Partial identification and testable restrictions in multi-unit auctions

D. McAdams (2008)

Presented by
Pamela Medina

Duke University

11/17/2011
Motivation

- Multi-unit auctions → Multiple identical objects are bought, sold or traded.
- Result in single object auction: distribution from bidders' values is point identified from the distribution of bids given IPV.

Question → How can we interpret the data in multi-unit auctions given IPV?

1. Distribution of bidders' values is *not necessarily* point-identified from the distribution of bids under the assumption of equilibrium bidding, and asymmetric IPV. We can get bounds if bidders have non-increasing marginal values (NIMV) in both discriminatory and uniform-price auctions.

2. Testable implications of the hypothesis that bidder i’s strategy is a best response to the distribution of other bids, assuming bidders have IPV and bidder i has NIMV.
Guerre et al. (2000) used FOC of optimal bidding to identify the distribution of bidder values from the distribution of equilibrium bids.

Not the same in multi-unit auctions. Why?

- Equilibrium bid in an auction with S identical units is an S-dimensional demand schedule and a “value” is an S-dimensional marginal value schedule.
- Many different marginal value schedules that can rationalize a given bid as a best response.

What to do? → Use partial identification: find bounds.
The Model

- S identical indivisible objects ("units") are sold to N risk-neutral bidders.
- Each bidder i’s marginal value schedule (or "value") takes the form $v_i = (v_{i,1}, \ldots, v_{i,S})$.
- IPV. Distribution of values is common knowledge among the bidders, but unknown to the econometrician.
- Auction rules:
 - Permissible bids. Each bidder submits a bid $b_i = (b_{i,1}, \ldots, b_{i,S})$ such that $b_{i,q} \geq b_{i,q'}$ for all $q < q'$.
 - Allocation rule: Highest S unit-bids win.
 - Payment rule: Bidder i pays the sum of his unit-bids on what he wins.
- Winning probability: $w_{i,q}(x) = \Pr(x > \tilde{s}_{i,q})$ where $\tilde{s}_{i,q} = b_{-i}^{S-q+1}$ which is defined as the maximum $(S-q+1)$th bid made by of the others.
- Assume winning probability is continuously differentiable at $b_{i,q}$ for all q.
Bidder’s i interim payoff:

\[\Pi_i(b_i, v_i; \tilde{s}_i) = \sum_{q=1}^{S} \Pi_{i,q}(b_{i,q}, v_{i,q}; \tilde{s}_{i,q}) \]

where \(\Pi(b_{i,q}, v_{i,q}; \tilde{s}_{i,q}) = w_{i,q}(x)(v_{i,q} - b_{i,q}) \).

Here you assume q things: (i) bidder i has some probability of winning all S units for all q and (ii) bidder i faces no “gaps” in the distribution of competing bids. However, you lose generality.

Gaps: A bidder i faces a ”gap” at price p for quantity q if \(w'_{i,q}(p) = 0 \) and \(w_{i,q}(p) > 0 \).

Usually, gaps are not best responde. BUT they might be for discriminatory auctions of more than 2 units.
The Model

- The distribution of values \tilde{v} rationalizes a given distribution of bids \tilde{b} if, when values are distributed as \tilde{v}, there exists a Bayesian Nash equilibrium profile of (possibly mixed) strategies σ such that $\sigma(\tilde{v})$ is distributed as \tilde{b}.

- Characterizing the set of best responses in this problem might be a challenging task. Therefore, consider a larger set of values that satisfy FOC associated with bid b (necessary conditions): $V_{i}^{FOC}(b_i)$.

- Let $v_{i,X}^{*}(b_i)$ be the indifference level of marginal values where bidder i is indifferent between raising or lowering his unit-bids on all quantities in X. For every bid, $(v_{i,1}(b_i), \ldots, v_{i,S}(b_i)) \in V_{i}^{FOC}(b_i)$.

- In the discriminatory auction, this is the only marginal value schedule than can rationalize bidder i’s bid schedule if that bid schedule is strictly decreasing in quantity. If same for several units, then, we can have several marginal value schedules.
The Model

- NIMV: \(v_{i,q} \geq v_{i,q'} \) for all \(q < q' \).

- Step of quantities: \(Q(b) = \{ q \in \{1, ..., S\} : b_{i,q} = b \} \).

- Theorem 2: Bounds
 - \(v_i \in V_i^{FOC}(b_i) \cap V_i^{NIMV} \) implies \(v_{i,q} \in [v_{i,q}(b_i), \overline{v}_{i,q}(b_i)] \).
 - As long as \(V_i^{FOC}(b_i) \cap V_i^{NIMV} \neq \emptyset \), there exists \(v_i', v_i'' \in V_i^{FOC}(b_i) \cap V_i^{NIMV} \) such that \(v_{i,q} = \overline{v}_{i,q}(b_i) \) and \(v_{i,q} = \overline{v}_{i,q}(b_i) \).
The Model

![Diagram showing the model with price on the y-axis and quantity on the x-axis. The diagram includes points labeled with mathematical expressions: \(\min Q(b_{i,q}) \), \(q \), and \(q' \), and a horizontal line at a constant price level.](image-url)
Outline

1 Introduction

2 The Model

3 Testable Restrictions
Testable Restrictions

- Suppose that an econometrician does not know the true distribution of bids but observes a sample of M discriminatory auctions, in which the same bidders have IPV drawn from the same distribution and play the same equilibrium strategies in each auction.

- Consider the discretized version of the hazard rates

$$
\Delta + \frac{w_{i,q_1}(b)}{w_{i,q_1}(b+\Delta) - w_{i,q_1}(b)} \geq \frac{w_{i,q_2}(b - \Delta)}{w_{i,q_2}(b) - w_{i,q_2}(b - \Delta)}.
$$

- Evaluating DISCRIM–(q_1, q_2) given a sample of M identical auctions is equivalent to a standard problem of testing a moment inequality involving multinomial probabilities given M iid draws from the relevant multinomial distribution.