Political risk and international valuation☆

Geert Bekaert a,b, Campbell R. Harvey b,c,⁎, Christian T. Lundblad d, Stephan Siegel e

a Columbia University, New York, NY 10027, USA
b National Bureau of Economic Research, Cambridge, MA 02138, USA
c Duke University, Durham, NC 27708, USA
d University of North Carolina, Chapel Hill, NC 27599, USA
e University of Washington, Seattle, WA 98195, USA

Article info
Article history:
Received 18 September 2015
Received in revised form 3 December 2015
Accepted 14 December 2015
Available online 31 December 2015

JEL classification:
F23
F51
F65
G15
G31
H63

Keywords:
Political risk
Sovereign spread
Sovereign risk
Capital budgeting
International cost of capital
Project evaluation

ABSTRACT
Measuring the impact of political risk on investment projects is one of the most vexing issues in international business. One popular approach is to assume that the sovereign yield spread captures political risk and to augment the project discount rate by this spread. We show that this approach is flawed. While the sovereign spread is influenced by political risk, it also reflects other risks that are likely included in the valuation analysis — leading to the double counting of risks. We propose to use “political risk spreads” to undo the double counting in the evaluation of international investment projects.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

When evaluating international investment projects, accounting for political risk remains an important challenge. Political risk refers to the risk that a foreign government action will negatively affect the cash flows of a company conducting an international investment. The theory on project valuation or capital budgeting, which we review in more detail in Section 2, is straightforward: the multinational corporation must assess the effects of political risk on expected cash flows and discount the expected cash flows

☆ This paper has benefited from comments by seminar participants at the Einaudi Institute for Economics and Finance in Rome, Italy, the Banco Central de Reserva del Peru in Lima, Peru, as well as the 2011 Pacific Northwest Finance Conference at the University of Washington.

⁎ Corresponding author at: Fuqua School of Business, Duke University, Durham, NC 27708, USA. Tel.: +1 919 660 7768.

E-mail address: cam.harvey@duke.edu (C.R. Harvey).

http://dx.doi.org/10.1016/j.jcorpfin.2015.12.007
0929-1199/© 2015 Elsevier B.V. All rights reserved.
at a discount rate reflecting systematic (not political) risk. In practice, it is difficult to quantify political risk (see Bremmer, 2005; Henisz and Zelner, 2010). Moreover, as the available political risk ratings are mostly subjective assessments of experts, it is difficult to incorporate them in a quantitative valuation analysis.

Instead, many textbooks and practitioners propose to account for political risk through an adjustment to the discount rate. That is, the investment analysis initially ignores political risk and forecasts the company's cash flows assuming that no political risk event will take place, but then applies an upward adjustment to the discount rate to reflect the political risk. The majority of such approaches make use of sovereign yield spreads to obtain market-based and forward-looking readings on political risk (see, for example, Damodaran, 1999, 2003; Mariscal and Lee, 1993). The sovereign yield spread, or simply sovereign spread, is the difference between the yield on a bond issued by a foreign country in U.S. dollars and a U.S. Treasury bond of similar maturity. It depends, among other factors, on the probability of sovereign default and, conditional on default, the expected recovery value of a country's sovereign bond, and is therefore also referred to as country (credit) spread. Political risk is then incorporated into the valuation of an investment project by augmenting the project’s discount rate by the country’s sovereign spread. That is, the project's cash flows are forecasted in the absence of political risk events, which are then incorporated via an upward adjustment to the discount rate based on a country's sovereign spread.

The first contribution of our article is normative. We show that the standard sovereign spread procedure is flawed and tends to lead to costs of capital that are too high. This implies that use of such a procedure may decrease foreign direct investment (FDI) and lead to international capital mis-allocation. The implicit assumption in existing capital-budgeting methods is that sovereign spreads, to a large extent, fully reflect political risk. We show that this is false.

Building on an extensive literature examining the determinants of sovereign spreads, in general, and the recent work of Bekaaert et al. (2014) (BHLS, henceforth), we decompose the cross-sectional and time series variation of sovereign spreads into four major factors: international economic and financial risk conditions, local macroeconomic conditions, bond market liquidity, and political risk. On average, less than a third of the variation of sovereign spreads reflects political risk. A cost of capital adjustment that simply “adds” the entire spread to the discount rate therefore double counts global systematic risk exposures, which should already be reflected in the discount rate. It further reduces the value of the project by including local macroeconomic conditions, which should be reflected in the expected cash flows as well as bond market liquidity, which is likely irrelevant to the value of the project.

We outline a new, alternative procedure to more accurately reflect political risk in a project’s net present value (NPV). Specifically, we propose to use the concept of a political risk spread recently introduced by BHLS (2014), which essentially extracts the political risk component from sovereign spreads using available information in political risk ratings. This political risk spread can be used to infer the probabilities of a political risk event with which to adjust the expected cash flows. Under certain assumptions, a corrected discount rate adjustment can then be obtained by adding the political risk spread, rather than the full spread, to the usual discount rate.

Given the importance of NPV analysis for international investment decisions (see, for example, survey evidence in Graham and Harvey, 2001; Keck et al., 1998), it is crucial to properly account for political risk in corporate decision making. For example, Holmen and Pramborg (2009), surveying the capital budgeting techniques for FDI among Swedish firms, show that firms are less likely to use theoretically correct NPV approaches for investments in host countries with elevated political risk. The economic implications are large. In a practical example using recent data, we show that the cost of capital may be over-estimated by anywhere from about 2% to 4% using the standard sovereign spread procedure leading to a misallocation of global investment.

The rest of the paper is organized as follows. Section 2 defines political risk and surveys some standard approaches to account for political risk in international capital budgeting. We also outline our new approach. Section 3 briefly summarizes the data, and reports our empirical analysis of sovereign spreads which is the main input for our political risk adjustment. Section 4 then reviews market-based political risk spreads and demonstrates how to use them in political risk assessment. We also reflect on the largely unexplored issue of whether political risk is priced in international equity returns. Section 5 offers some concluding remarks.

2. Political risk and sovereign yield spreads

In this section, we provide a definition of political risk and review the theory regarding the incorporation of political risk into the capital budgeting process. We then analyze a number of practical approaches, most of which use sovereign spreads to adjust the project discount rate for political risk. Finally, we propose a new approach which overcomes the shortcomings of existing methods.

2.1. Political risk and the cost of capital

There is a large and growing literature on the effect of political factors on corporate valuations. This includes examining the impact of tax policies (McGrattan and Prescott, 2005; Sialm, 2009) and uncertainty regarding regulations and government policy.
(Baker et al., 2013; Brogaard and Detzel, 2015; Pastor and Veronesi, 2012). In this paper, we focus on political risk in an international business context (see Kobrin, 1979, and the review of Fitzpatrick, 1983). Political risk for a given country is then the risk that the country's government actions or imperfections of the country's executive, legislative, or judicial institutions adversely affect the value of an investment by a foreign firm in that country. This definition encompasses government initiated seizure of private assets or output and creeping forms of expropriation such as unexpected taxes or royalties on profits or pernicious currency regulations (Knudsen, 1974; Minor, 1994). It also includes the instability of relevant government policies (see, for example, Brewer, 1983, 1993) as well as the strength of the legal system, especially with respect to the enforcement of property rights. Finally, internal and external conflicts, such as general strikes, terrorism, and (civil) war as also typically categorized as part of political risk. Importantly, political risk does not encompass natural disasters, such as earthquakes and tsunamis, nor does it include macroeconomic or financial risk factors.

To account for political risk in a net present value (NPV henceforth) analysis of investment, one must decide to incorporate political risk into either project cash flows or the discount rate (see Butler and Joaquin, 1998). Lessard (1996) and Bek aerialt and Hodrick (2011), Chapter 14) argue that in theory political risk should be incorporated into cash flows since it is project-specific risk. Consider an MNC with a shareholder base that is globally diversified. In this case, the discount rate should only reflect international, systematic risks. A standard model to do so would be the world Capital Asset Pricing Model (CAPM), where systematic risk would be related to how the return of the MNC's project in a particular country covaries with the world market return. Consequently, political risk should only affect the discount rate if it represents global systematic risk. We come back to this possibility in Section 4.2. In fact, our empirical tests suggest that political risk in the context of FDI is mainly a diversifiable risk for global investors, and it should therefore be accounted for by adjusting expected cash flows.

Further, political risk can be insured. As Bek aerialt and Hodrick (2011) discuss, if a MNC takes out an insurance policy against political risk that covers all contingencies and has no deductible, then the company should simply compute its expected cash flows as if there is no political risk and then subtract the insurance premium it must pay each year from the cash flows of the project. The cash flows would then be discounted at the usual discount rate. While it is possible to purchase political risk insurance, it is seldom the case that an investment can be fully insured.

If a company chooses not to purchase political-risk insurance, it must forecast its future cash flows incorporating how they might be affected by various political risks. Such forecasting is quite difficult to implement and financial advisors have instead developed simple discount rate adjustments to account for political risk. Importantly, it is always possible to find a discount rate that correctly incorporates political risk, in the sense that it yields the same NPV for the project as the cash flow analysis incorporating political risk scenarios. Let us illustrate this point with a very simple example. Suppose we are considering a one period all equity project, CF is the expected cash flow, and r is the correct discount rate reflecting all risks but political risk. The probability of a political risk event with an expected recovery of zero is p. Then, the present value of the project is

$$ PV = \frac{CF(1-p)}{1+r} = \frac{CF}{(1+r)(1+P_{RSS})}, $$

where P_{RSS} stands for Political Risk Sovereign Spread, representing the correct discount rate adjustment yielding the same PV as using political risk probabilities. Also note that:

$$ P_{RSS} = \frac{1}{1-p} - 1 \text{ or } p = \frac{P_{RSS}}{1+P_{RSS}}. $$

when political risk probabilities are not constant over time, or recovery values must be taken into account, the mapping is more complex (see Section 4.3). In this paper, we derive political risk spreads for various countries that incorporate up-to-date market information regarding political risk, but are not contaminated by other risks. We now show that extant approaches fail to do so.

2.2. Sovereign spread models

2.2.1. The World CAPM and sovereign spreads

The benchmark model for computing the cost of capital ($r_{i,t}$) for project i in international capital budgeting remains the World CAPM:

$$ r_{i,t} = r_{f,t} + \beta_{i,t}w_{t}, $$

where $r_{f,t}$ is the risk free rate, $\beta_{i,t}$ is the world-market beta of project i, i.e., the beta with respect to the world market return, and w_{t} is the world market risk premium.2 We take the perspective of a U.S. based company, expressing all units in U.S. dollars.3

2 This model was first applied in an international setting by Solnik (1974) and Stulz (1981). Throughout the paper, we have retained our notation w, which refers to "world". However, in several of the models mentioned below, including Mariscal and Lee (1993), the authors, in fact, use a "domestic" CAPM with the U.S. stock market index instead of the world index.

3 Alternatively, foreign cash flows can be expressed in foreign currency units, but then so must be the discount rate. Bek aerialt and Hodrick (2011) show that the two methods are equivalent if the discount rates satisfy a parity condition akin to the uncovered interest rate parity condition in international finance.
The simplest model to accommodate political risk, originally developed by prominent investment banks and consulting firms (see Mariscal and Lee, 1993), simply adds the sovereign spread to the cost of capital:

\[r_{it} = r_{ft} + \beta_{it} \delta + SS_{jt}, \]

where \(SS_{jt} \) is the sovereign spread for country \(j \), in which investment \(i \) is located. Note that this model modification can be applied to any cost of capital model and need not necessarily rely on the world CAPM as the base model.

The historical context was one in which portfolio and FDI flows into emerging markets started to re-appear in the early 1990s after a “lost decade” dominated by a debt crisis. Discount rate computations for emerging market investments became increasingly important, but applying the world CAPM to emerging markets was problematic. These markets were not fully integrated in global markets yet, making the use of the world CAPM suspect and the world-market betas of comparable foreign firms as well as foreign markets as a whole very low (see Harvey, 1995), leading to seemingly implausibly low costs of capital for many emerging markets. The sovereign spread adjustment conveniently increased the cost of capital. However, it is important to realize that if the beta of a project’s return with respect to the world market is low, and the shareholders of the company are globally diversified, the cost of capital should be low. A more relevant question is whether foreign equity returns correctly reflect the project’s systematic risk, which may depend on many factors, for example, whether the MNC produces for the local or international market. In the present day, the world-market betas of most emerging equity markets have dramatically increased as their integration in world capital markets has progressed, and, using monthly data from MSCI (2009–2013), the emerging market index return currently has a beta of 1.15 with respect to the world market equity return (see, also, Bekae and Harvey, 2015). It is therefore important to ensure that the sovereign spread adjustment is correctly accounting for political risk and not for other risks.

Clearly, the use of sovereign spreads to augment standard models of the cost of capital has intuitive appeal, as they are observable, forward looking, and undoubtedly related to political risk. It was also a practical success. Over time, several ad hoc modifications to the base model were proposed. We now provide an overview of the most prominent models.

2.2.2. Sovereign spread model variants

These modifications of the benchmark model, summarized in Table 1, can be generally represented as:

\[r_{it} = r_{ft} + \beta_{it} \delta + f(SS_{jt}), \]

where \(f(\cdot) \) and \(g(\cdot) \) are functions of the sovereign spread and world market risk premium, respectively.

