Innovation and Cryptoventures

Ethereum

Campbell R. Harvey*
Duke University and NBER

Ashwin Ramachandran
Duke University

Brent Xu

ConsenSys
February 12, 2018

Campbell R. Harvey 2018

Overview

Ethereum Basics

Under the hood

App deployment and connections
Appendix

Campbell R. Harvey 2018

Overview

Medium

Preethi Kasireddy
Al ‘m

H|gh|y recommended intro How does Ethereum work, anyway?

https://medium.com/@preethikasireddy/
how-does-ethereum-work-anyway-
22d1df506369

| draw some graphics from the above
article in the presentation

4

ethereum

Campbell R. Harvey 2018

History of Ethereum

e Russian-Canadian programmer
 Co-founded Ethereum when he
was 19 years old

History of Ethereum - Timeline

- chOHkhl
‘ First release:
d Ethereum Elease; Mar/2016
Foundation: Jun/2015

Q‘owdfunding: Sep/2014
Jul/2014

Vv

8

Idea:
Oct/2013

Important Concepts

« Cryptography (similar to Bitcoin)
« Blockchain
O Accounts (Two types) and Wallets
O Transactions
 Smart Contracts
O Solidity

" Language Used for Smart Contract

Development

Campbell R. Harvey 2018

Cryptography

* Hash functions
 Symmetric Cryptography
 Asymmetric Cryptography
* Signatures

Campbell R. Harvey 2018

Hash Functions

e BTC uses SHA-256

« Ethereum uses Keccak-256

O Similar to SHA-3 (variant)

O Won contest for security in 2007
O Used for all hashing in Ethereum
(@)

Derived differently than standard block-cipher based hashes
or previous SHA functions

Digital Signatures (Digital Proof)

Same use-case/cryptographic method (ECDSA) as BTC
Signer uses private key to generate a sighed message

Signed message can be verified using the signer’s public
key

Hashes are signed in Ethereum, not the data itself

Blockchain

Fully Distributed Database like BTC

Advantages:
: Transactions BLOCK IN PROGRESS
* Highly Secure e
* Transparent e 0 [— |
* Immutable T
[— P .
I | S —
. | I .
Disadvantages: wel O O
e Scaling

e Performance

Campbell R. Harvey 2018

Ethereum Blockchain

Blocks consist of 3 elements

* Transaction List
= List of all transactions included in a block
* Block Header
= Group of 15 elements
* Ommer List
= List of all Uncle blocks included
(described later)

Campbell R. Harvey 2018

Block, B

Block Header, /{ or B,
parentHash, il.,
ommersHash, /7,

beneficiary, /1,

stateRoot, /,

transactionsRoot, /1,
recciptsRoot, H._

; Iogsﬂloom_ H._.

l .dil’l’icult_\; H‘:
number, /1,
gasLimit, //,
gasUsed,

timestamp, /H,

ccccc Data, H,

mixHash, /1_

nnnnnnn H,

Transaction List, 5B,

Ommers List, B,

12

Ethereum Blockchain

Uncles/Ommers

 Sometimes valid block solutions don’t make main chain
* Any broadcast block (up to 6 previous blocks back) with
valid PoW and difficulty can be included as an uncle
 Maximum of two can be included per block
* Uncle block transactions are not included — just header
 Aimed to decrease centralization and reward work

Campbell R. Harvey 2018

13

Ethereum Blockchain

Uncles/Ommers Rewards:

* Uncle headers can be included in main block for 1/32 of the
main block miner’s reward given to said miner

* Miners of uncle blocks receive percent of main reward

according to:
 (U,+(8-B,)) *5/8,where U, and B, are uncle and block

numbers respectively.
e Example (1333 +8-1335) * % =3.75 ETH

Campbell R. Harvey 2018 14

Ethereum Blockchain

* All blocks visible like BTC
* However, blocks have a

different structure than
BTC

https://etherscan.io/

Campbell R. Harvey 2018

@ gpperscan

HOME

Sponsored Link: -e SocialMedia.Market - The most cost effective advertising platform with 1069

MARKET CAP OF $94.839 BILLION
$973.81 @ 0.1049 BTC/ETH
LAST BLOCK
5024406 (14.05)

