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ABSTRACT

We propose a method for optimal portfolio 
selection using a Bayesian decision theoretic 
framework that addresses two major shortcom-
ings of the Markowitz approach: the ability to 
handle higher moments and estimation error. 
We employ the skew normal distribution which 
has many attractive features for modeling mul-
tivariate returns. Our results suggest that it is 
important to incorporate higher order moments 
in portfolio selection. Further, our comparison 
to other methods where parameter uncertainty 
is either ignored or accommodated in an ad hoc 
way, shows that our approach leads to higher 
expected utility than the resampling methods 
that are common in the practice of fi nance.
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1. INTRODUCTION

M arkowitz (1952a) provides the foundation 
for the current theory of asset allocation. 
He describes the task of asset “allocation as 

having two stages. Th e fi rst stage “starts with observation 
and experience and ends with beliefs about the future 
performances of available securities.” Th e second stage 
“starts with the relevant beliefs … and ends with the selec-
tion of a portfolio.” Although Markowitz only deals with 
the second stage, he suggests that the fi rst stage should be 
based on a “probabilistic” model. However, in the usual 
implementation of Markowitz’s second stage, we are as-
sumed to know with certainty the inputs from the fi rst 
stage, i.e. the exact means, variances and covariances. Th is 
paper introduces a method for addressing both stages.

In a less well known part of Markowitz (1952a, p.91), 
he details a condition whereby mean-variance effi  cient 
portfolios will not be optimal—when an investor’s util-
ity is a function of mean, variance, and skewness. While 
Markowitz did not work out the optimal portfolio selection 
in the presence of skewness and other higher moments, we 
do. We develop a framework for optimal portfolio selection 
in the presence of higher order moments and parameter 
uncertainty.

Several authors have proposed advances to optimal 
portfolio selection methods. Some address the empirical 
evidence of higher moments; Athayde and Flôres (2003, 
2004) and Adcock (2002) give methods for determining 
higher dimensional ‘effi  cient frontiers’, but they remain 
in the certainty equivalence framework (assuming exact 
knowledge of the inputs) for selecting an optimal portfolio. 
Like the standard effi  cient frontier approach, these ap-
proaches have the advantage that for a large class of utility 
functions, the task of selecting an optimal portfolio reduces 
to the task of selecting a point on the high dimensional 
‘effi  cient frontiers’. Other three moment optimization 
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methods include using negative semi-variance in place of 
variance (see Markowitz 1959 and Markowitz, Todd, Xu, 
and Yamane 1993). A similar measure of downside risk is 
incorporated by Feiring, Wong, Poon, and Chan (1994), 
and Konno, Shirakawa, and Yamazaki (1993) who use an 
approximation to the lower semi-third moment in their 
Mean-Absolute Deviation-Skewness portfolio model. 
Th ese methods rest on the assumption that an investor’s 
expected utility is reasonably approximated by inserting 
estimates of the moments of an assumed sampling model.

A number of researchers have shown that mean-vari-
ance effi  cient portfolios, based on estimates and ignoring 
parameter uncertainty, are highly sensitive to perturbations 
of these estimates. Jobson, Korkie and Ratti (1979) and 
Jobson and Korkie (1980) detail these problems and 
suggest the use of shrinkage estimators. Th is ‘estimation 
risk’ comes from both choosing poor probability models 
and from ignoring parameter uncertainty, maintaining 
the assumption that expected utility can be evaluated by 
substituting point estimates of sampling moments in the 
utility function.

Others have ignored higher moments, but address the 
issue of estimation risk. Frost and Savarino (1986, 1988) 
show that constraining portfolio weights, by restricting the 
action space during the optimization, reduces estimation 
error. Jorion (1992) proposes a resampling method aimed 
at estimation error. Using a Bayesian approach, Britten-
Jones (2002) proposes placing informative prior densities 
directly on the portfolio weights. Others propose methods 
that address both stages of the allocation task and select a 
portfolio that optimizes an expected utility function given 
a probability model. From the Bayesian perspective, Jorion 
(1986) use a shrinkage approach while Treynor and Black 
(1973) advocate the use of investors’ views in combina-
tion with historical data. Kandel and Stambaugh (1996) 
examine predictability of stock returns when allocating 
between stocks and cash by a risk-averse Bayesian investor. 
(See also Johannes, Polson, and Stroud 2002 who examine 
the market timing relationship to performance of optimal 
portfolios using a model with correlation between volatil-
ity and returns in a Bayesian portfolio selection setting.) 
Zellner and Chetty (1965), Klein and Bawa (1976) and 
Brown (1978) emphasize using a predictive probability 
model (highlighting that an investor’s utility should be 
given in terms of future returns and not parameters from 
a sampling distribution). Pástor and Stambaugh (2000) 
study the implications of diff erent pricing models on 

optimal portfolios, updating prior beliefs based on sample 
evidence. Pástor (2000) and Black and Litterman (1992) 
propose using asset pricing models to provide informative 
prior distributions for future returns. Pástor and Stambaugh 
(1999) show that the model used is less important than 
correctly accounting for parameter uncertainty in pricing 
assets.

In an attempt to maintain the decision simplicity as-
sociated with the effi  cient frontier and still accommodate 
parameter uncertainty, Michaud (1998) proposes a sam-
pling based method for estimating a ‘resampled effi  cient 
frontier’ (see Scherer 2002 for further discussion). While 
this new frontier may off er some insight, using it to select 
an optimal portfolio implicitly assumes that the investor 
has abandoned the maximum expected utility framework. 
In addition, Jensen’s inequality dictates that the resampled 
effi  cient frontier is in fact suboptimal. Polson and Tew 
(2000) argue for the use of posterior predictive moments 
instead of point estimates for mean and variance of an as-
sumed sampling model. Th eir setup comes closest to the 
framework that we propose in this paper. Using posterior 
predictive moments, they accommodate parameter uncer-
tainty. We follow their setup in our discussion in Section 
3.1.1.