The second through fourth models leave the sovereign spread adjustment to capture political risk unchanged, but modify the beta. Mariscal and Dutra (1996) propose an adjustment designed to eliminate the problem of low betas; replacing the beta by the ratio of the standard deviation of country \(j \)'s equity return, \(\sigma_{jt} \), over the standard deviation of the world (or U.S.) market return, \(\sigma_{w} \). Given that the volatility of emerging market returns is almost always higher than that of the world market return, the cost of capital increases significantly. To reduce the chance of “double counting” political risk, Godfrey and Espinosa (1996) down-weight the beta adjustment by multiplying the volatility ratio by 0.6, arguing that local equity market volatility and political risk are correlated. Finally, Mariscal and Hargis (1999) propose replacing the fixed adjustment 0.6 by one minus the observed correlation, \(\rho_{e,b} \), between the equity and bond market returns for the country in which the project is located. The articles are silent on an economic justification for these beta adjustments.\(^4\)

Other modifications focus on the sovereign spread terms. Damodaran (1999) argues that the sovereign spread mixes equity and bond premia, and that the bond premia need to be adjusted to make them ‘equity like’. Given that equity return volatility is greater than bond return volatility, Damodaran (1999) employs the ratio of the two, \(\frac{\sigma_{e}^{r}}{\sigma_{b}^{r}} \), to adjust the bond sovereign yield spread upward, where \(\sigma_{e}^{r} \) is the standard deviation of country \(j \)'s equity returns and \(\sigma_{b}^{r} \) is the standard deviation of country \(j \)'s bond returns. Abuaf (2015) replaces the sovereign spread with a multiple of the credit default swap spread.

The modifications by Zenner and Akaydin (2002) and Damodaran (2003) are designed to facilitate the degree to which projects or firms in a particular country may differ in their exposures to that country’s perceived political risk. Zenner and Akaydin (2002), in addition to considering a project specific beta, do this by modifying the sovereign spread adjustment. The three \(\gamma \) factors are designed to reflect project-specific considerations: \(\gamma_{1} \) represents a company’s access to capital markets; \(\gamma_{2} \) is the susceptibility of the investment to political risk; and \(\gamma_{3} \) is the financial importance of the project to the company. Each adjustment is scored 0 to 10 (10 being the most challenging). As the sum is then divided by 30, the adjustment to the sovereign spread factor will then vary between 0 and 1.

Damodaran (2003) also considers two modifications that allow for country- or project-specific exposure to political risk. In the first approach, which he calls the “\(\lambda \)-approach,” he assumes that a company’s exposure to political risk is proportional to its exposure to world market risk, measured by \(\beta_{i} \). Of course, betas measure overall exposure to world market risk, and may be quite different from exposure to political risk. In the second (his preferred “\(\lambda \)-approach”), he allows each firm/project to have a distinct

\(^4\) Another model in this class is by Hauptman and Natella (1997) who keep the intercept equal to the sovereign spread, but make the beta an ad hoc function of data properties and the true beta.
critical assessment and a new approach

2.4. Critical assessment and a new approach

bonds or equity markets. Our approach below has similar advantages. The country rating. Hence, risk premia from this empirical model are available for many countries that do not have sovereign assessed by political risk ratings, are important determinants of sovereign spreads (see, e.g., Baldacci et al., 2011). The international literature on the determinants of sovereign spreads shows that political risk factors, as related with its attitude towards MNC’s. The ability of a government to service its external debts also depends on the stability, as measured by changes in the heads of government, and Cosset and Roy (1991) focusing more on political unrest indicators.

2.3. Country credit ratings

shows that different adjustments deliver wildly different implications for the cost of capital and thus for international valuations. Of course, these credit ratings are highly correlated with sovereign spreads and should reflect political risk concerns incorporated in reported credit ratings. Studies by Brewer and Rivoli (1990) and Cosset and Roy (1991) find that political factors are significant determinants of the Institutional Investor country credit ratings; with Brewer and Rivoli (1990) using political regime instability, as measured by changes in the heads of government, and Cosset and Roy (1991) focusing more on political unrest indicators.

An interesting aspect of the Erb et al. (1996) approach is that the only input needed to determine a country risk premium is the country rating. Hence, risk premia from this empirical model are available for many countries that do not have sovereign bonds or equity markets. Our approach below has similar advantages.

2.4. Critical assessment and a new approach

These extant approaches, making use of sovereign spreads, have a number of appealing features. First, it is plausible that sovereign spreads reflect political risks relevant for an MNC’s investment decisions. The sovereign spread represents an exposure to political risk that is different from its exposure to world market risk. In Abuaf (2015), $\alpha = [0.35, 0.70$ or 1.00] by assumption and SS is, in this case, based on credit default swaps.

This table reports discount rate (for project i and time t) modifications that can be generally represented as $r_{t,i} = r_{f,t} + (SS_{j,t}^i) + \rho \cdot (\gamma^i \cdot \beta^j \cdot \sigma^j)$, where $r_{f,t}$ is the risk free rate, $SS_{j,t}$ is the sovereign spread for country j in which the investment is located, β^j is the beta of project i with respect to the world market return, and σ^j is the world market risk premium. The first column provides the articles from which the modifications are drawn. The second and third columns provide the functional forms for $f(\cdot)$ and $g(\cdot)$, respectively. γ^i and σ^j are the standard deviations of the equity market return in country j and the world, respectively. $\rho_{f,j}$ is the correlation between the equity and bond market returns for the country in which the project is located. α^j is the standard deviation of country j’s equity returns and σ^j is the standard deviation of country j’s bond returns. γ^i represents a company’s access to capital markets, γ^i the susceptibility of the investment to political risk, and γ^i the financial importance of the project to the company (each component is scaled from 1 to 10). λ^j represents project i’s exposure to political risk that is different from its exposure to world market risk. In Abuaf (2015), $\alpha = [0.35, 0.70$ or 1.00] by assumption and SS is, in this case, based on credit default swaps.

exposure to political risk (λ^j) that is different from its exposure to world market risk. This can be determined, for example, by the degree to which the project’s revenues are derived from activities located domestically or otherwise. The acknowledgement that political risk exposure could vary for different firms is appealing, but the implementation of these adjustments requires subjective data analysis. Importantly, the proposed adjustments to the cost of capital have no theoretical motivation. Furthermore, Estrada (2007) shows that different adjustments deliver wildly different implications for the cost of capital and thus for international valuations.

2.3. Country credit ratings

As an alternative to the various sovereign spread adjustments for political risk mentioned above, Erb et al. (1996) instead employ country credit ratings to infer expected country returns. In particular, they regress future country-level equity market returns on the logarithm of current country credit ratings supplied by Institutional Investor. The resulting fitted values are the proposed expected returns. Of course, these credit ratings are highly correlated with sovereign spreads and should reflect political risk concerns incorporated in reported credit ratings. Studies by Brewer and Rivoli (1990) and Cosset and Roy (1991) find that political factors are significant determinants of the Institutional Investor country credit ratings; with Brewer and Rivoli (1990) using political regime instability, as measured by changes in the heads of government, and Cosset and Roy (1991) focusing more on political unrest indicators.

An interesting aspect of the Erb et al. (1996) approach is that the only input needed to determine a country risk premium is the country rating. Hence, risk premia from this empirical model are available for many countries that do not have sovereign bonds or equity markets. Our approach below has similar advantages.

2.4. Critical assessment and a new approach

These extant approaches, making use of sovereign spreads, have a number of appealing features. First, it is plausible that sovereign spreads reflect political risks relevant for an MNC’s investment decisions. The sovereign spread represents an ex ante assessment of the creditworthiness of a country’s government. However, the government’s willingness to pay external debt is correlated with its attitude towards MNC’s. The ability of a government to service its external debts also depends on the government’s ability to extract resources from its citizens, which is likely correlated with typical measures of political stability. While quantifying political risk associated with physical investments, such as a government changing the value of a MNC’s cash flows through regulations, may be difficult, it is easier to define a realization of a political risk event (namely sovereign default) in the case of sovereign debt (see also Choi et al., 2011). The link between sovereign spreads and political risk is apparent from two empirical perspectives. The empirical literature on the determinants of sovereign spreads shows that political risk factors, as assessed by political risk ratings, are important determinants of sovereign spreads (see, e.g., Baldacci et al., 2011). The international business literature has also linked political risk variables to creditworthiness. For example, Citron and Nickelsburg (1987) find a statistically significant link between political instability, which they proxy by the number of changes of government over a five-year
period, and the default probability on external debt for a number of developing countries. Vaaler et al. (2005) show that spreads increase when the probability that a right-wing government is replaced by a left-wing government increases.

Second, sovereign spreads constitute market determined and forward-looking assessments of political risk that are likely superior to the use of, say, macroeconomic data (which are subject to manipulation and usually stale). Third, the spreads are in discount rate units reflecting long-term investments. Even though political risk is a cash flow risk, political risk probabilities are difficult to compute and Eq. (2) can be used to convert discount rate adjustments to political risk probabilities.

The main problem with the approach is that sovereign spread variation has been shown to reflect variation in a number of other factors, such as local macro-economic and fiscal conditions (see e.g. Edwards, 1984; Hilscher and Nosbusch, 2010) beyond political risk. A number of recent articles show that global and/or U.S. financial conditions are important drivers of variation in sovereign spreads (see Özatay et al., 2009; Gonzalez-Rozada and Levy-Yeyati, 2008; Maier and Vasishtha, 2008; Remolona et al., 2008; Pan and Singleton, 2008; Longstaff et al., 2011 using bond and CDS data). Martell (2008) emphasizes the role of market liquidity for spread determination, but also still finds evidence in favor of a significant common component among international bond spreads. Mauro et al. (2002) show that emerging market sovereign spreads currently move much more than they did in a historical 1870–1913 sample, and that major fluctuations are tied to global events to a greater degree in more recent years. If this is the case, the sovereign spread reflects political, local economic as well as systematic global risks.

We start from a discount rate that only reflects systematic risk and then adjust for a Political Risk Sovereign Spread (PRSS) as in Eq. (1) above. This political risk spread, introduced in Bekraert et al. (2014), cleanses the sovereign spread (SS) of global risk and local macroeconomic conditions beyond political risk. In particular,

\[SS_{jt} = PRSS_{jt} + F_{jt}, \]

where \(F_{jt} \) represents the effect on sovereign spreads of a number of non-political risk factors. To give concrete content to (6), Bekraert et al. (2014) use a regression model linking sovereign spreads to a measure of political risk to infer PRSS\(_{jt}\), and to several other factors to proxy for other determinants of sovereign spreads, following the extant empirical literature on the topic.

To implement this approach, we must find a political risk rating that is forward looking and reflects political risk in a narrow sense, as opposed to broad country risk that also embeds macro-economic factors. We use the political risk rating from the International Country Risk Guide (ICRG) which is designed to mainly reflect political risk as the ICRG has separate ratings on economic and financial risk. While the rating is largely subjective based on the insights of various analysts, the types of quantitative measures of political risk (government turnover, democracy, and left or right leaning governments) mentioned above are surely correlated with various sub-components of the ratings (see below). Moreover, if the ratings are not salient with respect to sovereign spreads and default, our empirical analysis should fail to find a significant link between the two.\(^6\)

We also propose a method, building on the model, to compute political risk spreads even for countries that do not issue sovereign bonds, but do have a political risk rating. While applying the model to countries not issuing bonds skirts some selection issues, it at least provides a reasonable starting point to quantify political risk for a large number of countries.

One may think that corporate bond spreads may be more closely correlated with expectations regarding corporate cash flows than are sovereign spreads. However, it is not at all clear that the cash flow risks facing emerging market companies are very informative about the political risks facing multinational companies investing in the emerging market where they are headquartered. For example, a multinational emerging market company may be more subject to political risks in other countries than political risks in its own country given that most of its business is conducted outside of its home country. Nevertheless, there may be some useful information in these bond prices. First, these companies operate in a similar regulatory framework as do the multinationals trying to do business in the emerging market. Second, the ability of the country to earn foreign exchange likely is a proxy for political risk relevant for foreign MNCs. Nevertheless, we check whether corporate bond spreads house information about political risk below.

Of course, corporate bond markets in many emerging markets are still in their infancy and empirical work is scarce. Durbin and Ng (2005) note that corporate bonds that are able to pierce the sovereign ceiling (trade at a lower spread than the government) are typically firms with substantial export earnings and/or a close relationship with either a foreign firm or with the home government. Dittmar and Yuan (2008) find a strong empirical link between emerging market sovereign and corporate bond spreads, as do Cavallo and Valenzuela (2010). The latter authors do point out that firm specific determinants dominate the explained variation of corporate bonds spreads. These empirical findings suggest that corporate bond spreads from emerging market companies may not necessarily reflect political risk relevant for foreign MNCs. Nevertheless, we check whether corporate bond spreads house information about political risk below.