Hash Rate
228,803.¥9 GH/s

& Blocks

Mined By ethfans.org_2
Block 5024406
249 txns in 28 secs
> 1 min ago
Block Reward 3.18895 Ether
Mined By Nanopool
Block 5024405
189 txns in 7 secs
> 1 min ago
Block Reward 3.2864 Ether

TRANSACTIONS

153.76 M (10.3 TPS)

Network Difficulty
275712 TH

View All

15

Ethereum Blockchain

Blocks faster than BTC and reward is different
* Every 12 seconds
e 5ETH main reward
* Miners can make a bit more by including uncle blocks
(1/32 of an ETH each) up to maximum of two

Campbell R. Harvey 2018

16

Ethereum Blockchain

Blocks faster than BTC and reward is different
e Uses EthHash mining algorithm (different than Bitcoin)
= Helps mitigate ASIC and GPU advantages
" |nvolves smart contract execution
 Difficulty is adjusted every block (not every two weeks)
— this is an important identifier for the Uncle blocks

Campbell R. Harvey 2018 17

Ethereum Blockchain

Key differences

Blocks keep track of balances — not “unspent
transaction outputs” like BTC

Merkle-Patricia tries used (they have three branches
compared to the Merkle tree’s two)

Will transition from Proof of Work to Proof of Stake
with Casper protocol

See appendix for more details

Campbell R. Harvey 2018

18

Ethereum Nodes

* Validate all transactions and new blocks
 Operatein a P2P fashion
* Each contains a copy of the entire Blockchain

* Light clients - store only block headers

: Provide easy verification through tree data structure
: Don’t execute transactions, used primarily for balance validation

 Implemented in a variety of languages (Go, Rust, etc.)

Campbell R. Harvey 2018

Accounts and Wallets
Accounts:

e Two Kinds:

= External Owned Accounts - (EOA, most common account)
= Contract Accounts

e Consist of a public/private keypair
 Allow for interaction with the blockchain

Wallets:

e A set of one or more external accounts
 Used to store/transfer ether

Campbell R. Harvey 2018

Accounts and Wallets

External Account (EOA, Valid Ethereum Address)
 Has an associated nonce (amount of transactions
sent from the account) and a balance

 codeHash - Hash of associated account code, i.e. a
computer program for a smart contract (hash of an
empty string for external accounts, EOAs)

e Storage Root is root hash of Merkle-Patricia trie of
associated account data

Campbell R. Harvey 2018

Accounts and Wallets

Contract Account
e Ethereum accounts can store and execute code
= Has an associated nonce and balance

= codeHash - hash of associated account code storageRoot
contains Merkle tree of associated storage data

Externally owned Contract
account account

code>
d

<
<code>

nnnnn I I balance | |codeHash| |storageR00!| | nonce | | balance | |c0deHasl1| |slorageRool

Campbell R. Harvey 2018

Example Account

Private Key:
Ox2dceflbfb03d6a950f91c573616cdd778d9581690db1cc43141f7cca06fd08ee

* Ethereum Private keys are 66 character strings (with Ox appended).
Case is irrelevant. Same derivation through ECDSA as BTC.

Address:
0OxA6fA5e50da698F6E4128994a4c1ED345E98Df50

* Ethereum Private keys map to addresses directly. Simply the last 40
characters of the Keccak-256 hash of the public key. Address is 42
characters total (append Ox to front).

Transactions

* Arequest to modify the state of the blockchain

= Can run code (contracts) which change global state
O Contrasts only balance updates in BTC

* Signed by originating account
* Types:
= Send value from one account to another account

= (Create smart contract
= Execute smart contract code

Campbell R. Harvey 2018

Ether Denominations
Wei - lowest denomination

= Named after Wei Dai - author of b-money paper (1998), many

core concepts used in BTC implementation
= 1/1,000,000,000,000,000,000 (quintillion)

« Szabo - next denomination Multiplier Name
Named after Nick Szabo 10° Wei
. 12
- author of Bit-Gold L= Bl
] . . _ 10" Finney
+ Finney — 2" highest denomination 10'® Ether

