of B and earn Eu16�

tB
1 x14a1B5 − �

tA
1 c14B5 −

c14A57. The disagreement payoff is given by

d14a5 = P4b � a5u16�
tB
1 x14a1 b5− �

tA
1 c14B5− c14A57

+ P4b̃ � a5u16�
tB
1 x14a1 b̃5− �

tA
1 c14B5− c14A570 (9)

Defining the disagreement payoff to DM2 similarly,
the split determined by the Nash bargaining solution
at A = a is the pair 4s14a51v − s14a55 that maximizes

A follow-up paper by Prakash (1977) shows that a von Neumann
and Morgenstern (1947) consistent preference relation has the prop-
erty that time discounting and risk adjustment are interchangable;
we make use of this result. Fishburn and Rubinstein (1982) further
develop the model for the special case of discounted expected util-
ity with constant discounting and instantaneous risk aversion. They
provide a set of axioms that guarantees the existence of a concave
instantaneous utility function for some discount factor.

6u14�
tA
1 s14a5− c14A55− d14a576u24�

tA
2 4v− s14a5− c24A55−

d24a57. A similar process leads to the split determined
by the Nash bargaining solution at A= ã.

Working backward in the tree, the disagreement
payoff to DM1 prior to A being resolved is given by

d1 = P4a5u16�
tA
1 s14a5− c14A57

+ P4ã5u16�
tA
1 s14ã5− c14A570 (10)

The split 4s11v − s15 determined by the embed-
ded Nash bargaining payoff maximizes 6u14s15 − d17

· 6u24s25− d27.

4. Comparative Statics
With embedded Nash bargaining, disagreement leads
to a random payoff. To establish comparative statics
for embedded Nash bargaining requires understand-
ing the effects of increasing risk aversion on the Nash
bargaining solution.

4.1. Comparative Statics for the
Nash Bargaining Solution

Roth and Rothblum (1982) present results on the
effects of risk aversion when the disagreement point
is deterministic. They show that an increase in the
risk aversion of DM2 can either increase, decrease,
or leave unaffected the utility to DM1. The direction
of the effect depends, roughly, on the relationship
between the payoff at the disagreement point and the
possible payoffs in the support of the Nash bargain-
ing solution. Safra et al. (1990) provide similar results
when the disagreement payoffs are random but the
set of possible negotiation points is finite. Our next
result differs from the results in these two papers in
three ways: first, because the DMs seek to divide an
infinitely divisible asset, the bargaining set is a contin-
uum rather than finite; second, each payoff pair in the
bargaining set is deterministic; and finally, because
the final node reached is random, the disagreement
payoff pair is random.

For the moment, ignore discounting and the cost
of resolving uncertainties, and for simplicity assume
A is the only chance event. The decision makers can
divide the asset v, or they can fail to agree and
DM1 will receive x14a5 with probability p and x14ã5

with probability 1 − p. DM2 receives the remainder
in each case. Thus, the disagreement payoff pair is
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random. In disagreement, DM1’s expected utility is
d1 = pu14x14a55+ 41−p5u14x14ã55. The Nash bargaining
solution 4s11v− s15 is such that s1 solves maxs4u14s5−

d154u24v − s5− d25. Per Axiom N1, there is no loss in
renormalizing so that d1 = d2 = 0. Thus, the first-order
condition shows that s1 solves

u14s15

u′
14s15

=
u24v− s15

u′
24v− s15

0 (11)

We are interested in the effect on s1 of an increase
in the risk aversion of DM1. Let u4x5 be a twice-
differentiable, strictly increasing, concave utility func-
tion. The absolute risk aversion of u4x5 is defined by
ru4x5= −u′′4x5/u′4x5. We say that the utility function û

is more risk averse than u if rû4x5 ≥ ru4x5 for all x.
Let û14x5 represent a utility function that is more risk
averse than u14x5, and let ŝ1 be the Nash bargain-
ing payoff to DM1 with the more risk-averse utility
function û1.

Proposition 3. If the DM’s utility functions u14x5

and u24x5 are twice-differentiable, strictly increasing, and
concave, the Nash bargaining payoff to DM1 is decreasing
in DM1’s aversion to risk, i.e., ŝ1 ≤ s1.