Our approach assumes a rational world in which agents assign probabilities to political risk events and in which discount rates reflect systematic risks, as is, for example, the case for the world CAPM. A more realistic model of the world involves Knightian

\(^6\) In fact, Bekraert et al. (2014) show that these ratings do predict political risk realizations, as measured by textual-based news of political risk related events.
uncertainty, where the right probabilities for political risk events and even the range of events may not be fully knowable. In such a world, economic agents are likely to act more conservatively, thus potentially requiring larger discount rates. We believe that there is still value in our approach, as long as markets and the rating analysts account for the Knightian uncertainty. That is, countries with a more “uncertain” environment receive, everything else equal, higher spreads, and poorer political risk ratings. We feel that this is a plausible assumption. The problem is then how to translate our political risk spreads into a political risk probability for use in a discounted cash flow analysis. Under Knightian uncertainty, the CAPM is not likely to hold and the discount rate model would have to be changed. Our contribution lies in political risk measurement and a concrete proposal to conduct capital budgeting with political risk adjustments. Deriving a new equilibrium model for a world with Knightian uncertainty is far beyond the scope of this article.

3. Preliminaries and data

In this section, we lay the groundwork for the political risk adjustment based on political risk spreads. We update and extend the regressions run in Bekaert et al. (2014), briefly outlining the variables and data used, before discussing the results.

3.1. Regression framework and data

Our key regression takes the form:

$$SS_{it} = c_0 + c_1 Global_{it} + c_2 ZR_{it} + c_3 Local_{it} + c_4 BVOL_{it} + c_5 PR_{it} + \epsilon_{it},$$

(7)

where SS_{it} is the sovereign spread for country i and month t; Global$_{it}$ represents a global factor that is identical for all countries; ZR_{it} measures the illiquidity of the sovereign bonds; Local$_{it}$ represents a country-specific macroeconomic factor; $BVOL_{it}$ is an estimate of the monthly bond return volatility; and PR_{it} represents the political risk measure (our main variable of interest).

As hinted above, the recent literature has stressed the importance of global determinants. Hence, our first factor is the Barclays (formerly Lehman Brothers) U.S. Corporate High Yield Spread over Treasuries. This variable serves as a global corporate factor.

Our second factor measures (local) illiquidity. Hund and Lesmond (2008) show that a significant part of observed yield spreads for emerging market sovereign and corporate issues may be attributable to illiquidity compensation rather than simply default risk. Following the work of Lesmond et al. (1999) and Bekaert et al. (2007), we construct a bond market illiquidity measure based on the incidence of observed zero daily bond returns. ZR is the equally-weighted monthly average of zero daily returns across all sovereign bonds of a given country provided by Datastream. The Datastream data do not represent the exact same constituent set of bonds that enter into the EMBI indices, but the correlation between the average yield on these bonds and the EMBI+$yield$ is very high, suggesting significant overlap. To mitigate the effect of outliers, we use a 12-month moving average of the monthly illiquidity measure.

Our third factor measures local risk conditions. We use the ICRG ratings on economic and financial risks for this purpose. The economic risk indicator combines information on five economic statistics: GDP levels, GDP growth, inflation, government budgets, and the current account. The ICRG financial risk indicator is designed to assess a country’s ability to finance its official, commercial, and trade debt obligations. It combines data from five statistics: foreign debt as a percentage of either GDP or exports, the current account as a percentage of exports, official reserves, and exchange rate stability. We combine both the economic and financial risk indicators into one composite “economic” rating. The ratings are scaled between 0 and 100, with 100 representing the least risk. To have larger values represent more risk, we transform the original ratings by taking the log difference between the U.S. rating and the country’s rating.

Our fourth factor, $BVOL$, measure captures realized bond market volatility (see Andersen et al., 2003 as an example). This measure is particularly useful when in crisis times spreads and bond volatility increase non-linearly. For each market, we construct a monthly scaled measure of realized bond market volatility by cumulating daily squared EMBI bond index returns and dividing the sum by the average life of the bonds in each country index. We then take a 12 month moving average of the monthly bond volatility measures.

Finally, the most important factor for our purposes is obviously, PR, the political risk measure, which we also extract from the ICRG data. The ICRG political risk indicator is designed to assess the political stability of the countries covered, combining information from twelve subcomponents, including measures of government stability, socioeconomic conditions, the investment profile, internal conflict, external conflict, corruption, military in politics, religious tensions, law and order, ethnic tension, democratic accountability, and bureaucratic quality (see Appendix A for more detail). The ratings are scaled between 0 and 100, with 100 representing the least risk. To have larger values represent more risk, we transform the original ratings by taking the log difference between the U.S. rating and the country’s rating.8

7 In our empirical work, we found that using the two ratings separately did not improve the empirical fit and that both ratings received statistically indistinguishable coefficients.

8 The log difference can be interpreted as the percentage difference between the U.S. and the country-level ICRG ratings. A zero value implies that the country has an institutional environment comparable to that of the U.S., where as a much larger number would denote significant political risk. That is, while the scaling of the original ICRG index is arbitrary, the actual value here has economic content as a percentage difference. The log difference is also invariant to re-scalings of the original index. Therefore our results are robust to the use of alternative political risk indices as long as they imply the same relative deviation of a given country vis-a-vis the U.S.
While the political risk indicator purports to measure political and not economic risk, it goes without saying that our political and economic risk indicators are correlated. High unemployment and poverty, for example, can contribute to internal conflicts. In Appendix A, we report the pooled correlation of the political risk rating and its sub-components with our economic rating. The correlations are as low as 0.172 for Religious Tensions and as high as 0.605 for Investment Profile. As the overall political rating is almost 70% correlated with economic risk, it may not be surprising that authors such as Perotti and Van Oijen (2001) and Click and Weiner (2010) use the Institutional Investor country risk ratings as a proxy for political risk. The regression framework in Eq. (7) of course automatically takes correlation into account by measuring partial correlations between the dependent variable and the independent variables.

Table 2
Summary statistics: Sovereign yield spreads.

<table>
<thead>
<tr>
<th>Country</th>
<th>Mean</th>
<th>Median</th>
<th>Std. Dev.</th>
<th>Start date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td>745</td>
<td>693</td>
<td>346</td>
<td>01/94</td>
</tr>
<tr>
<td>Brazil</td>
<td>579</td>
<td>465</td>
<td>404</td>
<td>01/94</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>491</td>
<td>291</td>
<td>459</td>
<td>01/95</td>
</tr>
<tr>
<td>China</td>
<td>120</td>
<td>118</td>
<td>58</td>
<td>03/94</td>
</tr>
<tr>
<td>Colombia</td>
<td>364</td>
<td>286</td>
<td>215</td>
<td>02/97</td>
</tr>
<tr>
<td>Cote d’Ivoire</td>
<td>871</td>
<td>860</td>
<td>331</td>
<td>04/98</td>
</tr>
<tr>
<td>Ecuador</td>
<td>989</td>
<td>822</td>
<td>532</td>
<td>01/01</td>
</tr>
<tr>
<td>Lebanon</td>
<td>413</td>
<td>377</td>
<td>185</td>
<td>04/98</td>
</tr>
<tr>
<td>Malaysia</td>
<td>180</td>
<td>150</td>
<td>131</td>
<td>10/96</td>
</tr>
<tr>
<td>Mexico</td>
<td>341</td>
<td>243</td>
<td>259</td>
<td>01/94</td>
</tr>
<tr>
<td>Morocco</td>
<td>430</td>
<td>388</td>
<td>282</td>
<td>01/94</td>
</tr>
<tr>
<td>Nigeria</td>
<td>1,101</td>
<td>927</td>
<td>764</td>
<td>01/94</td>
</tr>
<tr>
<td>Panama</td>
<td>307</td>
<td>287</td>
<td>126</td>
<td>07/96</td>
</tr>
<tr>
<td>Peru</td>
<td>352</td>
<td>279</td>
<td>207</td>
<td>03/97</td>
</tr>
<tr>
<td>Philippines</td>
<td>369</td>
<td>363</td>
<td>169</td>
<td>01/94</td>
</tr>
<tr>
<td>Poland</td>
<td>197</td>
<td>172</td>
<td>140</td>
<td>10/94</td>
</tr>
<tr>
<td>Russia</td>
<td>318</td>
<td>239</td>
<td>232</td>
<td>08/97</td>
</tr>
<tr>
<td>South Africa</td>
<td>226</td>
<td>203</td>
<td>123</td>
<td>12/94</td>
</tr>
<tr>
<td>Turkey</td>
<td>231</td>
<td>244</td>
<td>70</td>
<td>06/96</td>
</tr>
<tr>
<td>Venezuela</td>
<td>946</td>
<td>955</td>
<td>402</td>
<td>01/94</td>
</tr>
<tr>
<td>Hold out sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algeria</td>
<td>803</td>
<td>722</td>
<td>405</td>
<td>03/99</td>
</tr>
<tr>
<td>Chile</td>
<td>146</td>
<td>145</td>
<td>60</td>
<td>05/99</td>
</tr>
<tr>
<td>Croatia</td>
<td>320</td>
<td>301</td>
<td>174</td>
<td>08/96</td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>551</td>
<td>428</td>
<td>352</td>
<td>11/01</td>
</tr>
<tr>
<td>Egypt</td>
<td>261</td>
<td>222</td>
<td>181</td>
<td>07/01</td>
</tr>
<tr>
<td>El Salvador</td>
<td>333</td>
<td>318</td>
<td>131</td>
<td>04/02</td>
</tr>
<tr>
<td>Gabon</td>
<td>428</td>
<td>359</td>
<td>233</td>
<td>12/07</td>
</tr>
<tr>
<td>Ghana</td>
<td>544</td>
<td>453</td>
<td>261</td>
<td>10/07</td>
</tr>
<tr>
<td>Hungary</td>
<td>179</td>
<td>105</td>
<td>160</td>
<td>01/99</td>
</tr>
<tr>
<td>Indonesia</td>
<td>287</td>
<td>249</td>
<td>140</td>
<td>04/04</td>
</tr>
<tr>
<td>Iraq</td>
<td>554</td>
<td>523</td>
<td>181</td>
<td>03/06</td>
</tr>
<tr>
<td>Jamaica</td>
<td>605</td>
<td>625</td>
<td>184</td>
<td>10/07</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>440</td>
<td>362</td>
<td>269</td>
<td>06/07</td>
</tr>
<tr>
<td>Pakistan</td>
<td>701</td>
<td>637</td>
<td>472</td>
<td>06/01</td>
</tr>
<tr>
<td>Serbia</td>
<td>407</td>
<td>383</td>
<td>191</td>
<td>04/05</td>
</tr>
<tr>
<td>South Korea</td>
<td>171</td>
<td>114</td>
<td>142</td>
<td>01/94</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>608</td>
<td>440</td>
<td>440</td>
<td>11/07</td>
</tr>
<tr>
<td>Thailand</td>
<td>157</td>
<td>128</td>
<td>128</td>
<td>05/97</td>
</tr>
<tr>
<td>Tunisia</td>
<td>407</td>
<td>313</td>
<td>227</td>
<td>05/02</td>
</tr>
<tr>
<td>Trinidad & Tobago</td>
<td>170</td>
<td>144</td>
<td>103</td>
<td>05/07</td>
</tr>
<tr>
<td>Ukraine</td>
<td>700</td>
<td>531</td>
<td>615</td>
<td>07/00</td>
</tr>
<tr>
<td>Uruguay</td>
<td>388</td>
<td>273</td>
<td>293</td>
<td>05/01</td>
</tr>
<tr>
<td>Vietnam</td>
<td>316</td>
<td>305</td>
<td>150</td>
<td>11/05</td>
</tr>
</tbody>
</table>

The baseline sample includes twenty emerging-market countries. For each country, we report the time-series average, median, and standard deviation of the monthly EMBI sovereign yield spread (relative to maturity-matched U.S. Treasuries) from J.P. Morgan (in basis points, where 100 bp = 1%). The period covers non-default periods from 1994 to 2013 (data are available as countries are added to the sample). For our baseline sample, we require at least 10 years of monthly data for all variables that we use in the regression specifications (both sovereign spreads and explanatory variables). We also provide complementary summary statistics for a ‘hold out sample’ of 23 additional countries that are used for an out-of-sample exercise.

While the political risk indicator purports to measure political and not economic risk, it goes without saying that our political and economic risk indicators are correlated. High unemployment and poverty, for example, can contribute to internal conflicts. In Appendix A, we report the pooled correlation of the political risk rating and its sub-components with our economic rating. The correlations are as low as 0.172 for Religious Tensions and as high as 0.605 for Investment Profile. As the overall political rating is almost 70% correlated with economic risk, it may not be surprising that authors such as Perotti and Van Oijen (2001) and Click and Weiner (2010) use the Institutional Investor country risk ratings as a proxy for political risk. The regression framework in Eq. (7) of course automatically takes correlation into account by measuring partial correlations between the dependent variable and the independent variables.

8 G. Bekaert et al. / Journal of Corporate Finance 37 (2016) 1–23

9 Yet, Tomz and Wright (2007), using data for the period 1820–2004, find only weak correlation between economic output in the borrowing country and sovereign defaults.
Given that we investigate spreads relative to U.S. Treasury yields, we subtract from all our country variables their U.S. counterparts. The number of zero returns is assumed to be zero for the highly liquid U.S. Treasury market.