Our approach advances previous methods by address-
ing both higher moments and estimation risk in a coherent 
Bayesian framework. As part of our “stage one” approach 
(i.e., incorporating observation and experience), we specify 
a Bayesian probability model for the joint distribution of 
the asset returns, and discuss prior distributions. As for 
“stage two”, the Bayesian methodology provides a straight-
forward framework to calculate and maximize expected 
utilities based on predicted returns. Th is leads to optimal 
portfolio weights in the second stage which overcome the 
problems associated with estimation risk. We empirically 
investigate the impact of simplifying the asset allocation 
task. For two illustrative data sets, we demonstrate the dif-
ference in expected utility that results from ignoring higher 
moments and using a sampling distribution, with point 
estimates substituted for the un know parameter, instead of 
a predictive distribution. In addition, we demonstrate the 
loss in expected utility (explained by Jensen’s inequality) 
from using the popular approach proposed by Michaud 
(1998). Markowitz and Usmen (2003) take a similar ap-
proach to us for comparing Bayesian methods to Michaud’s 
(1998) approach, but they use diff use priors.
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Our paper is organized as follows. In the second section 
we discuss the importance of higher moments and provide 
the setting for portfolio selection and Bayesian statistics 
in fi nance. We discuss suitable probability models for 
portfolios and detail our proposed framework. In the third 
section, we show how to optimize portfolio selection based 
on utility functions in the face of parameter uncertainty us-
ing Bayesian methods. Section four empirically compares 
diff erent methods and approaches to portfolio selection. 
Some concluding remarks are off ered in the fi nal section. 
Th e appendix contains some additional results and proofs.

2. HIGHER MOMENTS AND BAYESIAN MODELS

A prerequisite to the use of the Markowitz framework 
is either that the relevant distribution of asset returns be 
normally distributed or that utility is only a function of 
the fi rst two moments. But it is well known that many 
fi nancial returns are not normally distributed. Studying 
a single asset at a time, empirical evidence suggests that 
asset returns typically have heavier tails than implied by the 
normal assumption and are often not symmetric, see Kon 
(1984), Mills (1995), Peiro (1999) and Premaratne and 
Bera (2002). Also we argue that the relevant probability 
model is the posterior predictive distribution, which in 
general is not normal, not even under an assumed normal 
sampling model.

Th e approach proposed in our paper is closely related 
to the use of the Omega function introduced and discussed 
in Cascon, Keating and Shadwick (2003). Th ey argue that 
point estimates of mean and variance of an assumed sam-
pling distribution are insuffi  cient summaries of the avail-
able information of future returns. Instead they advocate 
the use of a summary function, which they call “Omega”, 
that represents all the relevant information contained 
within the observed data. We agree with the premise that 
a full probabilistic description of relevant uncertainties of 
future returns is needed. Instead of the Omega function, 
we base our approach on a traditional Bayesian decision 
theoretic framework which allows us to formally account 
for parameter uncertainty. Otherwise the rationale of the 
two methods is the same. Th e formalisms are diff erent.

Our investigation of multiple assets builds on these 
empirical fi ndings and indicates that the existence of ‘co-
skewness’, which can be interpreted as correlated extremes, 
is often hidden when assets are considered one at a time. 
To illustrate, Figure 1 contains the kernel density estimate 

and normal distribution for the marginal daily returns of 
two stocks (Cisco Systems and General Electric from April 
1996 to March 2002) and Figure 2 contains a bivariate 
normal approximation of their joint returns. While the 
marginal summaries in Figure 1 suggest almost no devia-
tion from the normality assumption, the joint summary 
appears to exhibit a degree of coskewness, suggesting that 
skewness may have a larger impact on the distribution of a 
portfolio than previously anticipated.

2.1 Economic Importance

Markowitz’s intuition for maximizing the mean while 
minimizing the variance of a portfolio comes from the idea 
that the investor prefers higher expected returns and lower 
risk. Extending this concept further, most agree that ceteris 
paribus investors prefer a high probability of an extreme 
event in the positive direction over a high probability of an 
extreme event in the negative direction. From a theoretical 
perspective, Markowitz (1952b) and Arrow (1971) argue 
that desirable utility functions should exhibit decreasing 
absolute risk aversion, implying that investors should have 
preference for positively skewed asset returns. (Also see the 
discussion in Roy 1952.) Experimental evidence of prefer-
ence for positively skewed returns has been established by 
Sortino and Price (1994) and Sortino and Forsey (1996) for 
example. Lévy and Sarnat (1984) fi nd a strong preference 
for positive skewness in the study of mutual funds. Harvey 
and Siddique (2000a,b) introduce an asset pricing model 
that incorporates conditional skewness, and show that an 
investor may be willing to accept a negative expected return 
in the presence of high positive skewness.

An aversion towards negatively skewed returns sum-
marizes the basic intuition that many investors are will-
ing to trade some of their average return for a decreased 
chance that they will experience a large reduction in their 
wealth, which could signifi cantly reduce their level of 
consumption. Some researchers have attempted to address 
aversion to negative returns in the asset allocation problem 
by abandoning variance as a measure of risk and defi ning 
a ‘downside’ risk that is based only on negative returns. 
Th ese attempts to separate “good” and “bad” variance can 
be formalized in a consistent framework by using utility 
functions and probability models that account for higher 
moments.

While skewness will be important to a large class of 
investors and is evident in the historical returns of the 
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underlying assets and portfolios, the question remains; how 
infl uential is skewness in terms of fi nding optimal portfolio 
weights? Cremers, Kritzman, and Page (2004) argue that 
only under certain utility is it worthwhile to consider skew-
ness in portfolio selection. However, it is our experience 
that any utility function approximated by a third order 
Taylor’s expansion can lead to more informatively selected 
portfolio weights if skewness is not ignored.

To illustrate, consider the impact of skewness on the 
empirical distribution of a collection of two-stock portfo-
lios. For each portfolio, the mean is identical to the linear 
combination of the stock means and the variance is less than 
the combination of the stock variances, see Figure 3 for an 
illustration using three, two-stock portfolios. Unlike the 
variance, there is no guarantee that the portfolio skewness 
will be larger or smaller than the linear combination of the 
stock skewness, and in practice we observe a wide variety 
of behavior. Th is suggests that the mean-variance optimal 
criteria will lead to sub-optimal portfolios in the presence 
of skewness. To accommodate higher-order moments in 
the asset allocation task, we must introduce an appropriate 
probability model. After providing an overview of possible 
approaches, we formally state a model and discuss model 
choice tools.

2.2 Probability Models for Higher Moments

Th ough it is a simplifi cation of reality, a model can be 
informative about complicated systems. While the multi-
variate normal distribution has several attractive properties 
for modeling a portfolio, there is considerable evidence 
that portfolio returns are non-normal. Th ere are a number 
of alternative models that include higher moments. Th e 
multivariate Student t-distribution is good for fat tailed 
data, but does not allow for asymmetry. Th e non-central 
multivariate t-distribution also has fat tails and, in addi-
tion, is skewed. However, the skewness is linked directly to 
the location parameter and is, therefore, somewhat infl ex-
ible. Th e log-normal distribution has been used to model 
asset returns, but its skewness is a function of the mean and 
variance, not a separate skewness parameter.