Proof. Because û1 is more risk averse than u1,
û1 =w4u15 for some increasing concave w. We can
renormalize w so that w405= 0; i.e., d̂1 = 0. Because w

is concave and w405= 0, it follows that w4y5=w4y5−

w405=
∫ y

0 w′4t5 dt ≥w′4y5 · y provided y ≥ 0. In partic-
ular, set y = u14s15 ≥ d1 = 0. Then, û14s15 = w4u14s155 ≥

w′4u14s155u14s15. Hence,

û14s15

û′
14s15

=
w4u14s155

w′4u14s155u
′
14s15

≥
u14s15

u′
14s15

0 (12)

Because u1 is strictly increasing and concave, it fol-
lows that

6u14x5/u
′

14x57 is strictly increasing in x0 (13)

Suppose ŝ1 > s1. Using Equations (11), (13), (12),
(11), and (13) in order produces

u24v− ŝ15

u′
24v− ŝ15

=
û14ŝ15

û′
14ŝ15

>
û14s15

û′
14s15

≥
u14s15

u′
14s15

(14)

=
u24v− s15

u′
24v− s15

>
u24v− ŝ15

u′
24v− ŝ15

1 (15)

a contradiction. Hence, ŝ1 ≤ s1. �

In the special case wherein each of the DMs has
the same exponential utility, ui4x5 = 1 − e−x/R, with
risk tolerance R, the same discount factor �, and zero
costs, it is possible to derive a closed form solution
for the Nash bargaining payoff. Let �X be the dis-
counted random payoff to DM1 in disagreement, and
let �4v−X5 be the discounted random payoff to DM2.
Straightforward algebraic manipulation results in the
Nash bargaining payoff s1 to DM1 given by

s1 =
41 − �5v

2
−

R

2
ln
(

Ee−�X/R

Ee�X/R

)

0 (16)

We are interested in the effects of changes in the
random disagreement distribution on the Nash bar-
gaining payoff to DM1. Because X ≥ 0 in our setup,
the argument of the logarithm in (16) is less than
one; hence, the second term is positive and acts to
increase s1. Let X and Y be two random variables
distributed on 601v7, representing two different pos-
sible distributions of the share received by DM1 in
disagreement. Let sX and sY , respectively, be the Nash
bargaining solution shares received by DM1 when �X

and �Y are the discounted payoffs to DM1 in dis-
agreement. Suppose Y is stochastically larger than X.
Because it is well known that this stochastic ordering
implies that there exists a random variable Z ≥ 0 such
that Y =X +Z, it follows immediately from (16) that
sY ≥ sX : a stochastic increase in DM1’s disagreement
payoff increases his Nash bargaining payoff.

Next, suppose that Y is more variable than X in the
sense of second-order stochastic dominance. A stan-
dard result is that there exists a random variable Z

independent of X, with E4Z5≥ 0, such that Y has the
representation Y = X + Z. Because of this indepen-
dence, it follows that

ln
(

Ee−�Y /R

Ee�Y /R

)

= ln
(

Ee−�X/R

Ee�X/R

)

+ ln
(

Ee−�Z/R

Ee�Z/R

)

0 (17)

It follows from (16) that sY > sX if E4e−�Z/R5 < E4e�Z/R5.
This last condition does not hold if Z = −Z, but there
are examples when it does hold; for example, it holds
if P4Z = 35= P4Z = −15= P4Z = −25= 1/30

4.2. Numerical Example Part 2
We return to the numerical example of §2.3 wherein
the decision makers have v =$1,000,000 to divide; the
expected final share to DM1 is Ex14A1B5 = 4051000;
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costs are c14A5 = 11000, c24A5 = 11200, c14B5 = 101000,
and c24B5 = 151000; and the DMs have instantaneous
exponential utility with risk tolerances 25,000 and
5,000,000, respectively. Assume that each uncertainty
takes one period to be resolved.

If the DMs are time insensitive, i.e., �1 = �2 = 1, fol-
lowing the process laid out just after Proposition 2,
the certainty equivalent of the Nash bargaining pay-
off at A = a is (785,564; 214,436), and at A = ã is
(157,868; 842,132). Discounting those certainty equiv-
alents, subtracting the cost of resolving A, and taking
the expected utility yields the disagreement payoff
prior to the resolution of A. The certainty equivalent
of the embedded Nash bargaining solution prior to
the resolution of A is (200,282; 799,172).

On the other hand, if the DMs have the same
discount factor �1 = �2 = 009, the certainty equiva-
lent of the embedded Nash bargaining prior to the
resolution of A is (201,183; 798,817). We now con-
sider several parameter changes that offer sugges-
tive comparative statics, focusing on the embedded
Nash bargaining payoff to DM1. All comparisons are
to the case just described, where both DMs have
the same discount factor of 0.9, and the embedded
Nash bargaining payoff to DM1 is 201,183. We know
from Proposition 3 that if DM1 becomes more risk
averse, that is, has a smaller risk tolerance, then
DM1’s embedded Nash bargaining payoff decreases;
for example, if R1 decreases from 25,000 to 22,500,
then the embedded Nash bargaining payoff decreases
from 201,183 to 194,028.