3.2. Empirical Results

Before we report results regarding the main regression, we must still discuss our sovereign spread data. We collect monthly bond yields for 43 sovereign issuers from January 1994 to December 2013 from JP Morgan’s Emerging Market Bond Indices (EMBI). In particular, we employ their EMBI+ series, which cover relatively liquid U.S. dollar denominated sovereign and quasi-sovereign bonds. If EMBI+ series are not available, we employ JP Morgan’s EMBI series, which incorporate less liquid instruments. Further, we obtain “Stripped Spreads” (EMBI code: SSPRD) over Treasuries. The indices incorporate emerging market issuers from Latin America, Eastern Europe, Asia, Africa, and the Middle East.

Table 2 presents relevant summary statistics. We distinguish two samples. For our “baseline” sample, we require at least 10 years of monthly data for all variables that we use in the regression specifications (both sovereign spreads and explanatory variables). Among our baseline sample of 20 countries, the mean spreads over non-default periods for each country range from as little as 120 basis points for China to as large as 1101 basis points for Nigeria. In several cases, the average spreads substantially exceed the median spreads, suggesting the importance of several significant market crises that are present in our data. Finally, the average spreads mask significant time-series variation in spreads, as suggested by the large standard deviations reported. We also provide data for 23 additional countries, denoted “hold out sample”, that we employ for several robustness checks. These alternative countries have mostly shorter historical coverage, but generally have similar summary statistics.

We eliminate a small number of sovereign spreads observed during periods of default. It is generally known that sovereign spreads may behave quite differently when a country has defaulted on its debt. In default, the market attempts to assess the recovery values of the existing bonds, rather than the future political risk situation. Moreover, when a bond goes into default, the market environment is typically plagued by heightened illiquidity, making it difficult to extract political risk information.

Table 3, Panel A

Explaining credit spreads.

<table>
<thead>
<tr>
<th></th>
<th>Sovereign spreads</th>
<th>Corporate spreads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>−373.73</td>
<td>213.85</td>
</tr>
<tr>
<td></td>
<td>26.54</td>
<td>40.19</td>
</tr>
<tr>
<td>Ln(Average life)</td>
<td>144.18</td>
<td>−126.14</td>
</tr>
<tr>
<td></td>
<td>8.87</td>
<td>17.95</td>
</tr>
<tr>
<td>U.S. high yield spread</td>
<td>0.36</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Bond illiquidity</td>
<td>104.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20.28</td>
<td></td>
</tr>
<tr>
<td>Ln(Economic + financial risk)</td>
<td>362.75</td>
<td>435.24</td>
</tr>
<tr>
<td></td>
<td>45.96</td>
<td>80.99</td>
</tr>
<tr>
<td>Bond volatility</td>
<td>76.69</td>
<td>38.10</td>
</tr>
<tr>
<td></td>
<td>4.00</td>
<td>5.56</td>
</tr>
<tr>
<td>Ln(Political risk)</td>
<td>681.81</td>
<td>1016.39</td>
</tr>
<tr>
<td></td>
<td>36.99</td>
<td>91.39</td>
</tr>
<tr>
<td>Adj. R²</td>
<td>0.70</td>
<td>0.68</td>
</tr>
</tbody>
</table>

The sovereign spread sample includes 20 emerging-market countries. For an unbalanced panel of 3438 non-default observations from 1994 to 2013 in the first column, we regress the monthly EMBI sovereign yield spread (over U.S. treasuries) onto the following variables: 1) a constant, 2) the natural logarithm of average life of the bonds used in the index, 3) Barclays (formerly Lehman Brothers) U.S. High Yield (non-investment grade) bond spread, 4) the proportion of zero daily bond returns for each country, 5) the difference between the logarithm of the summed ICRG economic and financial risk indicators for the U.S. less the comparable value for each country, 6) the difference between the (maturity-adjusted) cumulated daily squared bond returns for the country and for U.S. 10-year Treasuries, and 7) the difference between the logarithm of the ICRG political risk indicator for the U.S. less the comparable value for each country. In column 2, we run a regression with corporate bond spreads, replacing the sovereign bond data with data on U.S.$ corporate credit spreads (including the relevant explanatory variables). The corporate spread sample includes 13 emerging-market countries for an unbalanced panel of 957 non-default observations from 2002 to 2013. We report coefficient estimates from pooled OLS regressions; however, standard errors, reported in italics, account for group-wise heteroskedasticity, SUR effects, and a Newey-West correction with four lags.

10 These indices include both collateralized restructured (Brady) debt and conventional non-collateralized bonds. A bond's stripped spread is net of the value of any (Brady) guarantees.

11 The availability of the EMBI data is the most restrictive, but for some countries the construction of an illiquidity measure (see below) is more binding.
Fig. 1. Panel A: Actual vs. predicted sovereign spread (20 countries, 1994–2013). Panel B: Actual vs. predicted sovereign spread (hold out sample; 23 countries, 1999–2013).
from the spreads. We therefore collect data on default from Fitch, Moody’s, and Standard & Poor’s. Default starts in the month in which at least one rating agency downgrades at least one sovereign bond of a country to “default” and lasts until the first non-default rating of a sovereign bond is issued (meaning they are all in non-default). The various sovereign bonds have different maturities, so we also include the log of the maturity (in years) as an independent variable to the regression.

The results are reported in Table 3, Panel A. In our main regressions, we focus on an unbalanced baseline sample of 20 emerging market countries spanning January 1994 through December 2013 (however, we lose the first 11 observations of 1994 due to our 12-month moving average of several variables). All estimated coefficients are based on pooled OLS; however, the standard errors are adjusted for groupwise-heteroskedasticity, SUR effects, and a Newey and West (1987) correction with four lags.

The first column of Table 3, Panel A presents estimates for the full specification. The adjusted R^2 is 70%. All coefficients in the regression are highly statistically significant, indicating that factors beyond political risk are important in explaining cross-country and temporal variation in sovereign spreads. Fig. 1 shows the fit of the regression in and out of sample. Fig. 1a shows a scatter plot of the actual sovereign spreads on the vertical axis versus the predicted spreads on the horizontal axis with the regression line also being graphed. The equally-weighted average absolute residual is 137 basis points. Fig. 1b shows the same information but with the regression coefficients applied to sovereign spreads from the “out-sample” countries. The R^2 for this regression is 55%. Further, the equally weighted absolute residual is now 150 basis points.

To characterize the relative contributions of each determinant, Table 3, Panel B reports a variance decomposition for the baseline sovereign spread sample, showing the degree to which each factor contributes to the variation of the predicted sovereign spread from the full specification (first column).¹² Political risk accounts for 17.5% of the total predicted variance, with bond volatility being the dominant factor. The factors are obviously correlated. In particular, bond volatility is strongly correlated with the other risk factors. To assess what the maximal impact of political risk is, we also run a regression after first orthogonalizing bond illiquidity, the economic and financial risk indicator, and bond volatility with respect to political risk so that the political risk coefficient soaks up all the covariances with other factors. The last column, we show an alternative orthogonalization. We first orthogonalize the bond volatility variable with respect to all the other variables. The sample includes 20 emerging-market countries detailed in Table 2.

3.3. Corporate Bond spreads

We also repeat the regression in Eq. (7) for corporate bond spreads instead of sovereign spreads. We collect monthly yield spreads from country-level corporate bond indices for 13 markets from January 2002 to December 2013 from JP Morgan’s Corporate Emerging Market Bond Indices (CEMBI). As with the sovereign spreads, we obtain “Stripped Spreads” (EMBI code: SSPRD) over Treasuries.

In the second column of Table 3, Panel A, we report a regression for our much more limited sample of corporate spreads. We could not construct the bond liquidity variable for these bonds, so we simply drop that variable from the regression. Despite the large difference in sample size (both countries covered and time period), we do observe that the fit is similar across corporate and financial. The adjusted R^2 is 70%. All coefficients in the regression are highly statistically significant, indicating that factors beyond political risk are important in explaining cross-country and temporal variation in sovereign spreads.

For the sovereign spread specification from Tables 3, Panel A, we report the overall contribution of each variable to the variation of the predicted spread, defined as the ratio of the covariation between the given variable and the predicted spread relative to the variance of the predicted spread. To gauge the maximal impact of political risk, we also run the regressions after first orthogonalizing the other factors (Bond illiquidity, Ln(Economic and financial), and Bond volatility) with respect to political risk so that the political risk coefficient soaks up all the covariances with other factors. In the last column, we show an alternative orthogonalization. We first orthogonalize the bond volatility variable with respect to all the other variables. The sample includes 20 emerging-market countries detailed in Table 2.

Table 3, Panel B

Variance decomposition.

<table>
<thead>
<tr>
<th></th>
<th>Sovereign spreads</th>
<th>Orthogonalized</th>
<th>Orthogonalized (Alt.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln(Average life)</td>
<td>0.078</td>
<td>0.078</td>
<td>0.107</td>
</tr>
<tr>
<td>U.S. high yield spread</td>
<td>0.109</td>
<td>0.109</td>
<td>0.097</td>
</tr>
<tr>
<td>Bond illiquidity</td>
<td>0.033</td>
<td>0.019</td>
<td>0.156</td>
</tr>
<tr>
<td>Ln(Economic + financial risk)</td>
<td>0.087</td>
<td>0.074</td>
<td>0.213</td>
</tr>
<tr>
<td>Bond volatility</td>
<td>0.518</td>
<td>0.409</td>
<td>0.091</td>
</tr>
<tr>
<td>Ln(Political risk)</td>
<td>0.175</td>
<td>0.311</td>
<td>0.337</td>
</tr>
</tbody>
</table>

¹² See Appendix B for more detail about the variance decomposition.
sovereign bonds and many of the coefficients are similar as well. The only exception is the duration variable which has now an unintuitive negative sign. For political risk, the coefficient is more than 50% larger than in the sovereign spread case, but it is conceivable that this is partially driven by correlation with the bond illiquidity variable, not present in the regression.

4. Market based political risk assessment

In this section, we review the concept of a Political Risk Sovereign Spread, PRSS, measured in basis points, that represents the part of the sovereign spread accounted for by political risk. Before showing how to use the political risk spread in capital budgeting, we assess whether political risk is priced in a cross-section of emerging market equity returns, or whether it is diversifiable, which has a bearing on whether the political risk adjustment should be a pure cash flow or also a discount rate adjustment.

4.1. Political risk spreads

Bekaert et al. (2014) propose to use the regression framework of Eq. (7) to compute a Narrow Political Risk Sovereign Spread (NPRSS) as follows:

$$\text{NPRSS}_{i,t} = \frac{c_{i} \text{PR}_{i,t}}{\text{SS}_{i,t}} \text{SS}_{i,t}.$$

That is, the political risk spread takes the fraction of the predicted value for the sovereign spread accounted for by the political risk variable and multiplies it with the current sovereign spread. The computation therefore embeds up to date information from the forward looking sovereign spread at the same time as the current information in the political risk rating in a particular country (relative to the U.S.).

It is also important to acknowledge that political and other risks may be correlated; an increase in macroeconomic and/or liquidity risk may be partially induced by political risk events. To more comprehensively account for the potential correlation between the political risk variable and other independent variables, we also construct an upper bound on the political risk spread. To do so, we estimate panel regressions for each of our main explanatory variables, except for the global variable and maturity, onto political risk and store the residuals. These residuals capture the variation in the independent variable not correlated with political risk. We then rerun the main sovereign spread regression using these orthogonalized variables, so that the political risk variable now soaks up all the correlated risks. We then repeat the exact same calculations as we did for the narrow political spread, yielding a Wide Political Risk Sovereign Spread (WPRSS).

In Table 4, Panel A, we first report some general characteristics of the narrow and wide ratios. These ratios are based on the specification in Panel A of Table 3 (first column), estimated over the non-default baseline sample. Nevertheless, we compute them for our full sample, i.e. both the baseline and hold out sample, and exclude observations related to default periods. We report their values for a few percentiles of the distribution. The narrow ratio is 1.0 at its 90th percentile and falls to 0.16 for the 10th percentile. The wide ratio is 0.28 at the 10th percentile, but nearly half of the observations have a wide ratio equal to one. Next, we rank all observations based on the political risk rating. For each observation, we calculate the predicted spread, $\text{SS}_{i,t}$, the predicted narrow and wide political spreads as well as the corresponding ratios. Finally, we apply these ratios to the actual observed spread $\text{SS}_{i,t}$ obtaining NPRSS,t and WPRSS,t. Table 4, Panel B reports all of these components in terms of averages around the 90th, 75th, 50th, 25th, and 10th percentile of the political risk distribution. The narrow (wide) ratios increase from 0.40 (0.59) for low political risk to about 0.57 (0.84) for high political risk, suggesting that the top values for the ratios (see Panel A) are observed throughout the distribution of political risk. Actual and predicted spreads increase monotonically with political risk, resulting in narrow and wide spreads that also monotonically increase with political risk. NPRSS is about 77 basis points at the 10% level of the political risk distribution and about 340 basis points at the 90% level. The wide spreads are roughly about 50% higher as the narrow spreads.