Azzalini and Dalla Valle (1996) propose a multivariate 
skew normal distribution that is based on the product of a 
multivariate normal probability density function (pdf ) and 
univariate normal cumulative distribution function (cdf ). 
Th is is generalized into a class of multivariate skew ellipti-
cal distributions by Branco and Dey (2001), and improved 

upon by Sahu, Branco and Dey (2003) by using a multi-
variate cdf instead of univariate cdf, adding more fl exibility, 
which often results in better fi tting models. Because of the 
importance of coskewness in asset returns, we start with the 
multivariate skew normal probability model presented in 
Sahu et al. (2003) and off er a generalization of their model.

Th e multivariate skew normal can be viewed as a mix-
ture of an unrestricted multivariate normal density and a 
truncated, latent multivariate normal density, or

X = μ +ΔZ + є, (1)

where μ and Δ are an unknown parameter vector and 
matrix respectively, ϵ is a normally distributed error vec-
tor with a zero mean and covariance Σ, and Z is a vector 
of latent random variables. Z comes from a multivariate 
normal with mean 0 and an identity covariance matrix and 
is restricted to be non-negative, or

 (2)
where I{•} is the indicator function and Zj is the jth element of 
Z. In Sahu et al. (2003), Δ is restricted to being a diagonal 
matrix, which accommodates skewness, but does not allow 
for coskewness. We generalize the Sahu et al. (2003) model 
to allow Δ to be an unrestricted random matrix resulting 
in a modifi ed density and moment generating function, see 
Appendix A.1 for details.

As with other versions of the skew normal model, this 
model has the desirable property that marginal distribu-
tions of subsets of skew normal variables are skew normal 
(see Sahu et al. 2003 for a proof ). Unlike the multivariate 
normal density, linear combinations of variables from a 
multivariate skewed normal density are not skew normal. 
Th is does not, however, restrict us from calculating mo-
ments of linear combinations with respect to the model 
parameters, see Appendix A.2 for the formula for the fi rst 
three moments.

Even though they can be written as the sum of a normal 
and a truncated normal random variable, neither the skew 
normal of Azzalini and Dalla Valle (1996) nor Sahu et al. 
(2003) are Lévy stable distributions. Th e skew normal can 
be generalized as a stable distribution (see Appendix A.3).

While the skew normal is similar in concept to a mixture 
of normal random variables, it is fundamentally diff erent. 
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A mixture takes on the value of one of the underlying dis-
tributions with some probability and a mixture of normal 
random variables, results in a Lévy stable distribution. Th e 
skew normal is not a mixture of normal distributions, but 
it is the sum of two normal random variables, one of which 
is truncated, and results in a distribution that is not Lévy 
stable. Th ough it is not stable, the skew normal has several 
attractive properties. Not only does it accommodate co-
skewness and heavy tails, but the marginal distribution of 
any subset of assets is also skew normal. Th is is important in 
the portfolio selection setting because it insures consistency 
in selecting optimal portfolio weights. For example, with 
short selling not allowed, if optimal portfolio weights for a 
set of assets are such that the weight is zero for one of the 
assets then removing that asset from the selection process 
and re-optimizing will not change the portfolio weights for 
the remaining assets.

Following the Bayesian approach, we assume conjugate 
prior densities for the unknown parameters, i.e. a priori 
normal for μ and vec (Δ), where vec() forms a vector from a 
matrix by stacking the columns of the matrix, and a priori 
Wishart for Σ–1. Th e resulting full conditional posterior 
densities for μ and vec (Δ) are normal, the full conditional 
posterior density for Σ–1 is Wishart and the full conditional 
posterior density for the latent Z is a truncated normal. 
See Appendix A.4 for a complete specifi cation of the prior 
densities and the full conditional posterior densities. Given 
these full conditional posterior densities, estimation is 
done using a Markov chain Monte Carlo (MCMC) algo-
rithm based on the Gibbs sampler and the slice sampler, see 
Gilks, Richardson, and Spiegelhalter (1996) for a general 
discussion of the MCMC algorithm and the Gibbs sampler 
and see Appendix A.5 for a discussion of the slice sampler.

2.3 Model Choice

Th e Bayes Factor (BF) is a well developed and frequently 
used tool for model selection which naturally accounts 
for both the explanatory power and the complexity of 
competing models (see Berger 1985 and O’Hagan 1994 
for further discussion of Bayes Factors). For two competing 
models (M1 and M2), the Bayes factor is:

BF = posterior odds/prior odds = p(x|M1)/p(x|M2).

We use a sampling based estimator proposed by Newton 
and Raftery (1994) to calculate the Bayes factor.

3. OPTIMIZATION

Markowitz defi ned the set of optimal portfolios as the 
portfolios that are on the effi  cient frontier, based on es-
timated moments of the sampling distribution. Ignoring 
uncertainty inherent in the underlying probability model, 
the portfolio that maximizes expected utility for a large 
class of utility functions is in this set. When parameter 
uncertainty is explicitly considered, the effi  cient frontier, 
now written in terms of predictive moments, can still only 
identify optimal allocations for utility functions that are 
exactly linear in the moments of the portfolio. In all other 
cases, the utility function must be explicitly specifi ed. For 
general probability models and arbitrary utility functions, 
calculating and optimizing the expected utility must be 
done numerically, a task that is straightforward to imple-
ment using the Bayesian framework.

3.1 Simplifi cations Made in Practice

3.1.1  Utility Based on Model Parameters, not 
Predictive Returns.

Th e relevant reward for an investor is the realized future re-
turn of their portfolio. Th us the utility function needs to be 
a function of the future returns, not a function of the model 
parameters. Th is point is emphasized in Zellner and Chetty 
(1965) and Brown (1978). It is reasonable to assume that a 
decision maker chooses an action by maximizing expected 
utility, the expectation being with respect to the posterior 
predictive distribution of the future returns, conditional 
on all currently available data (DeGroot, 1970; Raiff a and 
Schlaifer, 1961). Following this paradigm, Polson and Tew 
(2000) propose the use of predictive moments for future 
returns to defi ne mean-variance effi  cient portfolios which 
we also implement (see also Kandel and Stambaugh 1996 
and Pástor and Stambaugh 2000). In the following discus-
sion, we highlight the diff erence of this approach and the 
traditional approach.

Predictive returns are often ignored and utility is stated 
in terms of the posterior means of the model parameters 
because of computational complexity and the argument 
that the moments of the predictive distribution are ap-
proximated by the corresponding moments of the posterior 
distribution.