• If DM1 becomes less patient, that is, has a smaller
discount factor �1 = 008, then DM1’s embedded Nash
bargaining payoff decreases to 194,790.

• If DM1 faces a higher cost of resolving uncer-
tainty, that is, c14B5 increases to 20,000, then DM1’s
embedded Nash bargaining payoff decreases to
191,187.

• If x14a1 b5, the payoff to DM1 when 4a1 b5

occurs, decreases from 900,000 to 800,000, then the
DM1’s embedded Nash bargaining payoff decreases
to 200,660.

4.3. Comparative Statics for Embedded
Nash Bargaining

Armed with Proposition 3 on the impact of increasing
risk aversion on the Nash bargaining solution, we can

now establish the impact of increasing risk aversion
on the embedded Nash bargaining solution.

Proposition 4. Given Axioms N1–N4 and preferences
given by (8), increasing the risk aversion of DM1 reduces
the share of the asset awarded to DM1 under the embedded
Nash bargaining solution.

Proof. The Nash bargaining solution at the last
stage becomes the disagreement payoff at the pre-
vious stage. By Proposition 3, the Nash bargaining
solution payoff to DM1 is decreasing in his risk aver-
sion; hence, the disagreement payoff to DM1 in the
previous stage is decreasing in his risk aversion.
Furthermore, the Nash bargaining solution is mono-
tonic with respect to changes in the disagreement
point: a decrease in the disagreement payoff to DM1
leads to a decrease in the Nash bargaining payoff to
DM1 in the previous stage. �

The suggestive comparative statics from Part 2 of
the numerical example are formalized and shown
below to always hold.

Proposition 5. The payoff to DM1 in the embedded
Nash bargaining solution with risk aversion and time pref-
erences characterized by time-invariant discount factors �i

for DMi is (i) increasing in DM1’s payoff in any state
x14 · 1 · 5, (ii) decreasing in DM1’s own costs c14A5 and
c14B5, and (iii) increasing in his discount factor �1.

Proof. As with Proposition 3, the proof follows
from the monotonicity of the Nash bargaining solu-
tion with respect to the disagreement point. To estab-
lish (i), note that an increase in x14a1 b5 leads to an
increase in d14A5, which in turn leads to an increase
in s14A5. An increase in s14A5 leads to an increase in
d1, which leads to an increase in s1. Items (ii) and (iii)
are established similarly. �

Because the DMs are sharing the asset v, an increase
in the share (and hence, utility) to one DM implies
a decrease in the share to the other; that is, not only
does DM1 benefit from a decrease in his own risk
aversion, impatience, and costs, but DM1 also benefits
from an increase in the risk aversion, impatience, and
costs of DM2. For example, small firms that devel-
oped an internet presence sometimes were sued for
patent infringement regarding the look and function-
ality of their online purchasing software. These firms
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often found it less costly to settle (by paying a roy-
alty to the alleged copyright holder) than to face the
vagaries of a trial. The alleged copyright holder, by
bringing suit against a large number of small firms,
was able to allocate its potential costs of discovery
and trial into smaller pieces. In this example, the
alleged copyright holder is DM1 and c14A5+ c14B5 <

c24A5+ c24B5.

5. Conclusion and Further Research
This paper provides analytic grounding for embed-
ded Nash bargaining, a method originally proposed
by Lippman and McCardle (2004). As is the case with
both decision analysis and Nash bargaining, the pro-
posed embedded Nash bargaining solution is arrived
at axiomatically. Through the Nash bargaining pro-
cess, the embedded Nash bargaining solution inherits
equilibrium properties: Pareto optimality and an equi-
table sharing of the potential surplus. Through the
folding back process of decision analysis, the solution
inherits dynamic consistency, i.e., subgame perfection
in the bargaining procedure. We also provide compar-
ative statics on the solution: an increase in the cost,
impatience for positive outcomes, or risk aversion of
either decision maker benefits the other.

This paper focuses on the Nash solution to the
bargaining problem, but alternative solutions satis-
fying various other axiom systems exist. For exam-
ple, one could imagine that the DMs have differing
“power,” in which case symmetry is violated. The
weighted Nash bargaining solution, which allocates
weights 4�11�25 to the DMs, would then obtain. See
Thompson (1994) for this and other examples.

With Christopher S. Tang, we are developing an
application of the embedded Nash approach to a
project-management contracting model. Other appli-
cations are also possible. For example, the presenta-
tion and examples used throughout this paper treat
the shares and costs as dollar figures. It is easy to
imagine, however, an application where the bargain-
ing is over a non-dollar-denominated asset, such as
water rights. In that case, a multiattribute utility anal-
ysis would likely be required.
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