Conditioning Variables and the Cross-Section of Stock Returns

Wayne E. Ferson
University of Washington and NBER

Campbell R. Harvey
Duke University and NBER

1. A Brief History of Asset Pricing Research

- Graham and Dodd (1934) - Asset judged by set of fundamental factors
- Sharpe (1964)-Lintner (1965) Capital Asset Pricing Model
- Anomalies (1970s-1980s) - systematic patterns in errors often related to fundamentals
- Merton (1970) ICAPM; Ross (1976) APT
1. A Brief History of Asset Pricing Research

- Time-series predictability (mid-80s and 90s) many authors including Ferson and Harvey (1991)
- Cross-sectional predictability (1990s) Fama and French (199x)
- Three factor model; Four factor model (mid, late 90s)
- Behavioral explanations (overconfidence) Kyle and Wang.

2. Economic motivation

- Explaining expected returns
 - Cost of capital, project evaluation
 - Performance evaluation, EVA
- Forecasting returns
 - Asset allocation
 - Stock selection
- Big payoff to discovering “the model”
3. Our perspective

- Issues with Fama-French three factor model:
 -- De facto standard model
 -- Holds up well to unconditional tests

But
 -- static model (parameters constant)
 -- what is the role of time-series predictability in the cross-section of expected asset returns

4. Method

- Test for time-varying parameters in 3 factor model
- Investigate the role of time-series predictability
- Analyze robustness across different portfolio formation rules
- Examine alternatives
- Study different econometric methods for combining time-series and cross-sectional analysis
4. Method

Test for time-varying parameters in 3 factor model

\[E_t[r_{i,t+1}] = \alpha_{i,t} + \beta_{i,t} E_t[r_{p,t+1}] \]

\[\alpha_{i,t} = a_{0,i} + a_{1,i} Z_t \]

\[\beta_{i,t} = b_{0,i} + b_{1,i} Z_t \]

4. Method

Investigate the role of time-series predictability

1. Forecast each portfolio return by regression on common set of lagged instruments, call forecast “Fit.” [It is generated to be out of sample].
 Instruments: Δ3moTbill, S&P D/P, Baa-Aaa, 10yr-3mo, 1 month Tbill

2. Include “Fit” in cross-sectional model as “Fourth factor”
4. Method

Analyze robustness across different portfolio formation rules

1. Fama-French size/book-to-market value
2. Industry

4. Method

Examine alternatives

1. Use attributes rather than betas on attributes (diminishes EIV problem)
2. Four factor model Elton, Gruber and Blake
4. Method

Study different econometric methods for combining time-series and cross-sectional analysis

1. Time-series regressions
2. Efficient weighted Fama-MacBeth (weight monthly estimates in proportion to their variance)
3. Panel regression approach

5. Results: Time-series predictability
Size and Book-to-Market Value Portfolios
5. Results: Time-series autocorrelation
Size and Book-to-Market Value Sorted Portfolios

\[\rho \]

S1 S2 S3 S4 S5 Rm SMB HML

5. Results: Time-series predictability
Size and Book-to-Market Value Portfolios

\[R^2 \]

S1 S2 S3 S4 S5 B1 B2 B3 B4 B5
5. Results: Time-series autocorrelation
Size and Book-to-Market Value Sorted Portfolios

5. Results: Is Risk Constant?
Size and Book-to-Market Value Portfolios

*1-p-value in test of null that parameters are constant.
5. Results: Is Risk Constant?
Size and Book-to-Market Value Portfolios

Confidence of Rejection

S1 S2 S3 S4 S5 B1 B2 B3 B4 B5

1-p-value in test of null that parameters are constant.

5. Results: Are Intercepts Zero?
Size and Book-to-Market Value Portfolios
Unconditional Test as in Fama and French

Confidence of Rejection

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

1-p-value in test of null that parameters are constant.
5. Results: Are Intercepts Zero?
Size and Book-to-Market Value Portfolios
Test whether intercept time-varying (assumes constant betas)

Confidence of Rejection*

*1-p-value in test of null that parameters are constant.

5. Results: Are Intercepts Zero?
Size and Book-to-Market Value Portfolios
Test whether intercept time-varying (assumes varying betas)

Confidence of Rejection*

*1-p-value in test of null that parameters are constant.
5. Results: Cross-Section of Expected Returns
Size and Book-to-Market Value Portfolios
Standard Fama-MacBeth: Expanding sample betas

5. Results: Cross-Section of Expected Returns
Size and Book-to-Market Value Portfolios
Standard Fama-MacBeth: Rolling 60-month betas
5. Results: Cross-Section of Expected Returns
Size and Book-to-Market Value Portfolios
Standard Fama-MacBeth: Conditional betas

5. Results: Cross-Section of Expected Returns
Size and Book-to-Market Value Portfolios
WLS: Expanding sample betas
5. Results: Cross-Section of Expected Returns
Size and Book-to-Market Value Portfolios
WLS: 60-month rolling betas

5. Results: Cross-Section of Expected Returns
Size and Book-to-Market Value Portfolios
WLS: Conditional betas
5. Results: Cross-Section of Expected Returns
Size and Book-to-Market Value Portfolios
Efficient weighted estimates: Conditional betas

T-ratio

5. Results: Cross-Section of Expected Returns
Size and Book-to-Market Value Portfolios
Panel regression R²

[Bar chart showing T-ratio for different factors and models]
5. Results: Robustness

Results similar on:

- Industry portfolios,
- Size/BM/Momentum portfolios

5. Results: Robustness

Similar message if the portfolio attributes are used rather than the betas on the attributes

Conditional fit variable is not knocked out by fourth factor advocated by Elton, Gruber and Blake.
6. Conclusions

We believe that we have the first research to explore the relation between time-series and cross-sectional predictability.

1. Parameters of Fama and French change through time.
2. Fama and French model strongly rejected if conditioning information is included in the alpha
3. Time-series portfolio forecast helps explain the cross-sectional variation in expected returns