To illustrate, let xo represent the history up to the cur-
rent observation and let x represent future data. Let X = (x, 
Vx, Sx) be powers of future returns, where
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is the predictive mean given xo, Vx = (x – mp)(x –mp)׳, and 
Sx = Vx  (x –mp)׳. Assuming that utility is a third-order 
polynomial of future returns, predictive utility is given by

 (3)
where λ and γ determine the impact of predictive variance 
and skewness. Expected utility, becomes

where θp = (mp, Vp, Sp) are the predictive moments of x. 
We refer to utility function (3) as a linear utility function. 
Utility is linear in the sense that upred is linear in the predic-
tive summaries X, and thus EUpred is linear in the predictive 
moments θp.

Often a function involving sampling moments corre-
sponding to the predictive moments in (4) is used instead 
of actual future returns to defi ne utility. Assuming an i.i.d. 
sampling xt ~ pθ(xt) for returns at time t, let θ = (m, V, S) 
denote the moments of pθ and defi ne a utility function:

 (5)
See Appendix A.1 for the formulas under the skew normal 
model. Th e expected utility, becomes

 (6)
where m ,V and S are the posterior means of θ. Note that 
the expectation in (6) “plugs in” the expectation of the 
parameters, ignoring the contribution of parameter un-
certainty to the expected utility function. (Kan and Zhou 
(2004) provide a thorough discussion of the diff erence of 
plug-in and Bayes estimator of the optimal decision under 
the parameter based utility (5). Th eir discussion highlights 
the diff erence between a proper Bayes rule, defi ned as the 
decision that maximizes expected utility, versus a rule that 
plugs in the Bayes estimate for the weights or the parameters 
in the sampling distribution.) Th e nature of this approxi-
mation is highlighted by considering the relationship with 

the predictive moments in (4). In fact, it is straightforward 
to show that the predictive mean equals the posterior mean 
and that the predictive variance and skewness equal the 
posterior means of V and S plus additional terms, or

  
Polson and Tew (2000, proposition 1) highlight the 
implication of the diff erence between Vp and V for mean-
variance effi  cient portfolios. Substituting this into (4) gives 
an alternative form that is composed of EUparam(ω) plus 
other terms.

For linear utility functions, stating utility in terms of the 
probability model parameters implicitly assumes that the 
predictive variance and skewness are approximately equal 
to the posterior expectation of m, V , and S, an assump-
tion which often fails in practice. Formally, using (m, V , 
S) in place of the predictive moments ignores the second 
and third line in the expression above. Our approach uses 
the predictive moments, capturing that extra information 
when maximizing the expected utility.

3.1.2  Maximize Something Other Th an Expected 
Utility.

Given that utility functions can be diffi  cult to integrate, 
various approximations are often used. Th e simplest ap-
proximation is to use a fi rst-order Taylor’s approximation 
(see Novshek 1993) about the expected predictive sum-
maries, or assume

For linear utility functions this approximation is exact, 
as in (3) and (4). Th e Taylor’ approximation removes any 
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parameter uncertainty and leads directly to the certainty 
equivalence optimization framework, substituting predic-
tive moments. It is easy to see that combining the Taylor’s 
approximation and the much stronger assumption that 
the posterior moments approximately equal predictive 
moments leads to a frequently used ‘two-time removed’ 
approximation of the expected utility of future returns, or

In an attempt to maintain the fl exibility of the effi  cient 
frontier optimization framework but still accommodate 
parameter uncertainty, Michaud (1998) proposes an op-
timization approach that switches the order of integration 
(averaging) and optimization. Th e maximum expected 
utility framework optimizes the expected utility of future 
returns; the certainty equivalence framework optimizes the 
utility of expected future returns, (i.e., substituting poste-
rior predictive moments in the utility function). Michaud 
(1998) proposes creating a ‘resampled frontier’ by repeat-
edly maximizing the utility for a draw from a probability 
distribution and then averaging the optimal weights that 
result from each optimization. While the approach could 
be viewed in terms of predictive returns, the sampling 
guidelines are arbitrary and could signifi cantly impact 
the results. Given, that the main interest is to account for 
parameter uncertainty, we consider a modifi ed algorithm 
where parameter draws from a posterior density are used in 
place of the predictive moment summaries. To be explicit, 
assuming a utility of parameters, the essential steps of the 
algorithm are as follows. For a family of utility functions 
(uparam,1, …, uparam,K), perform the following steps.

1. For each utility function (e.g. uparam,k), generate n 
draws from a posterior density 

2. For each  fi nd weight  that maximizes 

3. For each utility function, let  defi ne 
the optimal portfolio.

By Jensen’s inequality if  ,then for a large class of 
utility functions

 (7)

Further if  maximizes , then

for all . From (7), clearly

or  results in a sub-optimal portfolio in terms of ex-
pected utility maximization. Stated in practical terms, on 
average, Michaud’s approach ‘leaves money on the table’.

3.1.3 Ignore Skewness.

Although evidence of skewness and other higher moments 
in fi nancial data are abundant, it is common for skewness 
to be ignored entirely in practice. Typically skewness is 
ignored both in the sampling models and in the assumed 
utility functions. In order to illustrate the impact of ignor-
ing skewness, Figure 4 shows the empirical summary of the 
distribution of possible portfolios for four equity securities 
(Cisco Systems, General Electric, Sun Microsystems, and 
Lucent Technologies). Th e mean-variance summary imme-
diately leads to Markowitz’s initial insight, but the relation-
ship between mean, variance and skewness demonstrates 
that Markowitz’s two-moment approach off ers no guidance 
for making eff ective trade off s between mean, variance and 
skewness. Using the certainty equivalence framework and a 
linear utility of the fi rst three empirical moments, or 

where me, Ve, Se are the empirical mean, variance and skew-
ness, Figure 5 contrasts the optimal portfolios that result 
from assuming an investor only has an aversion to variance 
(λ = 0.5, γ = 0) and has both an aversion to variance and a 
preference for positive skewness (λ = 0.5, γ = 0.5).

When skewness is considered, the optimal portfolio is 
pushed further up the effi  cient frontier signifying that for 
the same level of risk aversion, an investor can get a higher 
return if they include skewness in the decision process. In 
this case, the positive skewness of the portfolio eff ectively 
reduces the portfolio risk.