For many countries covered by the ICRG, important data items necessary for the political risk spread computation, often including the sovereign bond spreads themselves, are not available. Bekaert et al. (2014) therefore use data on the political risk spread for the countries employed in Table 2 to separately fit linear-quadratic cross-sectional regressions through the narrow and wide spreads onto $\text{PR}_{i,t}$ available from ICRG for a large set of countries, and its square. The fitted value of this regression then determines what the narrow and wide political risk spreads would be given each country’s $\text{PR}_{i,t}$. As an example, Appendix C reports narrow and wide political risk spreads for 112 emerging markets in 2013, most of which do not have sovereign bonds. The narrow spreads range from 19.6 basis points (bps) for Bulgaria to 597.9 bps for Somalia. The wide spreads range from 34.9 bps for Bulgaria to 846.6 bps for Venezuela. The regional distribution of the spreads is also plausible. They are the highest for African countries (284 bps, on average, for narrow spreads), followed by the Middle East (with 242 bps), Latin America (207 bps), Asia (201 bps), and finally, emerging Europe (141 bps).

13 When political risk in the country examined is smaller than in the U.S., making $\text{PR}_{i,t}$ negative, the narrow political risk spread is set to zero. When the political risk variable accounts for more than 100% of the spread, the political risk spread equals the sovereign spread. When the predicted spread is negative, we use an average of the positive ratios over the last 12 months as the ratio. If there are no such positive ratios, we set the ratio to 1.0.

14 We average observations with political risk ratings ranked 2.5 percentiles above or below the stated percentile. For example, values reported for the 90th percentile represent averages of all observations with political risk ratings between the 92.5th and the 87.5th percentile of the distribution.
between the logged U.S. and country-level ICRG political risk indicator. Then, for 5% bands around each political risk percentile, we average the Predicted and actual sovereign spread for each point along the realized political risk distribution.

Narrow ratios provide information on how much of the predicted spread is attributable to political risk. Narrow ratios are \(\frac{c_5 PR_i,t}{(Predicted \ SS_{i,t})} \); whereas wide spreads are constructed in the same way but using the \(c_5 \) coefficient from the orthogonalized version from Tables 3 that attributes maximal weight to political risk. If the ratio is negative or greater than one, we set it to zero or one, respectively. In Panel B, we sort country-months by realized political risk, \(PR_{i,t} \), the difference between the logged U.S. and country-level ICRG political risk indicator. Then, for 5% bands around each political risk percentile, we average the Predicted \(SS_{i,t} \), \(c_5 PR_i,t \) (both narrow and wide), and the narrow and wide ratios (\(\frac{c_5 PR_i,t}{(Predicted \ SS_{i,t})} \)). Finally, we also compute the average actual EMBI sovereign spreads for these realized political risk percentiles and construct the implied political risk spreads, \(NPRSS_{i,t} \) and \(WPRSS_{i,t} \), by multiplying the narrow and wide ratios, respectively, by the observed EMBI sovereign spread for each point along the realized political risk distribution.

4.2. Is political risk priced?

It is conventional wisdom that country risk is priced in equity returns. However, in theory, political risk must affect global discount rates for it to be priced. While political uncertainty in a country with a major equity market such as the U.S. or certain major emerging market political risk events, such as the 1998 Russian crisis for instance, likely or possibly represent systematic risk, most political risk events appear country specific. Some recent theoretical literature has, however, explicitly linked sovereign bond spreads and equity returns. Borri and Verdelhan (2012) formulate a model in which emerging countries tend to default when their economic conditions worsen but these conditions have a global component. Sovereign defaults and bonds prices therefore depend not only on the borrowers’ economic conditions, but also on the lenders’ time-varying risk-aversion. Andrade (2009) explicitly links expected returns on emerging stock markets to the corresponding average yield spread in sovereign bonds. In his model, it is also the case that the discount rate for emerging market stocks reflects not only the likelihood of a negative macroeconomic regime change but also global risk aversion. Country risk receives compensation because the negative emerging market regime change may be endogenously associated with bad states of the global economy.15

Our empirical analysis confirms that sovereign spread variation partially reflects global risk conditions. Nevertheless, this does not imply that pure political risk is not diversifiable. The mechanisms in the models described above seem to mostly apply to the economic component of country risk and it is still conceivable that the political risk component is mostly idiosyncratic. Existing evidence in favor of political risk being priced is not very strong (see Bekaert et al., 1998; Erb et al., 1996).

In this section, we provide a simple test of this hypothesis using portfolios of emerging market equity index portfolios. That is, we make the explicit assumption that the cash flow risks for international projects in a particular country are adequately proxied by those of its local, publicly traded companies. We collect the USD equity market IFCG indices from January 1998 to December 2013 from Standard & Poor’s. For a number of more developed emerging market countries, Standard & Poor’s recently replaces the IFCG indices with a new benchmark (BMI) index; we simply switch to the new index when they do. We also employ a simple sorting procedure, where we either sort on total sovereign risk (measured by the sovereign spread) (Panel A) or on (narrow) political risk (Panel B), measured by our political risk spread. Our conjecture is that sovereign risk is priced, but political risk may not be.

All regressions are run with monthly data on long-short equity return portfolios from January 1998 to December 2013 on various global risk factors. The long-short portfolios involve a long position in the countries with the largest sovereign spread or the largest PRSS (either top half or top third) and a short position on the countries with the lowest sovereign spreads or the lowest PRSS (again, either bottom half or bottom third). The portfolios are equally weighted and rebalanced annually. Understandably, there is more stability in the top/bottom rankings compared to the terciles. Nevertheless, countries consistently ranking in the top (bottom) tercile include, for example, Argentina, Pakistan, and Russia (Poland and Peru).

The risk factors, MKT, SMB (size), HML (value), and WML (momentum), are the usual Fama–French four factors from Ken French’s web page, but we use the global versions which are based on averages across developed markets. Finally, EM MKT is the excess return

15 See also Chen et al. (2015) for a similar idea. Andrade and Chhaochharia (2015) apply the Andrade model to calculate the cost of sovereign default in terms of an increased cost of capital and decreased earnings growth experienced by local firms.
on the MSCI Composite Emerging Market Index. Standard errors (provided in italics) are computed with a Newey-West correction (with 5 lags). Annualized α's and (their standard errors) are computed by taking the regression intercept and multiplying by 12.

Panel A focuses on sovereign spread-sorted portfolios, with top/bottom portfolios on the left and top minus bottom terciles on the right hand side. We use four different benchmarks as risk controls; the global market portfolio; the three Fama–French global factors; the three Fama–French global factors plus the global WML portfolio, and finally simply the emerging market index. Interestingly, the portfolios typically have negative market betas. That is, the high country risk countries actually have lower global betas than the low country risk portfolios. This itself suggests that the global component in country risk is not a dominant risk factor. The one exception is the HML beta which is higher for high sovereign risk portfolios. The annualized α's range between −60 and +660 basis points. While most α's are positive, they are nonetheless not significantly different from zero. It is conceivable that country risk is priced but the power of our test is weak.

Panel B contains results for sorting on the (narrow) political risk spread. These portfolios mostly have somewhat smaller global market exposure (in absolute magnitude), and the low risk portfolios are again more exposed to global risk factors than the high.

Table 5
Political risk pricing.

<table>
<thead>
<tr>
<th>Panel A: Portfolios by sovereign spread</th>
<th>High minus low EMBI sovereign spread (top — bottom half) return spread</th>
<th>High minus low EMBI sovereign spread (top — bottom thirds) return spread</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annualized α</td>
<td>0.023</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>0.035</td>
<td>0.034</td>
</tr>
<tr>
<td>MKT</td>
<td>−0.296</td>
<td>−0.229</td>
</tr>
<tr>
<td></td>
<td>0.052</td>
<td>0.058</td>
</tr>
<tr>
<td>SMB</td>
<td>−0.046</td>
<td>−0.129</td>
</tr>
<tr>
<td></td>
<td>0.132</td>
<td>0.140</td>
</tr>
<tr>
<td>HML</td>
<td>0.195</td>
<td>0.275</td>
</tr>
<tr>
<td></td>
<td>0.113</td>
<td>0.105</td>
</tr>
<tr>
<td>WML</td>
<td>0.176</td>
<td>0.061</td>
</tr>
<tr>
<td></td>
<td>0.035</td>
<td>0.028</td>
</tr>
<tr>
<td>EM MKT</td>
<td>−0.192</td>
<td>−0.230</td>
</tr>
<tr>
<td></td>
<td>0.052</td>
<td>0.045</td>
</tr>
<tr>
<td>Adj. R-square</td>
<td>0.120</td>
<td>0.093</td>
</tr>
<tr>
<td></td>
<td>0.139</td>
<td>0.114</td>
</tr>
<tr>
<td>Panel B: Portfolios by PRSS</td>
<td>High minus low PRSS (top — bottom half) return spread</td>
<td>High minus low PRSS (top — bottom thirds) return spread</td>
</tr>
<tr>
<td>Annualized α</td>
<td>0.046</td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td>0.037</td>
<td>0.036</td>
</tr>
<tr>
<td>MKT</td>
<td>−0.105</td>
<td>−0.307</td>
</tr>
<tr>
<td></td>
<td>0.076</td>
<td>0.069</td>
</tr>
<tr>
<td>SMB</td>
<td>−0.304</td>
<td>−0.283</td>
</tr>
<tr>
<td></td>
<td>0.114</td>
<td>0.165</td>
</tr>
<tr>
<td>HML</td>
<td>−0.126</td>
<td>−0.005</td>
</tr>
<tr>
<td></td>
<td>0.155</td>
<td>0.181</td>
</tr>
<tr>
<td>WML</td>
<td>0.014</td>
<td>0.157</td>
</tr>
<tr>
<td></td>
<td>0.089</td>
<td>0.100</td>
</tr>
<tr>
<td>EM MKT</td>
<td>−0.088</td>
<td>0.157</td>
</tr>
<tr>
<td></td>
<td>0.052</td>
<td>0.043</td>
</tr>
<tr>
<td>Adj. R-square</td>
<td>0.007</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>0.017</td>
<td>0.016</td>
</tr>
</tbody>
</table>

All regressions are run with monthly data on long-short equity return portfolios from January 1998 to December 2013 on various global risk factors. The long-short portfolios involve a long position in the countries with the largest EMBI sovereign spreads (Panel A) or largest PRSS (Panel B) (either top half or top third) and a short position on the countries with the lowest EMBI sovereign spread (Panel A) or PRSS (Panel B) (again, either bottom half or bottom third). The risk factors MKT, SMB, HML, and WML are the usual Fama–French four factors from Ken French’s page, but using the global versions which are based on averages across industrialized markets. Finally, EM MKT is the excess return on the MSCI Composite Emerging Market Index. Standard errors (provided in italics) are computed with a Newey-West correction (with 5 lags). Annualized α’s and (their standard errors) are computed by taking the regression intercept and multiplying by 12.

All regressions are run with monthly data on long-short equity return portfolios from January 1998 to December 2013 on various global risk factors. The long-short portfolios involve a long position in the countries with the largest EMBI sovereign spreads (Panel A) or largest PRSS (Panel B) (either top half or top third) and a short position on the countries with the lowest EMBI sovereign spread (Panel A) or PRSS (Panel B) (again, either bottom half or bottom third). The risk factors MKT, SMB, HML, and WML are the usual Fama–French four factors from Ken French’s page, but using the global versions which are based on averages across industrialized markets. Finally, EM MKT is the excess return on the MSCI Composite Emerging Market Index. Standard errors (provided in italics) are computed with a Newey-West correction (with 5 lags). Annualized α’s and (their standard errors) are computed by taking the regression intercept and multiplying by 12.

Panel A focuses on sovereign spread-sorted portfolios, with top/bottom portfolios on the left and top minus bottom terciles on the right hand side. We use four different benchmarks as risk controls; the global market portfolio; the three Fama–French global factors; the three Fama–French global factors plus the global WML portfolio, and finally simply the emerging market index. Interestingly, the portfolios typically have negative market betas. That is, the high country risk countries actually have lower global betas than the low country risk portfolios. This itself suggests that the global component in country risk is not a dominant risk factor. The one exception is the HML beta which is higher for high sovereign risk portfolios. The annualized α’s range between −60 and +660 basis points. While most α’s are positive, they are nonetheless not significantly different from zero. It is conceivable that country risk is priced but the power of our test is weak.

Panel B contains results for sorting on the (narrow) political risk spread. These portfolios mostly have somewhat smaller global market exposure (in absolute magnitude), and the low risk portfolios are again more exposed to global risk factors than the high.
political risk portfolios. The α’s are yet again all positive but mostly not statistically significant from zero. They are larger than the ones we observed for the entire sovereign spread, however, and some α’s are significant at the 10% level.

The evidence is therefore mixed.\(^{16}\) We do not find strong statistical evidence that political risk exposure leads to higher expected returns, and in fact, it appears that the exposure of high political risk portfolios to global risk factors is smaller than that of low political risk portfolios. Yet, this topic deserves a lot more attention as it may simply be that our tests lack power. We defer such analysis to future work and for now, proceed under the assumption that political risk constitutes a cash flow risk to be taken into account in capital budgeting analysis.

4.3. Political risk spreads and capital budgeting

We advocate the use of political risk spreads to infer the probability of a political risk event, and then to adjust expected cash flows using that probability, while discounting with the usual discount rate which reflects systematic risk. We acknowledge, however, that many seem to prefer a simple discount rate adjustment (as the voluminous literature on this topic suggests). Therefore, we show how the probability of a political risk event can be estimated and then translated into a simple discount rate adjustment that is correct under special assumptions. In particular, we first derive the formulas under the assumption of a constant probability of a political risk event. Then, we consider alternative specifications, including time-varying political risk probabilities and creeping expropriation.