Named after Hal Finney
- received first Tx from Nakamoto

ampbell R. Harvey 2

http://www.weidai.com/bmoney.ixt

Smart Contracts

e Executable code
 Turing Complete

e Function like an external account

= Hold funds
= Caninteract with other accounts and smart contracts

= Contain code

 Can be called through transactions

Campbell R. Harvey 2018

Code Execution

Every node contains a virtual machine (similar to Java)
= Called the Ethereum Virtual Machine (EVM)

= Compiles code from high-level language to bytecode

= Executes smart contract code and broadcasts state

Every full-node on the blockchain processes
every transaction and stores the entire state

Campbell R. Harvey 2018

Gas

e Halting problem (infinite loop) — reason for Gas

* Problem: Cannot tell whether or not a program will run
infinitely from compiled code

* Solution: charge fee per computational step to limit infinite
loops and stop flawed code from executing

* Every transaction needs to specify an estimate of the
amount of gas it will spend

e Essentially a measure of how much one is willing to
spend on a transaction, even if buggy

Campbell R. Harvey 2018

Gas Cost

e @Gas Price: current market price of a unit of Gas (in Wei)
= Check gas price here: https://ethgasstation.info/

= |s always set before a transaction by user

 Gas Limit: maximum amount of Gas user is willing to
spend

 Helps to regulate load on network

* Gas Cost (used when sending transactions) is calculated
by gasLimit*gasPrice.
= All blocks have a Gas Limit (maximum Gas each block can use)

mpbell R. Harv

PoW vs. PoS

Ethereum in the process of moving to Proof of Stake

This approach does not require large expenditures on computing
and energy

Miners are now “validators” and post a deposit in an escrow
account

The more escrow you post, the higher the probability you will be
chosen to nominate the next block

If you nominate a block with invalid transactions, you lose your
escrow

Campbell R. Harvey 2018

PoW vs. PoS

Ethereum in the process of moving to Proof of Stake
 One issue with this approach is that those that have the most
ethereum will be able to get even more

* This leads to centralization eventually
e On the other hand, it reduces the chance of a 51% attack and

allows for near instant transaction approvals
 The protocol is called Casper and this will be a hard fork

https://blockonomi.com/ethereum-casper/
Campbell R. Harvey 2018

Other approaches to conensus

There are many other types of consensus

e (PoW) Proof of Work (Bitcoin, Ethereum, ...)

e (PoS) Proof of Stake (Ethereum in future)

 (Pol) Proof of Importance (used in NEM)

 (PBFT) Practical Byzantine Fault Tolerance (Hyperledger Fabric)
 (FBFT) Federated Byzantine Fault Tolerance (Ripple, Stellar)
 (DPoS) Delegated Proof of Stake

 (PoET) Proof of Elapsed Time (Hyperledger Sawtooth)

https://medium.com/@chrshmmmr/consensus-in-blockchain-systems-in-short-691fc7d1fefe
Campbell R. Harvey 2018

Appendix materials

Campbell R. Harvey 2018

A. Ethereum Blockchain Header

e Hash of included ommer’s

Block header

stored in block header

nnnnn timestamp

State root is the hash of a

logsBloom difficulty

merkle trie that holds all

gasLimit gasUsed

account information

stateRoot

transactionsRoot

receiptsRoot

Similar storage structure
for transactions and
receipts

Campbell R. Harvey 2018

b h

b

b h

34

A. Ethereum Blockchain State

StateRoot, TransactionRoot, and ReciptsRoot

* Stored in data structure known as a | Gl E=edl | |
Merkle-Patricia trie |

* Similar to the Merkle trie used in BTC
but with three leaves per node

* Trie is cryptographically secure as |
any alteration of a leaf or |ntermed|ary |
node results in a differentroothash ...