3.2 Bayesian Optimization Methods

Bayesian methods off er a natural framework for both, the 
evaluation of expectations and the optimization of expect-
ed utilities for an arbitrary utility function, with respect 
to an arbitrarily complicated probability model. Given 
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an appropriate Markov chain Monte Carlo (MCMC) 
estimation routine, it is straightforward and computation-
ally trivial to generate draws from the posterior predictive 
density, or to draw by computer simulation

and then evaluate the predictive summaries Xi. Given a 
set of n draws, the expected utility for an arbitrary utility 
function can be estimated as an ergodic average, or

Th e approximate expected utility can then be optimized 
numerically using a number of diff erent approaches. One 
attractive algorithm is the Metropolis-Hastings (MH) 
algorithm. MH simulation is widely used for posterior 
simulation. But the same algorithm can be exploited for 
expected utility optimization. When used for formal op-
timization, it is known as simulated annealing. Stopping 
short of simulated annealing, we use the MH algorithm 
to explore the expected utility function, f(ω) = E[U(ω)], 
as a function of the weights. Asymptotic properties of the 
MH chain lead to portfolio weights ω being generated 
with frequencies proportional to EU(ω). Th at is, promis-
ing portfolio weights with high expected utility are visited 
more often, as desired. See, for example, Gilks et al. (1996) 
and Meyn and Tweedie (1993) for a discussion of the MH 
algorithm. Intuitively, this Markov chain can be viewed as a 
type of ‘random walk’ with a drift in the direction of larger 
values of the target function. When the MH algorithm 
is used as a tool for performing statistical inference, the 
target density is typically a posterior probability density; 
however, this need not be the case. As long as the target 
function is non-negative and integrable, the MH can be 
used to numerically explore any target function. Not only 
has the MH been shown to be very eff ective for searching 
high dimensional spaces, its irreducible property ensures, 
that if a global maximum exists the MH algorithm will 
eventually escape from any local maximum and visit the 
global maximum.

In order to use the MH function, we need to ensure 
that our expected utility is nonnegative and integrable. 
For the linear utility functions, integrability over the space 
of possible portfolios, where the portfolios are restricted 
to the unit simplex (i.e. we do not allow short selling), is 
easily established. We modify the utility function so that 

it is a non-negative function by subtracting the minimum 
expected utility, or the target function becomes

4. OPTIMAL PORTFOLIOS IN PRACTICE

In theory, simplifi cations of the complete asset allocation 
task will result in a sub-optimal portfolio selection. In 
order to assess the impact that results from some of these 
simplifi cations in practice, we consider three diff erent 
optimization approaches for two data sets using a family 
of linear utility functions. In particular, we consider the 
utility functions given in (3) and (5), which have expected 
utilities given in terms of the predictive posterior and pos-
terior moments respectively, see (4) and (6). We consider a 
number of potential probability models and select the best 
model. Using results from both the multivariate normal 
model and the best higher moment model, we numerically 
determine the optimal portfolio based on the predictive 
returns, the parameter values and using Michaud’s (1998) 
non-utility maximization approach. We contrast the per-
formance of each optimal portfolio in terms of expected 
predictive utility using the best model.

4.1 Data Description

We consider two sets of returns. Th e fi rst set comes from 
four equity securities. Th e second set comes from a broad-
based portfolio of domestic and international equities and 
fi xed income.

First we consider daily returns from April 1996 to 
March 2002 on four equity securities consisting of General 
Electric, Lucent Technologies, Cisco Systems, and Sun 
Microsystems. Th ese stocks are from the technology sec-
tor, and are chosen to illustrate portfolio selection among 
closely related assets.

We also try to select securities that match the asset allo-
cation choices facing individuals. To do so we consider the 
weekly returns from January 1989 to June 2002 on four 
equity portfolios: Russell 1000 (large capitalization stocks), 
Russell 2000 (smaller capitalization stocks), Morgan 
Stanley Capital International (MSCI) EAFE (non-U.S. 
developed markets), and MSCI EMF (emerging market 
equities that are available to international investors). We 
consider three fi xed income portfolios: government bonds, 
corporate bonds, and mortgage backed bonds. Each of 
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Table 1. Evaluating the Distributional Representation of Four Equity Securities and global asset allocation 
benchmarks

Model choice results for analysis of the daily stock returns of General Electric, Lucent Technologies, Cisco Systems, and Sun 
Microsystems from April 1996 to March 2002. And also for weekly benchmark indices from January 1989 to June 2002 
(Lehman Brothers government bonds, LB corporate bonds, and LB mortgage bonds, MSCI EAFE (non-U.S. developed 
market equity), MSCI EMF (emerging market free investments), Russell 1000 (large cap), and Russell 2000 (small cap)). 
Th e four models that are used are the multivariate normal (MV-Normal), the multivariate skew normal of Azzalini and 
Dalla Valle (1996) with a diagonal Δ matrix (MVS-Normal D-Δ), and the multivariate skew normal of Sahu et al. (2003) 
with both a diagonal and full Δ matrix (MVS-Normal F-Δ). Maximum log likelihood values are used to compute Bayes 
factors between the multivariate normal model and all of the other models and is reported on the log scale. Th e model with 
the highest Bayes factor best fi ts the data. Sahu et al. (2003) diagonal Δ model fi ts best overall.

 a. Four equity securities

 b. Global asset allocation benchmarks
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these fi xed income return series are from Lehman Brothers 
and form the three major subcomponents of the popular 
Lehman aggregate index.

4.2 Model Choice and Select Summary Statistics

To determine which skew normal model best fi t the 
respective data sets, we compute Bayes factors for the 
multivariate normal model, the skew normal model pro-
posed by Azzalini and Dalla Valle (1996) with a diagonal 
Δ matrix, and the skew normal model proposed by Sahu 
et al. (2003) with both a diagonal and our modifi ed full 
Δ matrix. Th e results for the technology stocks shows that 
the skew normal models with a diagonal Δ outperform the 
other models, with the Sahu et al. (2003) model fi tting 
best. Th e skew normal model with the full Δ, however, per-
forms better than the others in the case of the benchmark 
indices (see Table 1). Th e model with the full Δ accom-
modates coskewness, which could be viewed as correlated 
extremes, better than the model with the diagonal Δ. Th is 
suggests that portfolios of highly related stocks may have 
less coskewness than portfolios of highly diversifi ed global 
summaries.

Th e posterior parameter estimates for μ, Σ, and Δ, for 
both the technology stocks and the global asset allocation 

benchmark indices are given in Tables 2 and 3. Th e esti-
mates for Δ for the four equity securities suggest that when 
considered jointly the skewness is signifi cant, and all but 
Lucent exhibit positive skewness. For the global asset al-
location benchmark indices, there are many positive and 
negative elements of Δ though the largest elements tend to 
be negative.