4.3.1. Political risk adjustment under a constant probability of risk event

To begin, consider pricing a sovereign bond. The bond pays coupons, denoted by C_t (where the final payment also includes the face value of the bond), and the recovery value if a political risk event is equal to RR_t. For the time being, assume that p, the political risk event probability, is constant over time. Let the maturity of the bond be T periods (years). Finally, let r_b denote the bond’s yield ignoring political risk and r_b^\star denote the bond’s yield incorporating political risk. There is a mapping between the political risk probability used for valuing the bond by adjusting the expected coupon payments and an alternative valuation that takes the bond’s coupon payments as given, but employs a political risk adjustment to the bond’s yield used to discount the promised coupon payments. The two approaches must yield the same present value:

$$\sum_{t=1}^{T} C_t (1-p)^t + RR_t p (1-p)^t - 1 = \sum_{t=1}^{T} C_t (1 + r_b^\star)^t .$$

(9)

In other words, given values for the bond, the coupon, its maturity, estimates for the recovery values and r_b and r_b^\star, we can solve this equation for p.

The actual bond yield is $r_b^\star = SS + y_{US}$, where y_{US} is the 10-year U.S. bond yield. Our computations in the previous section essentially split up r_b^\star into a political risk component and a yield purged of political risk. It is the latter that is our candidate for r_b, the discount rate on the left hand side in (9). Denote the political risk spread as APRSS, to indicate it is an absolute spread. Then we have $r_b = r_b^\star - APRSS$. Thus, the total yield purged of political risk is denoted by r_b and reflects the U.S. Treasury rate, liquidity risk, global risk, and macroeconomic conditions.

While Moodys and S&P do provide some estimates of typical recovery values, that element of the computation is the most uncertain. When we set the recovery value to zero, the two present value computations give the same answer if $1 + r_b^\star = 1/(1 + r_b)$. To link this to our Political Risk Sovereign Spreads, we assume that $1 + r_b^\star = (1 + r_b)/(1 + PRSS)$, similar to our discussion in Section 2. This immediately relates to the relation between p and PRSS, described in (2). Moreover, $PRSS = APRSS \cdot \frac{1}{1+r_b}$.

Let’s illustrate this numerically. Suppose $SS = 3\%$; $y_{US} = 5.12\%$; and $APRSS = 1.5\%$. These data imply that $r_b^\star = y_{US} + SS = 8.12\%$ and $r_b = r_b^\star - APRSS = 6.62\%$. Hence, $PRSS = 1.50\% = 1.41\%$ and $p = \frac{PRSS}{1 + PRSS} = 1.39\%$.

To use the political risk spread in a MNC’s capital budgeting exercise, consider expected cash flows for a project equal to CF_t. Similar to the bond valuation above, we can take the present value of the project’s cash flows by either incorporating the political risk event probability into the cash flows or adjusting the discount rate using our computed political risk spread. If valid, the two approaches yield the same present value:

$$\sum_{t=1}^{T} CF_t (1-p)^t + R_t p (1-p)^t - 1 = \sum_{t=1}^{T} CF_t (1 + r_e)^t .$$

(10)

where, in this case, R_t is the recovery value of the MNC’s project in the face of a political risk event. To evaluate the left-hand side, one simply computes the expected return on the project (supposedly all equity), r_e, perhaps by using the World CAPM, and uses the p computed from pricing the sovereign bond. Using our political risk spread from above, $PRSS$, the political risk adjusted (equity) discount rate on the right-hand side becomes

$$1 + r_e^\star = (1 + r_e)(1 + PRSS).$$

(11)

\(^{16}\) We also consider the inclusion of lagged risk factors given the possibility of non-synchronous trading and significant market illiquidity. In each case, some of the coefficients on the lagged risk factors are significant (particularly for the global and emerging market portfolio factors), and the R^2’s do rise slightly with the annualized α’s falling. However, the broad results are qualitatively unchanged.
For $R_e = 0$, using the spread or the political risk probability is equivalent.

Note that $PRSS$ is a multiplicative spread. Why do we prefer to use multiplicative rather than absolute spreads? The reason is that the risk profile of bonds and the cash flows for a MNC are likely quite different. For example, sovereign bonds are claims to fixed nominal cash flows, but a MNC’s project yields uncertain equity flows that must be discounted at appropriate (and likely higher) discount rates. The multiplicative spreads correct for this “level” effect. With multiplicative spreads, there is no longer a need to worry about the fact that bond discount rates are much lower than equity discount rates, which prompted Damodaran (1999) to propose an ad hoc volatility ratio adjustment to the sovereign spread before adding it to the equity discount rate. The absolute equity discount rate adjustments will be larger the higher the equity discount rate is for a given multiplicative political risk spread, consistent with political risk spreads reflecting a particular political risk probability.

To continue the numerical example, suppose we have established that $r_e = 12\%$. To adjust for political risk, we use $r_e^* = (1 + r_e) \cdot (1 + PRSS) - 1 = (1.12) \cdot (1.0141) = 13.58\%$.

In Table 6, we provide sample calculations for several groups of countries with political risk ratings around certain percentiles of the political risk distribution (as in Table 4, Panel B), with the observations restricted to non-default periods. For each group, we calculate the average promised yield $r^p = r^s_{fl} + \gamma_{U.S.}$ by adding 5.12%, the average 10-year yield on U.S. Treasury bonds during our sample period, to the average sovereign spread SS of the specific group. To obtain a yield purged of political risk $r = r_{fl}$, we subtract from r^p the average absolute risk spread $APRSS$ for each group. In Panel A, we use the narrow political risk spread $NPRSS$ to measure $APRSS$. In Panel B, we use the wide political risk spread $WPRESS$, and in Panel C, we assume that the entire sovereign spread represents political risk. Under the additional assumption that recovery values are zero and that the maturity is ten years, we can solve Eq. (9) for each value of r_{fl} and thus find the corresponding probability p of a political event. For each case, we also report the 10-year cumulative probability of a political event, the implied multiplicative discount rate adjustment term $PRSS$ as well as the adjusted discount rate r_e^* based on a hypothetical equity discount rate r_e of 12%.

Within each panel, the inferred probability of a political risk event as well as the adjusted discount rate generally decrease with decreasing political risk. Comparing results across the three panels, we notice that overstating the size of the political risk component embedded in the sovereign spread has severe consequences. Focusing on the narrow risk spreads, the political risk probability varies between 0.74% at the 10% level and 3.21% at the 90% level of the political risk distribution. At low risk levels, using the actual (unadjusted) spread leads to a political risk probability more than three times as large; at higher risk levels, the probability is still more than double the magnitude obtained when using narrow spreads. When using wide spreads, the difference with erroneously using the actual (unadjusted) spread is obviously smaller, but remains substantial in the lower parts of the political risk distribution (2.8% versus 4.0% at the median). In terms of discount rates, the differences are also substantial. Comparing Panels A (narrow spreads) and C (the full spread), the differences range between about 2% at low risk levels and about 4% at high risk levels. As another example, assuming that the entire sovereign spread proxies for political risk (as in Panel C) yields an adjusted discount rate of 15.18% for the countries around the 10th percentile of the political risk distribution, which is larger than the adjusted discount rate of 14.26%, obtained (in Panel A) for countries around the 75th percentile of the political risk distribution under the assumption that only the narrow political spread presents political risk.

The adjustment proposed here makes a number of implicit assumptions. It assumes our investment project and the observed sovereign bond have the same maturity. Moreover, the political risk adjustment is assumed constant, a political risk event results in total expropriation (no recovery values) and, more subtly, the time profile of cash flows in the bond and the equity project is assumed to be similar. If the cash flow pattern of the equity project is very uneven over time, and very different from the constant coupon implicit in bond pricing, it would certainly be better to infer p from the bond cash flows and apply it to the equity cash flows, i.e. adjust cash flows and not the discount rate.

Finally, the bonds in our sample have an average maturity ranging from two years for Nigeria to 25 for Ecuador, whereas so far we have assumed a 10-year bond in our computations. Taking the actual maturity into account obviously affects the computations on the discount rate in Table 6, which should be carried out for the correct maturity. Moreover, the coefficient on the maturity variable is economically significant (at about 144 basis points), suggesting an upward sloping term structure for spreads, and thus potentially also for political risk spreads. This can be of use if the maturity of the equity cash flows is very different from the maturity of the bond cash flows. Let’s take the Nigeria example, where the bonds only have a two year maturity. Suppose we are evaluating an equity project that is lasting five years. We may want to add $[\ln(5) - \ln(2)] \times 144 = 131.9$ basis points to the spread before applying the ratio analysis. We are reluctant to push this too hard, as we do not have a maturity structure within a country, but identify the maturity slope from cross-country variation in maturities.

4.3.2. Changing probabilities of political risk events and “creeping expropriation”

The assumption of constant p is made for convenience and it is likely unrealistic. This is especially true in situations of current political unrest in a particular country. When there is a crisis, the current probability of political risk is quite high, but it should be expected to decrease over time as the crisis passes (see Anshuman et al., 2011; Bekaert and Hodrick, 2011). One way to deal with this is to assume that the political risk probability decreases at a constant multiplicative decay rate, λ. Hence, the time profile for political risk probabilities is $p, \lambda p, \lambda^2 p, \lambda^3 p$, etc.

17 Bekaert and Hodrick (2011), Chapter 11, provide further details about the differences between absolute and multiplicative spreads, and when they matter.
For a given \(\lambda \), we can still derive \(p \) from the pricing equation:

\[
X_T = (1 - \lambda^{-1}p) + R_t \lambda^{-1}p \left(1 - \lambda^{-2}p \right)^{t-1}
\]

We can then apply the risk probability, \(p \), and the decay rate, \(\lambda \), to equity cash flows.

The political risk situation can also be very different from that described here. For example, it is well known that while the risk of direct expropriation has greatly diminished (Minor, 1994), governments have found new ways to divert cash flows of MNCs to state coffers. Multinationals now worry more about breach of contract, restrictions on the transfer and convertibility of profits, unexpected changes in royalties and taxes and other regulatory risks, rather than the potential seizure of assets (see also the discussion in Henisz and Zelner, 2010). The term “creeping expropriation” has become popular, where the government may slowly squeeze a project by taxes, regulation, or legal changes. Under such circumstances, the cash flows may be increasingly subjected to a government’s grabbing hand. If we assume that such an environment is increasingly going to erode a country’s willingness to pay its debt in full over time, the formula in Eq. (10) must be adjusted. A simple way to model such a scenario would be to assume that the expected cash flows returned to investors decay over time at a constant multiplicative rate, \(\delta \):

\[
\sum_{t=1}^{T} \frac{CF_t (1-\delta^{t-1})}{(1+r)^t} = \sum_{t=1}^{T} \frac{CF_t}{(1+r)^t}
\]

We then solve for \(\delta \) by applying Eq. (13) to sovereign bonds and this parameter can then be applied to the actual cash flows forecasts (under no political risk) of the multinational company. These kinds of circumstances would give international companies an incentive to front-load their cash flows.

Table 6

Numerical examples of political risk adjustments.

<table>
<thead>
<tr>
<th>Panel A: Narrow political risk spreads (APRSS = NPRSS)</th>
<th>Panel B: Wide political risk spreads (APRSS = WPRSS)</th>
<th>Panel C: Sovereign Spreads (APRSS = SS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Political risk (percentile)</td>
<td>Absolute political risk spread in bp (APRSS)</td>
<td>Political risk probability ((p))</td>
</tr>
<tr>
<td>90th</td>
<td>341</td>
<td>3.2%</td>
</tr>
<tr>
<td>75th</td>
<td>208</td>
<td>2.0%</td>
</tr>
<tr>
<td>50th</td>
<td>168</td>
<td>1.6%</td>
</tr>
<tr>
<td>25th</td>
<td>115</td>
<td>1.1%</td>
</tr>
<tr>
<td>10th</td>
<td>77</td>
<td>0.7%</td>
</tr>
<tr>
<td>90th</td>
<td>531</td>
<td>4.9%</td>
</tr>
<tr>
<td>75th</td>
<td>307</td>
<td>2.9%</td>
</tr>
<tr>
<td>50th</td>
<td>271</td>
<td>2.6%</td>
</tr>
<tr>
<td>25th</td>
<td>176</td>
<td>1.7%</td>
</tr>
<tr>
<td>10th</td>
<td>122</td>
<td>1.2%</td>
</tr>
<tr>
<td>90th</td>
<td>718</td>
<td>6.5%</td>
</tr>
<tr>
<td>75th</td>
<td>466</td>
<td>4.3%</td>
</tr>
<tr>
<td>50th</td>
<td>427</td>
<td>4.0%</td>
</tr>
<tr>
<td>25th</td>
<td>309</td>
<td>2.9%</td>
</tr>
<tr>
<td>10th</td>
<td>292</td>
<td>2.8%</td>
</tr>
</tbody>
</table>

Table 6 provides results of sample calculations for implied political risk probabilities \((p) \), multiplicative political risk spreads \((PRSS) \) as well as adjusted discount rates. We sort country-months by realized political risk. For 5% bands around several political risk percentiles, we calculate the average sovereign spread \((SS) \) as well as the average narrow and wide implied political risk spreads, \((NPRSS) \) and \((WPRSS) \). For each case, we find the implied political risk probability \((p) \) by solving Eq. (9), assuming a 10-year maturity and a 2.90% yield on the 10-year U.S. Treasury bond. We use the implied multiplicative political risk spreads \((PRSS) \) to adjust a hypothetical discount rate of 12% to account for political risk.