Campbell R. Harvey 2018 o

A. Ethereum Blockchain State

StateRoot

 Each node in the stateRoot trie
represents an Ethereum address
* Each address has 4 components

Nonce - list of number of Tx’s from
address
CodeHash - hash of associated code

StorageRoot - Merkle-Patricia tree

root of account storage contents
Balance - balance of account

Campbell R. Harvey 2018

A. Ethereum Blockchain

Ethereum “difficulty bomb”
e Spike (increase) in mining difficulty
* Introduced to attempt to reduce number of miners

= Aimed to pre-date shift of algorithm from PoW to Proof-of-
Stake (PoS)

Difficulty bomb impact
Impact of the Ice-Age diffi

Proof of Work Proof of Stake . &
N
- - :.'
a A- = ﬁ f o
==
Requires expensive Requires coins holders e
ety l B b e
iiiiiiiiiiiiiiiiii way that is called staking. LA A A A O
Campbell R. Harvey 2018 s S e R st

B. Smart Contract Programming

e Solidity (javascript based), most popular
= Not yet as functional as other, more mature, programming
languages

 Serpent (python based)
e LLL (lisp based)

Campbell R. Harvey 2018

B. Smart Contract Programming

Solidity
Solidity is a language similar to JavaScript which allows you to develop contracts and compile to
EVM bytecode. It is currently the flagship language of Ethereum and the most popular.

* Solidity Documentation - Solidity is the flagship Ethereum high level language that is used to

write contracts.
e Solidity online realtime compiler

Serpent
Serpent is a language similar to Python which can be used to develop contracts and compile to
EVM bytecode. It is intended to be maximally clean and simple, combining many of the
efficiency benefits of a low-level language with ease-of-use in programming style, and at the
same time adding special domain-specific features for contract programming. Serpent is
compiled using LLL.

 Serpent on the ethereum wiki

Campbell R. Harvey 2018

* Serpent EVM compiler

B. Smart Contract Programming

syntax highlighting, compilation and a runtime environment (requires

ﬁ Atom Ethereum interface - Plugin for the Atom editor that features
@
backend node).

Atom Solidity Linter - Plugin for the Atom editor that provides Solidity
linting.

Vim Solidity - Plugin for the Vim editor providing syntax highlighting.
Vim Syntastic - Plugin for the Vim editor providing compile checking.

Campbell R. Harvey 2018

B. Smart Contract Programming: Solidity

contract Example {

uint value;

function setValue(uint pValue) {
value = pValue;

}

function getValue() returns (uint) {
return value;

}

Campbell R. Harvey 2018

B. Smart Contract Programming: Solidity

var loglncrement =
OtherExample.LogIncrement({sender: userAddress,
uint value});

logIncrement.watch(function(err, result) {
// do something with result

P

Campbell R. Harvey 2018

C. Development Workflow

Testing Cycle

Account Deblo Test
e Onboard Additional Users /

eate New Accounts

e Develop New Applications

Campbell R. Harvey 2018

C. Development Workflow: Create Account

Create Develop Sign & Interact &
Deplo Test

« Programmatically: Go, Python, C++, JavaScript, Haskell

« Tools
= MyEtherWallet.com
= MetaMask
= TestRPC
= Many other websites

Campbell R. Harvey 2018

C. Development Workflow: Fund Account

Create > Fund Develop Interact &
Account Account Deplo Test

* From friends

* Faucet
 Exchanges (for public blockchain)

Campbell R. Harvey 2018

C. Development Workflow: Develop

‘
Account Account Deplo Test
« Ethereum Application Components:
= Base application: can be developed in any language
= Smart contract: developed in Solidity or one of the other
contract compatible languages

= Connector library: facilitates communication between base
application and smart contracts (Metamask)

Campbell R. Harvey 2018

C. Development Workflow: Sign and Deploy

Account Test

Sign

: I '
Transaction p Signed tx ooy —> Live Smart
T T Contract
Bytecodes Connector*

*Library that facilitates communication and connection with Blockchain; Connects your code to a running node.

Campbell R. Harvey 2018

C. Development Workflow: TestRPC

TestRPC/TestChain
* Local development or Test Blockchain
* https://github.com/ethereumijs/testrpc

Campbell R. Harvey 2018

C. Development Workflow: TestRPC

EthereumlS TestRPC: https://github.com/ethereumijs/testrpc is
suited for development and testing

It's a complete blockchain-in-memory that runs only on your
development machine

It processes transactions instantly instead of waiting for the
default block time — so you can test that your code works quickly
—and it tells you immediately when your smart contracts run into
errors

It also makes a great client for automated testing

Truffle knows how to use its special features to speed up test
runtime by almost 90%.

Campbell R. Harvey 2018