4.3 Expected Utility for Competing Methods

Optimal weights are calculated for both data sets using the 
expected predicted utility, the expected parameter utility, 
and Michaud’s (1998) method. Each method assumes a 
normal (two moment) probability model and the best skew 
normal (higher moment) probability model. For the two 
moment model, we consider two linear utility functions— 
see (4) and (6)—one with no risk aversion (λ = 0) and no 
preference for skewness (γ = 0); another with a risk aversion 
of (λ = 0.5) and no preference for skewness (Table 4). For 
the higher moment model, we considered linear utilities 
with no risk aversion and skewness preference (λ = 0, γ = 
0), with risk aversion and no skewness preference (λ = 0.5, 
γ = 0), with no risk aversion and skewness preference (λ = 
0, γ = 0.5) and with both risk aversion and skewness prefer-
ence (λ = 0.5, γ = 0.5) (Table 5). Th e weights that resulted 

Table 2. Parameter estimates for diagonal Δ skew normal on four securities

Parameter estimates for the diagonal Δ model of Sahu et al. (2003) used to fi t the daily stock returns of General Electric, 
Lucent Technologies, Cisco Systems, and Sun Microsystems from April 1996 to March 2002. Th ese estimates are the 
result of a Bayesian Markov Chain Monte Carlo iterative sampling routine. Th ese parameters combine to give the mean 
(μ+(2/π)½  Δ1 and multiplied by 100), variance (Σ + (1 – 2/π)ΔΔ’), and skewness (see Appendix A1 for formula).
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Table 3. Parameter estimates for full Δ skew normal on global asset allocation benchmark

Parameter estimates for full Δ model of Sahu et al. (2003) used to fi t the weekly benchmark indices Lehman Brothers 
government bonds, LB corporate bonds, and LB mortgage bonds, MSCI EAFE (non-U.S. developed market equity), 
MSCI EMF (emerging market free investments), Russell 1000 (large cap), and Russell 2000 (small cap) from January 
1989 to June 2002. Th ese estimates are the result of a Bayesian Markov Chain Monte Carlo iterative sampling routine. 
Th ese parameters combine to give the mean , variance , and skewness (see 
Appendix A1 for formula).
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Table 4. Two and three moment optimization for four equity securities

Th is table contains predictive utilities for the weights that maximize utility as a linear function of the two and three 
moments of the multivariate normal model by three diff erent methods for daily stock returns of General Electric, Lucent 
Technologies, Cisco Systems, and Sun Microsystems from April 1996 to March 2002. Th e fi rst method is based on predic-
tive or future values of the portfolio (results in ωi,pred where the i represents the number of moments in the model), the 
second is based on the posterior parameter estimates (ωi,param), and the third is the method proposed by Michaud (ωi,Michaud). 
Th e weights that are found by each method are ranked by the three moment predictive utility they produce (i.e E[u3,pred(ω)] 
= ω′mp – λω′Vpω + γ ω′Spω  ω,where the 3 signifi es that the utility function is linear in the fi rst three moments of the 
skew normal model, and mp, Vp, and Sp are the predictive mean, variance and skewness) for varying values of λ and γ. Th e 
highest utility obtained signifi es the method that is best for portfolio selection according to the investor’s preferences. For 
each combination of λ and γ, ωi,pred gives the highest expected utility.

 a. Two moments

 b. Th ree moments
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Table 5. Two and three moment optimization for global asset allocation benchmark indices

Predictive utilities for the weights that maximize utility as a linear function of the two and three moments of the multi-
variate normal model by three diff erent methods for weekly benchmark indices Lehman Brothers government bonds, LB 
corporate bonds, and LB mortgage bonds, MSCI EAFE (non–U.S. developed market equity), MSCI EMF (emerging 
market free investments), Russell 1000 (large cap), and Russell 2000 (small cap) from January 1989 to June 2002. Th e 
fi rst method is based on predictive or future values of the portfolio (results in ωi,pred where the i represents the number of 
moments in the model), the second is based on the posterior parameter estimates (ωi,param), and the third is the method 
proposed by Michaud (ωi,Michaud). Th e weights that are found by each method are ranked by the three moment predictive 
utility they produce (i.e E[u3,pred(ω)] = ω′mp - λ ω′Vp ω + γ ω′Sp ω  ω, where the 3 signifi es that the utility function is 
linear in the fi rst three moments of the skew normal, and mp, Vp, and Sp are the predictive mean, variance and skewness) 
for varying values of λ and γ. Th e highest utility obtained signifi es the method that is best for portfolio selection according 
to the investor’s preferences. For each combination of λ and γ, ωi,pred gives the highest expected utility.

 a. Two moments

 b. Th ree moments
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from each optimization were then used to calculate the 
expected predictive utility.

Our fi rst observation is that Michaud’s (1998) optimi-
zation approach uniformly selects a sub-optimal portfolio 
even when there is no risk aversion or skewness preference. 
For example, in the global asset allocation benchmarks in-
dices, the certainty equivalent loss is (0.001227 -0.001132) 
× 52 = 0.00494, or roughly 50 basis points per year. Th e 
implicit goal of no risk aversion or skewness preference is 
to select the securities with the best average return; for the 
technology sector data set this is Sun Microsystems and 
for the benchmark indices this is the Russell 1000 index. 
For the expected utility approaches, essentially all of the 
weight is placed on these securities. In Michaud’s approach 

only 58% of the weight is placed on Sun Microsystems 
with the rest spread across the remaining stocks, see λ 
= 0 and γ = 0 from Table 6. It could be argued that the 
weights from Michaud’s approach should be preferred as 
they off er diversifi cation and give some sort of protection 
against volatility. While this may be true, the stated utility 
function for this optimization ignores volatility (because λ 
= 0). Clearly if the investor has an aversion to variance risk, 
then the appropriate portfolio would be based on a utility 
function that explicitly accounts for this aversion. When 
evaluated in a maximum expected utility framework, 
Michaud’s approach distorts the investor’s preference by 
over diversifying.

Table 6. Portfolio weights: four equity securities

Th ree moment (skew normal) utility based portfolio weights for daily stock returns of General Electric, Lucent Technologies, 
Cisco Systems, and Sun Microsystems from April 1996 to March 2002. Th e weights maximize the expected utility func-
tion E[u3,pred(ω)] = ω′mp — λω′Vpω + γω′Spω  ω, (where the 3 signifi es that the utility function is linear in the fi rst three 
moments, and mp, Vp, and Sp are the predictive mean, variance and skewness) for varying values of λ and γ. Th ree diff erent 
methods of maximization are used. Th e fi rst is based on predictive or future values of the portfolio (results in ω3,pred where 
the 3 represents the number of moments in the model), the second is based on the posterior parameter estimates (ω3,param), 
and the third is the method proposed by Michaud (ω3,Michaud).
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Not surprisingly, when there is only preference for 
skewness, the predictive optimization approach outper-
forms the parameter approach, e.g. λ = 0, γ = 0.5 in Table 
4. Th is diff erence illustrates the fact that the predictive vari-
ance and skewness are only approximated by the estimates 
of the variance and skewness based on posterior parameter 
values, see Section 3.1. In the case of the technology stocks, 
with λ = 0 and γ = 0.5, the parameter optimization ap-
proach places almost all of the portfolio weight on Sun 
Microsystems, but in light of predictive skewness the 
predictive approach distributes almost all of the weight on 
the three other stocks, see Table 6.

