Predictive versus Explanatory Models in Asset Management

Campbell R. Harvey
Predictability versus Explanatory Models

Predictive model (example): [Model 1]

\[r_{it} = a_{i0} + a_{i1} YS_{t-1} + e_{it} \]

Here the lagged Yield Spread predicts returns

• The residuals are \(e \)
• Models have low \(R^2 \)s
Predictability versus Explanatory Models

Factor models are explanatory (example):

[Model 2]
\[r_{it} = \alpha_{i0} + \beta_{i1} F_t + \nu_{it} \]

Here the contemporaneous factor, say MSCI world, explains returns.

• Let \(r \) represent “excess” returns
• Models have high \(R^2 \)s
Predictability versus Explanatory Models

Factor models are explanatory (example):

\[r_{it} = \alpha_{i0} + \beta_{i1} F_t + v_{it} \]

\(\beta_{i1} \) represents factor “loading”, “sensitivity”, or “beta”

- For a given change in the factor, how much should the return on asset i move?
Asset pricing models link the betas to expected returns - across many assets:

Hope to see a positive relation between beta and expected return.
Predictability versus Explanatory Models

4) When betas are assumed fixed, the CAPM does a poor job of explaining expected returns.
5) When betas are allowed to change through time, the CAPM does a better job of explaining expected returns.
Predictability versus Explanatory Models

How can we get betas to change?

A) Estimate rolling model, five-year window of data
B) GARCH (ratio of covariances to variances)
C) Dynamic linear factor model (make assumption on how beta changes)
Predictability versus Explanatory Models

Dynamic linear factor model:

\[r_{it} = \alpha_{i0} + \beta_i F_t + v_{it} \]

Assume beta is a function of something, say, lagged interest rate.

\[\beta_{it} = c_{oi} + c_{i1} I_{t-1} \]

Substitute this for the usual beta
Predictability versus Explanatory Models

Dynamic linear factor model:

\[r_{it} = \alpha_{i0} + [c_{oi} + c_{i1} I_{t-1}] F_t + v_{it} \]

Rewrite

\[r_{it} = \alpha_{i0} + c_{oi} F_t + c_{i1} I_{t-1} F_t + v_{it} \]
Predictability versus Explanatory Models

Dynamic linear factor model:

\[r_{it} = \alpha_i + c_{oi} F_t + c_{i1} I_{t-1} F_t + v_{it} \]

Now regression has two coefficients: \(c_{oi} \)
which is like the old constant beta

The \(c_{i1} \) is the coefficient on a new variable,
\((I_{t-1}F_t)\), which is just the product of the
MSCI world and lagged interest rates.
Predictability versus Explanatory Models

Dynamic linear factor model:
Given we estimate c_{oi}, c_{i1}, we have our dynamic beta function

$$\beta_{it} = c_{oi} + c_{i1} I_{t-1}$$

Here the beta changes through time as I_{t-1} changes through time. If c_{i1} is positive, then betas are higher for this firm when interest rates are high.
Predictability versus Explanatory Models

Asset pricing and dynamic betas:

We know risk changes through time. Hence, to give the asset pricing model the best possible shot, we should allow the betas to be dynamic.
Predictability versus Explanatory Models

Predictability and Asset Pricing

Unconditional CAPM

Links average returns to average risk (fixed beta) - does not do a good job.
Predictability versus Explanatory Models

Predictability and Asset Pricing

Conditional CAPM

Links predicted returns (across different assets) to conditional risk (dynamic betas) - does a better job.
Predictability versus Explanatory Models

Predictability and Asset Pricing

Note:

Both unconditional and conditional models can be cast with multiple factors. I am using one factor only for presentation purposes.
Predictability versus Explanatory Models

Predictability and Efficiency

Some of the predictability we document in model (1) could be due to risk shifting or risk premia shifting through time. This part of predictability is “rational”.
Predictability versus Explanatory Models

Predictability and Efficiency

Some of the predictability we document in model (1) may **not** be explained risk premia shifting through time. This part of predictability is due to one of two things:
Predictability versus Explanatory Models

Predictability and Efficiency

i) market inefficiency

ii) asset pricing model is misspecified
Predictability versus Explanatory Models

Predictability Models in Asset Management

Predictability Model 1:

- Simple to use
- Predict returns, volatility, correlations and feed into asset allocation model
- No role for asset pricing model
Predictability versus Explanatory Models

Explanatory Models in Asset Management

Explanatory Model 2:

- Forecast or take a stand on the Factor that will be realized, e.g. Factor is MSCI world. If you think it will go up, load up your portfolio with high beta stocks
- Sometimes called “tilt.”
Predictability versus Explanatory Models

Explanatory Models in Asset Management

Explanatory Model 2:
- This model may work better if we model the betas to be dynamic. That is choose the stocks whose forecasted betas will be higher.
Predictability versus Explanatory Models

What about the alpha?

Explanatory Model 2:

- There is another way to use the Explanatory Model (without forecasting the factors).
- The explanatory model has an alpha and a residual.
Predictability versus Explanatory Models

What about the alpha?

Explanatory Model 2:

• The expected value of the alpha and residual is zero.
Predictability versus Explanatory Models

What about the alpha?

Explanatory Model 2:
• Suppose beta=1 and market excess return increases by 10%. Suppose the stock excess return only goes up by 4%.
• The “alpha” (both the traditional alpha plus the residual) is 6%
Predictability versus Explanatory Models

What about the alpha?

Explanatory Model 2:

- The “alpha” might have valuable information that could be incorporated into trading strategies.
- Will this stock “catch-up” 6% - or is there a reason it did not move with the market as it was expected based on the beta