For a given \(\lambda \), we can still derive \(p \) from the pricing equation:

\[
X_T = \sum_{t=1}^{T} \frac{CF_t \left(1-\lambda^{t-1}p\right)}{(1+r)^t} = \sum_{t=1}^{T} \frac{CF_t}{(1+r)^t}
\]
4.4. Case study: power generation in Pakistan

We apply our method to the valuation of a power generation project in Pakistan. The project consists of a thermal power station that is being privatized. The Pakistani government is asking U.S. $500 million for the power station. AES, a global power generation and distribution firm, headquartered in the U.S., is considering acquiring the plant. Given the nature of the business (contract power generation), AES has established that the all equity cost of capital for the project would be 4.95% if the project were located in a developed and stable country without political risk, such as the U.S. The estimated world market beta for a value-weighted portfolio of publicly traded electric utilities in Pakistan is similarly low at 0.28.20

Table 7, Panel A contains free cash flow forecasts in U.S. dollars for the remaining life of the project. The forecasted free cash flows do not account for political risk which is likely non-negligible in Pakistan in 2009. In December 2009, ICRG’s political risk rating for Pakistan is 46 compared to 81 for the U.S. The Pakistani sovereign spread at the end of 2009 was 688 basis points, and the “narrow” and “wide” political spreads were 256 and 456 basis points, respectively. As outlined above, these absolute spreads can be transformed into multiplicative spreads that can be applied to the all equity cost of capital of 4.95%. The augmented discount rate can then be used to calculate the NPV of the project, accounting for political risk.

Not accounting for political risk at all, i.e. assuming that the probability of a political risk event is zero and using 4.95% as the discount rate, yields a present value of the future cash flows of U.S. $832 million and a project NPV for AES of $332 million. We use this case as a benchmark to discuss the impact of different approaches to account for political risk. Table 7, Panel B, reports the discount rate as well as the project’s NPV when adjusted using the full sovereign spread (SS), the “narrow” or “wide” political risk spread, or no adjustment at all. We also use Eq. (10) to calculate the political risk probability, that corresponds to the adjustment of the discount rate. Using the full sovereign spread to account for political risk increases the discount rate to 11.91%, dramatically reducing the present value of the future cash flows by 41%, and yields a negative NPV (U.S. $7 million). Using a discount rate of 11.91% is equivalent to assuming an annual political risk event probability of 6.22% or a cumulative political risk event probability of 72.33%. Using the still conservative “wide” political risk spread, leads to a discount rate of 9.46%, reducing the present value of future cash flows by about 30%, but yielding a positive NPV of U.S. $83 million. Using the “narrow” political risk spread moderately increases the discount rate to 7.44% and hence reduces the present value of future cash flows by only about 19%, resulting in a project NPV of U.S. $178 million. This case corresponds to an implicit annual political risk event probability of only 2.31%, about one-third of the political risk event probability assumed when using the full sovereign spread to adjust the discount rate. This application demonstrates that while accounting for political risk is important, simply applying the full sovereign yield spread as a proxy for political risk can lead to severely biased NPV estimates. Finally, AES did invest in two power plants in Pakistan, and, at the time of writing (September 2015), is still operating those plants.

5. Conclusion

In international capital budgeting, sovereign spreads are often used to adjust discount rates for political risk. The forward looking, market-determined nature of these spreads make them attractive sources of information about political risk in a particular country. However, the adjustments are typically ad hoc and fail to acknowledge that sovereign spreads reflect many factors – not just political risk.

In this paper, we propose to use the political risk spread (Bekaert et al., 2014) to adjust for political risk in capital budgeting. The political risk spread is extracted from a panel regression model where sovereign spreads are regressed on global, liquidity, macroeconomic, and volatility risk factors, in addition to ICRG political risk. The regression reveals, depending upon the specification, that political risk accounts for 17 to 31% of the variation in observed spreads during non-default periods.

We then show how to use these political risk spreads to infer a political risk event probability that can be used to adjust the cash flows in an international capital budgeting exercise. We can also use the political risk spread to come up with an adjusted equity discount rate that reflects political risk, without double counting other risks. The economic implications are fundamental. Political risk spreads are often substantially smaller than full sovereign spreads, implying that the standard approaches substantially overstate discount rates used in international project evaluation, potentially leading to significant under investment.

There are alternative methods to use market prices to come up with political risk adjustments. Clark (1997) models political risk as the value of an insurance policy that reimburses all losses resulting from political risk events. Of course, political risk insurance exists making public and private insurance rates for political risk potentially very informative. Jensen (2008), for example, finds that MNC investments located in countries with democratic regimes, given the constraints they place on government power, are associated with lower insurance premia. While public and private sector providers offer select investment insurance against political risk, the vast majority of FDI remains uninsured, suggesting alternative political risk measurements remain essential.

Our methodology has a number of advantages: it is forward-looking and market-based, it produces an adjustment in useful “discount rate” units, and it can be computed for all countries with a political risk rating by ICRG. In addition, several extensions are possible. Our method does assume that sovereign bonds correctly identify political risks relevant for any MNC considering an investment project in a particular country. Both the international business (see Henisz, 2003) and the finance (see Anshuman...
Table 7 provides an application of different discount rate adjustments to the valuation of a power generation project in Pakistan. Panel A presents the project's forecasted free cash flows in millions of U.S. dollars for the remaining life of the project. Panel B reports the multiplicative political risk spreads (PRSS), the adjusted discount rates, the corresponding net present values (NPV) of the project as well as the implied political risk probability (p) and the cumulative probability of a political risk event by 2029. The data are based on Desai (2006), but have been adjusted to reflect the macro-economic environment in 2009.

While our paper focuses on an adjustment for political risk, our method can be extended to country-specific economic risk as well. In certain countries, it may be challenging to measure expected local economic conditions for project evaluation. Following our panel regression method, we can extract the discount rate increment related to economic risk in the same way as we isolated the premium for political risk. Indeed, there is an advantage to extracting both local economic and political risk because they are naturally correlated and there is no need for orthogonalization if they are viewed as a package. The increment in the discount rate that reflects the political risk unique to a particular country. The difference between this augmented discount rate and the discount rate implied by systematic risk can be used to adjust the expected cash flows.

Appendix A. ICRG political risk subcategories and correlations

<table>
<thead>
<tr>
<th>Political risk indicators</th>
<th>Description</th>
<th>Pooled correlation with ICRG (Political risk)</th>
<th>Pooled correlation with ICRG (Economic + financial risk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government stability</td>
<td>An assessment both of the government’s ability to carry out its declared program(s), and its ability to stay in office. The risk rating assigned is the sum of three subcomponents: Government Unity, Legislative Strength, and Popular Support.</td>
<td>0.516</td>
<td>0.476</td>
</tr>
<tr>
<td>Socioeconomic conditions</td>
<td>An assessment of the socioeconomic pressures at work in society that could constrain government action or fuel social dissatisfaction. The risk rating assigned is the sum of three subcomponents: Unemployment, Consumer Confidence, and Poverty.</td>
<td>0.729</td>
<td>0.531</td>
</tr>
<tr>
<td>Investment profile</td>
<td>An assessment of factors affecting the risk to investment that are not covered by other political, economic and financial risk components. The risk rating assigned is the sum of three subcomponents: Contract viability/expropriation, profits repatriation, payment delays.</td>
<td>0.731</td>
<td>0.605</td>
</tr>
<tr>
<td>Internal conflict</td>
<td>An assessment of political violence in the country and its actual or potential impact on governance. The highest rating is given to those countries where there is no armed or civil opposition to the government and the government does not indulge in arbitrary violence, direct or indirect, against its own people. The lowest rating is given to a country embroiled in an on-going civil war. The risk rating assigned is the sum of three subcomponents: Civil war/coup threat, terrorism/political violence, civil disorder.</td>
<td>0.828</td>
<td>0.556</td>
</tr>
<tr>
<td>External conflict</td>
<td>An assessment both of the risk to the incumbent government from foreign action, ranging from non-violent external pressure (diplomatic pressures, withholding of aid, trade restrictions, territorial disputes, sanctions, etc) to violent external pressure (cross-border conflicts to all-out war). External conflicts can adversely affect foreign business in many ways, ranging from restrictions on operations, to trade and investment sanctions, to distortions in the allocation of economic resources, to violent change in the structure of society. The risk rating assigned is the sum of three subcomponents: War, cross-border conflict, foreign pressures.</td>
<td>0.655</td>
<td>0.453</td>
</tr>
</tbody>
</table>
Appendix A (continued)

<table>
<thead>
<tr>
<th>Political risk indicators</th>
<th>Description</th>
<th>Pooled correlation with ICRG (Political risk)</th>
<th>Pooled correlation with ICRG (Economic + financial risk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corruption</td>
<td>An assessment of corruption within the political system. Such corruption is a threat to foreign investment for several reasons: it distorts the economic and financial environment; it reduces the efficiency of government and business by enabling people to assume positions of power through patronage rather than ability; and, last but not least, introduces an inherent instability into the political process. The most common form of corruption met directly by business is financial corruption in the form of demands for special payments and bribes connected with import and export licenses, exchange controls, tax assessments, police protection, or loans. Such corruption can make it difficult to conduct business effectively, and in some cases may force the withdrawal or withholding of an investment. Although the measure takes such corruption into account, it is more concerned with actual or potential corruption in the form of excessive patronage, nepotism, job reservations, 'favor-for-favors', secret party funding, and suspiciously close ties between politics and business. In our view these insidious sorts of corruption are potentially of much greater risk to foreign business in that they can lead to popular discontent, unrealistic and inefficient controls on the state economy, and encourage the development of the black market. The greatest risk in such corruption is that at some time it will become so overweening, or some major scandal will be suddenly revealed, as to provoke a popular backlash, resulting in a fall or overthrow of the government, a major reorganizing or restructuring of the country's political institutions, or, at worst, a breakdown in law and order, rendering the country ungovernable.</td>
<td>0.643</td>
<td>0.309</td>
</tr>
<tr>
<td>Military in politics</td>
<td>The military is not elected by anyone. Therefore, its involvement in politics, even at a peripheral level, is a diminution of democratic accountability. However, it also has other significant implications. The military might, for example, become involved in government because of an actual or created internal or external threat. Such a situation would imply the distortion of government policy in order to meet this threat, for example by increasing the defense budget at the expense of other budget allocations. In some countries, the threat of military take-over can force an elected government to change policy or cause its replacement by another government more amenable to the military's wishes. A military takeover or threat of a takeover may also represent a high risk if it is an indication that the government is unable to function effectively and that the country therefore has an uneasy environment for foreign businesses. A full-scale military regime poses the greatest risk. In the short term a military regime may provide a new stability and thus reduce business risks. However, in the longer term the risk will almost certainly rise, partly because the system of governance will become corrupt and partly because the continuation of such a government is likely to create an armed opposition. In some cases, military participation in government may be a symptom rather than a cause of underlying difficulties. Overall, lower risk ratings indicate a greater degree of military participation in politics and a higher level of political risk.</td>
<td>0.798</td>
<td>0.497</td>
</tr>
<tr>
<td>Religious tensions</td>
<td>Religious tensions may stem from the domination of society and/or governance by a single religious group that seeks to replace civil law by religious law and to exclude other religions from the political and/or social process; the desire of a single religious group to dominate governance; the suppression of religious freedom; the desire of a religious group to express its own identity, separate from the country as a whole.</td>
<td>0.511</td>
<td>0.172</td>
</tr>
<tr>
<td>Law and order</td>
<td>Law and order are assessed separately. The Law sub-component is an assessment of the strength and impartiality of the legal system, while the Order sub-component is an assessment of popular observance of the law.</td>
<td>0.802</td>
<td>0.540</td>
</tr>
<tr>
<td>Ethnic tensions</td>
<td>An assessment of the degree of tension within a country attributable to racial, nationality, or language divisions. Lower ratings are given to countries where racial and nationality tensions are high because opposing groups are intolerant and unwilling to compromise.</td>
<td>0.604</td>
<td>0.378</td>
</tr>
<tr>
<td>Democratic accountability</td>
<td>A measure of how responsive government is to its people, on the basis that the less responsive it is, the more likely it is that the government will fall, peacefully in a democratic society, but possibly violently in a non-democratic one.</td>
<td>0.644</td>
<td>0.357</td>
</tr>
<tr>
<td>Bureaucratic conditions</td>
<td>The institutional strength and quality of the bureaucracy is another shock absorber that tends to minimize revisions of policy when governments change. Therefore, high points are given to countries where the bureaucracy has the strength and expertise to govern without drastic changes in policy or interruptions in government services. In these low-risk countries, the bureaucracy tends to be somewhat autonomous from political pressure and to have an established mechanism for recruitment and training. Countries that lack the cushioning effect of a strong bureaucracy receive low points because a change in government tends to be traumatic in terms of policy formulation and day-to-day administrative functions.</td>
<td>0.766</td>
<td>0.548</td>
</tr>
</tbody>
</table>

The summary statistics provided are for the entire ICRG sample of countries from 1984 to 2013.
Appendix B. Variance decomposition

In the appendix, we explain how we examine the degree to which variation in the sovereign spreads is explained by the right-hand side explanatory variables and what is the relative contribution of each. We use a simple R^2 concept computed as

$$\frac{\text{Var}(\tilde{SS}_i)}{\text{Var}(SS)}$$

where $\tilde{SS}_i = c_0 + c_1 \text{Global}_t + c_2 \text{ZER}_t + c_3 \text{Local}_t + c_4 \text{BVOL}_t + c_5 \text{PR}_t = \alpha + \beta_j x_{j,t}$, where the latter equality represents a simple notation for explanatory purposes. The denominator is defined as

$$\text{Var}(SS) = \frac{1}{N} \sum_{t=1}^{T} \sum_{i=1}^{N} (SS_{i,t} - SS)^2$$

where $\bar{SS} = \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} SS_{i,t}$. The numerator is defined analogously as

$$\text{Var}(\tilde{SS}_i) = \frac{1}{N} \sum_{t=1}^{T} \sum_{j=1}^{J} (\tilde{SS}_{i,t} - \bar{SS})^2$$

where $(\bar{SS}) = \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} SS_{i,t}$.