Ignoring the weights from Michaud’s approach, the big-
gest diff erences in expected predicted utilities comes from 
comparing optimizations using the normal model versus 
the skew normal model, see λ = 0.5 and γ = 0.5 in Table 4. 
For the benchmark indices, the optimal allocation changes 
markedly when skewness is estimated and included in the 
utility, see Table 7. Th e most noticeable change is that less 
weight is placed on the mortgage-backed securities and 
EMF and more weight is placed on the remaining securi-
ties, especially the US bonds and EAFE.

5. CONCLUSION

Considering both higher moments and parameter un-
certainty is important in portfolio selection. Up to now 
these issues have been treated separately. Th e multivariate 
normal distribution is an inappropriate probability model 
for portfolio returns primarily because it fails to allow for 
higher moments, in particular skewness and coskewness. 
We also demonstrate that the skew normal model of Sahu 
et al. (2003) is able to capture these higher moments. It is 
fl exible enough to allow for skewness and coskewness, and 
at the same time, accommodates heavy tails. Additional 
features of the model include straightforward specifi cation 
of conjugate prior distributions which allows for effi  cient 
simulation and posterior inference. We use Bayesian 
methods to incorporate parameter uncertainty into the 
predictive distribution of returns, as well as to maximize 
the expected utility.

We show that predictive utility can be written in terms 
of posterior parameter based utility plus additional terms. 
Th ese additional terms can be very infl uential in an inves-
tor’s utility. We compare results with Michaud’s (1998) 
resampling technique for portfolio selection. In addition 
to the Jensen’s inequality problem, we show that the resam-

Table 7. Portfolio weights: global asset allocation benchmark indices

Two moment (normal) utility based portfolio weights for weekly benchmark indices Lehman Brothers government bonds, 
LB corporate bonds, and LB mortgage bonds, MSCI EAFE (non-U.S. developed market equity), MSCI EMF (emerging 
market free investments), Russell 1000 (large cap), and Russell 2000 (small cap), from January 1989 to June 2002. Th e 
weights maximize the expected utility function E[u2,pred(ω)] = ω′mp — λω′Vpω (where the 2 signifi es that the utility func-
tion is linear in the two moments of the normal model, and mp and Vp are the predictive mean and variance) for varying 
values of λ and γ. Th ree diff erent methods of maximization are used. Th e fi rst is based on predictive or future values of 
the portfolio (results in ω2,pred where the 2 represents the number of moments in the model), the second is based on the 
posterior parameter estimates (ω2,param), and the third is the method proposed by Michaud (ω2,Michaud).
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pling approach is outside the effi  cient utility maximization 
framework.

While we believe that we have made progress on two 
important issues in portfolio selection, there are at least 
three limitations to our approach. First, our information is 
restricted to past returns. Th at is, investors make decisions 
based on past returns and do not use other conditioning 
information such as economic variables that tell us about 
the state of the economy. Second, our exercise is an ‘in-
sample’ portfolio selection. We have not applied our 
method to out-of sample portfolio allocation. Finally, the 
portfolio choice problem we examine is a static one. Th ere 
is a growing literature that considers the more challenging 
dynamic asset allocation problem that allows for portfolio 
weights to change with investment horizon, labor income 
and other economic variables.

We believe that it is possible to make progress in future 
research on the fi rst two limitations. In addition, we are 
interested in using revealed market preferences to deter-
mine whether ‘the market’ empirically exhibits preference 
for skewness. As a fi rst step, we plan to use the observed 
market weights for a benchmark equity index and use the 
predictive utility function (3) to determine the implied 
market λ and γ. Finally, we intend to consider modifi ca-
tions to (3) that allow for asymmetric preferences over 
positive and negative skewness.
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Appendix: Skew normal probability model

A.1 Density and Moment Generating Function

The likelihood function and moment generating function given in Sahu et al. (2003) changes

when we allow Δ to be a full matrix:

f(y|μ, Σ, Δ) = 2�|Σ + ΔΔ′|− 1
2 φ�

[
(Σ + ΔΔ′)−

1
2 (y − μ)

]
×

Φ�

[
(I − Δ′(Σ + ΔΔ′)−1Δ)−

1
2 Δ′(Σ + ΔΔ′)−1(y − μ)

]
, (A-1)

where φ� is the �−dimensional multivariate normal density function with mean zero and

identity covariance, and Φ� is multivariate normal cumulative distribution also with mean

zero and identity covariance.

The moment generating function becomes

MY(t) = 2�et′μ+t′(Σ+ΔΔ′)t/2Φ�(Δt) (A-2)

The first three moments of the distribution (m, V , and S) can be written in terms of μ, Σ

and Δ as follows,

m = μ + (2/π)1/2Δ1, V = Σ + (1 − 2/π)ΔΔ′, and

S = ΔEZΔ′ ⊗ Δ′ + 3μ′ ⊗ {ΔΔ′(1 − 2/π) + 2/πΔ1(Δ1)′}+

3{(2/π)1/2(Δ1)′ ⊗ [Σ + μμ′]} + 3μ′ ⊗ Σ

+ μμ′ ⊗ μ′ − 3m′ ⊗ V − m m′ ⊗ m′, (A-3)

where 1 is a column vector of ones, and EZ is the � × �2 super matrix made up of the

moments of a truncated standard normal distribution.

EZ =

⎛
⎜⎜⎜⎝

E[Z1Z1Z1] . . . E[Z1Z1Z�] . . . E[Z�Z1Z1] . . . E[Z�Z1Z�]
...

. . .
... . . .

...
. . .

...

E[Z1Z�Z1] . . . E[Z1Z1Z�] . . . E[Z�Z�Z1] . . . E[Z�Z�Z�]

⎞
⎟⎟⎟⎠
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Where E[Zi] =
√

2/π, E[Z2
i ] = 1, and E[Z3

i ] =
√

8/π. Since the Zi’s are independent,

E[Z2
i Zj] = E[Z2

i ]E[Zj ] =
√

2/π, and E[ZiZjZk] = E[Zi]E[Zj ]E[Zk] = (2/π)3/2 for any i, j,

and k.

A.2 First Three Moments of a Linear Combination

Assume X ∼ SN(μ, Σ, Δ) and a set of constant portfolio weights ω = (ω1, . . . , ω�)
′, the first

three moments of ω′X are as follows

E(ω′X) = ω′m

V ar(ω′X) = ω′ V ω

Skew(ω′X) = ω′ S ω ⊗ ω,

where m, V and S are given above.

A.3 Lévy Stable Skew Normal

When there is a Zi for each observation xi, the moment generating function readily shows

that the skew normal distributions of Sahu et al. (2003) and Azzalini and Dalla Valle (1996)

are not Lévy stable. If, however, the latent variables Z are restricted to be time invariant,

i.e. a single Z for all of the observations, then both models are Lévy stable. In addition, the

Azzalini and Dalla Valle (1996) model maintains the property that the distribution of the

portfolio is also skew normal.
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A.4 Model Specification

0.4.1 Likelihood and Priors.

The skew normal density is defined in terms of a latent (unobserved) random variable Z,

which comes from a truncated standard normal density. The likelihood is given by

Xi|Zi, μ, Σ, Δ ∼ N�(μ + ΔZi, Σ),

where N� is a multivariate normal density,

Zi ∼ N�(0, I�)I{Zij > 0}, for all j,

and Im is an m dimensional identity matrix. In all cases we used conjugate prior densities,

with hyper-parameters that reflect vague prior information, or a priori we assume

β ∼ N�(�+1)(0, 100I�(�+1))

Σ ∼ Inverse-Wishart(�, �I�),

where β ′ = (μ′, vec(Δ)′) and vec(·) forms a vector by stacking the columns of a matrix.

Full Conditionals.

Assuming n independent skew normal observations, the full conditional distributions are as

follows:

Zi|x, μ, Σ, Δ ∼ N�(A
−1ai, A

−1)I{Zij > 0}, for all j,

β|x, Σ, Z ∼ N�(�+1)(B
−1b, B−1)

Σ|x, μ, Δ, Z ∼ Inverse-Wishart(� + n, C),

where

A = I� + Δ′Σ−1Δ and a =
n∑

i=1

Δ′Σ−1(xi − μ),
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B =

n∑
i=1

y′iΣ
−1yi +

1

100
I�(�+1) and b =

n∑
i=1

yiΣ
−1xi,

C =

n∑
i=1

(xi − (μ + ΔZi))(xi − (μ + ΔZi))
′ + �I�,

where yi = (I�, Z
′
i ⊗ I�).

A.5 Estimation Using the Slice Sampler

The slice sampler introduces an auxiliary variable, which we will call u, in such a way that

the draws from both the desired variable and the auxiliary variable can be obtained by

drawing from appropriate uniform densities, for more details see Damien, Wakefield, and

Walker (1999). To illustrate, assume that we want to sample from the following density,

f (x) ∝ exp

{
− 1

2σ2
(x − μ)2

}
I {x ≥ 0} , (A-4)

where I{·} is an indicator function. We proceed by introducing an auxiliary variable u and

form the following joint density,

f (x, u) ∝ I

{
u ≤ exp

{
− 1

2σ2
(x − μ)2

}
I {x ≥ 0}

}
. (A-5)

It is easy to see that based on (A-5), the marginal density of x is given by (A-4) and that

the conditional density of u given x is a uniform density, or

f (u|x) ∝ I

{
u ≤ exp

{
− 1

2σ2
(x − μ)2

}}
.

With a little more work, it is straightforward to see that the conditional density of x given

u is also uniform, or

f (x|u) ∝ I
{

max
(
0, μ −

√
−2σ2log(u)

)
≤ x ≤ μ +

√
−2σ2log(u)

}
.

Samples from x can then be easily obtained by iteratively sampling from u conditional on x

and then from x conditional on u.
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Density Estimate for Cisco
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Figure 1: This figure contains univariate estimates for Cisco Systems and General Electric
daily stock returns from April 1996 to March 2002. The solid lines represents the kernel den-
sity estimate, while the dotted lines are the normal density with sample mean and variance.
In one dimension the normal distribution closely matches the returns for these two stocks.
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Figure 2: This figure contains a bivariate normal estimate for Cisco Systems and General
Electric daily stock returns from April 1996 to March 2002. The plot is a bivariate nor-
mal with sample mean and covariance. The scatter points are the actual data. Unlike
in one dimension, in two dimensions the normal distribution does not closely match these
joint returns. The actual returns exhibit coskewness and much fatter tails than the normal
approximation.
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Figure 3: This figure contains plots of the mean, variance and skewness of portfolios con-
sisting of two assets. Daily returns from April 1996 to March 2002 for General Electric and
Lucent Technologies, Sun Microsystems and Cisco Systems, and General Electric and Cisco
Systems are considered. The top row has the mean of the portfolio (equal to the linear
combination of the asset means) as the weight of the first asset varies from 0 to 1. The
solid line in the plots in the second row represents the linear combination of the variances
of the assets, while the dotted line represents the variance of portfolios (variance of linear
combination). The variance of the portfolio is alway less or equal to the variance of the
linear combination. The solid line in the third row of plots is the linear combination of
the skewness of the two assets in the portfolio, and the dotted line is the skewness of the
portfolio. The skewness of the portfolio does not dominate, nor is dominated by the linear
combination of the skewness. Selecting a portfolio based solely on minimum variance could
lead to a portfolio with minimum skewness as well (see GE vs. Cisco).
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Figure 4: This figure shows the space of possible portfolios based on historical parameter
estimates from the daily returns of General Electric, Lucent Technologies, Cisco Systems,
and Sun Microsystems from April 1996 to March 2002. The top left plot is the mean-
standard deviation space, the top right plot is the mean verses the cubed-root of skewness.
The bottom left plot is the standard deviation verses the cubed-root of skewness, and the
bottom right plot is a three dimensional plot of the mean, standard deviation and cubed-
root of skewness. In all plots that contain the skewness there is a sparse region where the
skewness is zero.
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Figure 5: This figure shows the mean-variance space of possible portfolios based on his-
torical parameter estimates from the daily returns of General Electric, Lucent Technolo-
gies, Cisco Systems, and Sun Microsystems from April 1996 to March 2002. The port-
folios are shaded according to the utility associated with each. In the left plot the util-
ity function is E[upred(ω)] = ω′mp − 0.5 ω′ Vp ω, which is a linear function of the first
two moments. The maximum utility is obtained by a portfolio on the frontier and is
marked by a ‘+’. The plot on the right is shaded according the the utility function
E[upred(ω)] = ω′mp − 0.5 ω′ Vp ω + 0.5 ω′ Sp ω ⊗ ω, which is a linear function of the first
three moments. The maximum utility is obtained by a portfolio on the frontier and is
marked by a ‘+’.
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