To examine the contributions of each of the independent variables to the overall variation of the predicted sovereign spreads, we compute the following covariance for each explanatory variable j:

$$\text{Cov}(\tilde{SS}_{i,t}, \beta_j x_{j,t}) = \frac{1}{N} \sum_{t=1}^{T} \sum_{i=1}^{N} \beta_j (\tilde{SS}_{i,t} - \bar{SS})(x_{j,t} - x_j)$$

where x_j is defined analogously as above. Summed across all individual explanatory variables, these covariance terms must exactly equal the variance of the predicted sovereign spreads. We report the ratio of each covariance term to the overall predicted sovereign spread, $\text{Cov}(\tilde{SS}_{i,t}, \beta_j x_{j,t}) / \text{Var}(SS)$, where each column must necessarily sum to 1.

Appendix C. Political risk sovereign spreads (PRSS) December 2013

<table>
<thead>
<tr>
<th>Country</th>
<th>Sovereign Spread</th>
<th>NPRSS</th>
<th>WPRSS</th>
<th>Country</th>
<th>Sovereign Spread</th>
<th>NPRSS</th>
<th>WPRSS</th>
<th>Country</th>
<th>Sovereign Spread</th>
<th>NPRSS</th>
<th>WPRSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albania</td>
<td>154</td>
<td>250</td>
<td></td>
<td>Guyana</td>
<td>234</td>
<td>339</td>
<td></td>
<td>Philippines</td>
<td>130</td>
<td>92</td>
<td>130</td>
</tr>
<tr>
<td>Algeria</td>
<td>252</td>
<td>364</td>
<td></td>
<td>Haiti</td>
<td>236</td>
<td>522</td>
<td></td>
<td>Poland</td>
<td>118</td>
<td>85</td>
<td>118</td>
</tr>
<tr>
<td>Angola</td>
<td>257</td>
<td>371</td>
<td></td>
<td>Honduras</td>
<td>225</td>
<td>327</td>
<td></td>
<td>Qatar</td>
<td>117</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>Argentine</td>
<td>808</td>
<td>180</td>
<td>321</td>
<td>Hungary</td>
<td>278</td>
<td>63</td>
<td>113</td>
<td>Romania</td>
<td>170</td>
<td>251</td>
<td></td>
</tr>
<tr>
<td>Armenia</td>
<td>229</td>
<td>333</td>
<td></td>
<td>India</td>
<td>229</td>
<td>333</td>
<td></td>
<td>Russia</td>
<td>181</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>Azerbaijan</td>
<td>212</td>
<td>309</td>
<td></td>
<td>Indonesia</td>
<td>292</td>
<td>163</td>
<td>290</td>
<td>Saudi Arabia</td>
<td>158</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>Bahamas</td>
<td>65</td>
<td>107</td>
<td></td>
<td>Iran</td>
<td>296</td>
<td>426</td>
<td></td>
<td>Senegal</td>
<td>257</td>
<td>371</td>
<td></td>
</tr>
<tr>
<td>Bahrain</td>
<td>385</td>
<td>274</td>
<td></td>
<td>Iraq</td>
<td>389</td>
<td>511</td>
<td></td>
<td>Serbia</td>
<td>374</td>
<td>325</td>
<td></td>
</tr>
<tr>
<td>Bangladesh</td>
<td>333</td>
<td>475</td>
<td></td>
<td>Israel</td>
<td>166</td>
<td>246</td>
<td></td>
<td>Sierra Leone</td>
<td>234</td>
<td>339</td>
<td></td>
</tr>
<tr>
<td>Belarus</td>
<td>271</td>
<td>390</td>
<td></td>
<td>Jamaica</td>
<td>641</td>
<td>475</td>
<td>641</td>
<td>Slovak Rep.</td>
<td>103</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>Bolivia</td>
<td>234</td>
<td>339</td>
<td></td>
<td>Jordan</td>
<td>186</td>
<td>274</td>
<td></td>
<td>Slovenia</td>
<td>135</td>
<td>203</td>
<td></td>
</tr>
<tr>
<td>Botswana</td>
<td>113</td>
<td>173</td>
<td></td>
<td>Kazakhstan</td>
<td>166</td>
<td>246</td>
<td></td>
<td>Somalia</td>
<td>598</td>
<td>838</td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td>224</td>
<td>131</td>
<td>224</td>
<td>Kenya</td>
<td>262</td>
<td>377</td>
<td></td>
<td>South Africa</td>
<td>247</td>
<td>145</td>
<td>247</td>
</tr>
<tr>
<td>Brunei</td>
<td>65</td>
<td>107</td>
<td></td>
<td>Korea, D.P.R.</td>
<td>333</td>
<td>475</td>
<td></td>
<td>Sri Lanka</td>
<td>267</td>
<td>384</td>
<td></td>
</tr>
<tr>
<td>Bulgaria</td>
<td>68</td>
<td>20</td>
<td>35</td>
<td>Korea</td>
<td>75</td>
<td>121</td>
<td></td>
<td>Sudan</td>
<td>449</td>
<td>634</td>
<td></td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>286</td>
<td>411</td>
<td></td>
<td>Kuwait</td>
<td>154</td>
<td>230</td>
<td></td>
<td>Suriname</td>
<td>182</td>
<td>268</td>
<td></td>
</tr>
<tr>
<td>Cameroon</td>
<td>252</td>
<td>364</td>
<td></td>
<td>Latvia</td>
<td>135</td>
<td>203</td>
<td></td>
<td>Syria</td>
<td>410</td>
<td>580</td>
<td></td>
</tr>
<tr>
<td>Chile</td>
<td>148</td>
<td>78</td>
<td>139</td>
<td>Lebanon</td>
<td>366</td>
<td>366</td>
<td>366</td>
<td>Taiwan</td>
<td>89</td>
<td>139</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>149</td>
<td>149</td>
<td>149</td>
<td>Liberia</td>
<td>286</td>
<td>411</td>
<td></td>
<td>Tanzania</td>
<td>212</td>
<td>309</td>
<td></td>
</tr>
<tr>
<td>Colombia</td>
<td>166</td>
<td>122</td>
<td>166</td>
<td>Libya</td>
<td>296</td>
<td>425</td>
<td></td>
<td>Thailand</td>
<td>243</td>
<td>351</td>
<td></td>
</tr>
<tr>
<td>Congo, Dem. Rep.</td>
<td>271</td>
<td>390</td>
<td></td>
<td>Lithuania</td>
<td>106</td>
<td>163</td>
<td></td>
<td>Togo</td>
<td>312</td>
<td>446</td>
<td></td>
</tr>
<tr>
<td>Congo, Rep.</td>
<td>456</td>
<td>644</td>
<td></td>
<td>Madagascar</td>
<td>291</td>
<td>418</td>
<td></td>
<td>Trinidad & Tobago</td>
<td>143</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td>Costa Rica</td>
<td>139</td>
<td>209</td>
<td></td>
<td>Malawi</td>
<td>286</td>
<td>411</td>
<td></td>
<td>Tunisia</td>
<td>221</td>
<td>321</td>
<td></td>
</tr>
<tr>
<td>Cote d'Ivoire</td>
<td>442</td>
<td>239</td>
<td>426</td>
<td>Malaysia</td>
<td>113</td>
<td>173</td>
<td></td>
<td>Turkey</td>
<td>309</td>
<td>181</td>
<td>309</td>
</tr>
<tr>
<td>Croatia</td>
<td>300</td>
<td>120</td>
<td>214</td>
<td>Mali</td>
<td>286</td>
<td>411</td>
<td></td>
<td>Uganda</td>
<td>328</td>
<td>468</td>
<td></td>
</tr>
<tr>
<td>Cuba</td>
<td>239</td>
<td>345</td>
<td></td>
<td>Mexico</td>
<td>78</td>
<td>140</td>
<td></td>
<td>Ukraine</td>
<td>718</td>
<td>267</td>
<td>477</td>
</tr>
<tr>
<td>Cyprus</td>
<td>158</td>
<td>235</td>
<td></td>
<td>Moldova</td>
<td>221</td>
<td>321</td>
<td></td>
<td>Uruguay</td>
<td>194</td>
<td>62</td>
<td>110</td>
</tr>
<tr>
<td>Czech Rep.</td>
<td>95</td>
<td>154</td>
<td></td>
<td>Mongolia</td>
<td>158</td>
<td>235</td>
<td></td>
<td>Venezuela</td>
<td>309</td>
<td>475</td>
<td>847</td>
</tr>
<tr>
<td>Dominican Rep.</td>
<td>349</td>
<td>218</td>
<td>349</td>
<td>Morocco</td>
<td>182</td>
<td>268</td>
<td></td>
<td>Vietnam</td>
<td>274</td>
<td>274</td>
<td>274</td>
</tr>
<tr>
<td>Ecuador</td>
<td>530</td>
<td>530</td>
<td>530</td>
<td>Mozambique</td>
<td>191</td>
<td>279</td>
<td></td>
<td>Yemen</td>
<td>312</td>
<td>446</td>
<td></td>
</tr>
</tbody>
</table>

(continued on next page)
Appendix C (continued)

<table>
<thead>
<tr>
<th>Country</th>
<th>Sovereign Spread</th>
<th>NPRSS</th>
<th>WPRSS</th>
<th>Country</th>
<th>Sovereign Spread</th>
<th>NPRSS</th>
<th>WPRSS</th>
<th>Country</th>
<th>Sovereign Spread</th>
<th>NPRSS</th>
<th>WPRSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egypt</td>
<td>443</td>
<td>261</td>
<td>443</td>
<td>Myanmar</td>
<td>291</td>
<td>418</td>
<td></td>
<td>Zambia</td>
<td>212</td>
<td>309</td>
<td></td>
</tr>
<tr>
<td>El Salvador</td>
<td>389</td>
<td>197</td>
<td>351</td>
<td>Namibia</td>
<td>99</td>
<td>154</td>
<td></td>
<td>Zimbabwe</td>
<td>339</td>
<td>483</td>
<td></td>
</tr>
<tr>
<td>Estonia</td>
<td>124</td>
<td>188</td>
<td></td>
<td>Nicaragua</td>
<td>182</td>
<td>268</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethiopia</td>
<td>344</td>
<td>490</td>
<td></td>
<td>Niger</td>
<td>350</td>
<td>498</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gabon</td>
<td>348</td>
<td>310</td>
<td>340</td>
<td>Nigeria</td>
<td>385</td>
<td>546</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ghana</td>
<td>221</td>
<td>321</td>
<td></td>
<td>Oman</td>
<td>117</td>
<td>178</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guatemala</td>
<td>207</td>
<td>303</td>
<td></td>
<td>Panama</td>
<td>199</td>
<td>129</td>
<td>199</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guinea</td>
<td>385</td>
<td>546</td>
<td></td>
<td>Paraguay</td>
<td>225</td>
<td>327</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guinea-Bissau</td>
<td>317</td>
<td>453</td>
<td></td>
<td>Peru</td>
<td>159</td>
<td>114</td>
<td>159</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For the 33 of our 43 countries that have observed EMBI sovereign spreads in December of 2013, we report the EMBI sovereign spread and the narrow and wide implied political risk spreads (NPRSS and WPRSS). For these countries, implied spreads are computed by multiplying the computed narrow and wide ratios by the observed EMBI spread for each country. For December 2013, narrow ratios are cPRi/(Predicted SSRi); whereas wide spreads are constructed in the same way but using the ci coefficient from the orthogonalization from Table 3 that attributes maximal weight to political risk. If the ratio is negative or greater than one, we set it to zero or one, respectively. For the remaining countries for which we do not have EMBI sovereign spreads but do have ICRG political risk ratings, we report predicted December 2013 narrow and wide political risk spreads. Using data from Table 3, we separately fit a linear regression through the narrow and wide spreads onto PRi, then, for all other countries for which the political risk rating is available, we employ the fitted coefficients to determine what the narrow and wide spreads would be given each country's PRi.

References
