Sellers sometimes have the ability to modify objects being offered for sale in ways that provide benefits to themselves or to the general public. For example, in US Spectrum License Auction 73 held in 2008, the US Federal Communications Commission (FCC) offered the licenses with substantial usage restrictions that the FCC viewed as in the public’s interest. The FCC decided to adopt a “contingent re-auction” format, where it offered the restricted licenses first, with reserve prices, and committed to re-auction the licenses without many of the restrictions if the reserve prices were not met. We show that contingent re-auctions are generally neither efficient nor optimal for the seller. We propose an alternative “exclusive-buyer mechanism” that can implement the efficient outcome in dominant strategies. In certain environments, parameters can be chosen so the seller’s surplus is maximized across all selling procedures. (JEL D44, D82, H82)

The recent attempted sale of the Italian airline Alitalia followed a similar pattern, although the procedure was not formalized to the same extent as that of the FCC. Alitalia was first put up for sale with a series of restrictions, such as limitations on the ability of the new owner to fire employees. Those restrictions were perceived as desirable by the Italian government, but lowered the value of the airline to any bidder. After it became clear that no bidder was interested given the proposed conditions, the airline was put up for sale again with fewer restrictions.¹

¹ Alitalia was put on sale on January 2007. A number of bidders initially expressed interest but they all dropped out by July 2007. The bidders cited “restrictive conditions imposed by the government and a lack of access to the airline’s books. … These conditions, when originally expressed ahead of the auction, included maintaining certain staff levels, continued operation of some routes and traffic rights regardless of profitability, preserving Alitalia’s
These are examples of auction environments with seller-benefiting restrictions. The seller has the ability to “damage” the object for sale by imposing usage restrictions and receives a benefit B, in addition to the sale price, if and only if the object is sold in restricted form. Bidders value the unrestricted version of the object more than the restricted one.

There are many other examples of auction environments with seller-benefiting restrictions. A buyer procuring an input from competing suppliers might benefit from having inputs that are viewed as “environmentally friendly” or backwards compatible with its current inputs, even though the production of inputs restricted in this way is more costly. In a patent licensing environment, the holder of a patent might benefit from licensing the patent with restrictions on where products produced using the patent can be sold or the price at which they can be sold,\(^2\) although such restrictions reduce the value of the license to another firm.

Our paper contributes to the understanding of auction environments with seller-benefiting restrictions. We provide a theoretical analysis of contingent re-auctions and propose an alternative mechanism that can improve upon contingent re-auctions in terms of both social efficiency and expected seller surplus.

Specifically, we characterize equilibrium behavior in contingent re-auctions, including those involving a pair of ascending-bid auctions and those involving a pair of sealed-bid second-price auctions. Although it is possible to construct special examples in which contingent re-auctions are efficient, we show that in general contingent re-auctions entail significant inefficiencies. We then identify an alternative auction mechanism, the “exclusive-buyer mechanism,” which is an auction (either second price or ascending bid) with reserve price r for the exclusive right to choose between being awarded the restricted object at no additional cost and buying the unrestricted object for a fixed incremental payment p.\(^3\) We show that the parameters of an exclusive-buyer mechanism can always be chosen so that the mechanism induces the efficient outcome in dominant strategies. The efficiency properties of the exclusive-buyer mechanism extend to the case where there are multiple possible restrictions on the object, each valued differently by the buyers and each with a different benefit to the seller. However, in environments with multiple objects for sale, achieving efficiency in practice remains an open question.\(^4\) In addition, we show that in some environments, if the parameters of an exclusive-buyer mechanism are chosen with the seller’s surplus in mind, the exclusive-buyer mechanism improves upon contingent re-auctions in terms of the seller’s expected surplus.

\(^2\) On the legal issues associated with restrictions on patent licensees, see, e.g., Einer Elhauge and Damien Geradin (2007, Chapter 2.G).

\(^3\) The exclusive buyer mechanism is reminiscent of a right-to-choose auction, which is defined by Roberto Burguet (2007, 167) as “a sequence of auction rounds where the winner of each chooses among the so far unsold goods.” See also Ian L. Gale and Donald B. Hausch (1994); Burguet (2005); and Kfir Eliaz, Theo Offerman, and Andrew Schotter (2008). In contrast, in the exclusive buyer mechanism, there is only one round and there is only one good for sale, but that good can be sold subject to restrictions.

\(^4\) Under the assumption of private values, a Vickrey-Clarke-Groves mechanism achieves the theoretical benchmark for efficiency.
Because we assume that the buyers have private values, the efficient outcome in our model can also be induced by a Vickrey-Clarke-Groves (VCG) mechanism. However, as pointed out by Lawrence M. Ausubel and Paul Milgrom (2006) and Michael H. Rothkopf (2007), Vickrey auctions have certain weaknesses. For example, they require bidders to reveal their true values, which they may not want to do if it weakens their bargaining positions in future transactions. In addition, as stated in Rothkopf (2007, 195), “[i]n government sales of extremely valuable assets, the political repercussions of revealing the gap between large offers and small revenue could be a dominant concern.” An exclusive-buyer mechanism using an ascending-bid auction delivers efficiency without these weaknesses.

In an exclusive-buyer mechanism, the parameters \(r \) and \(p \) can be chosen to maximize efficiency or to maximize the expected seller surplus within the class of exclusive-buyer mechanisms. We show that when each buyer’s value for the restricted object is a fixed percentage of its value for the unrestricted object and the seller’s belief satisfies the usual mild regularity condition, the seller-optimal exclusive-buyer mechanism is also globally optimal—it maximizes the seller’s expected surplus across all feasible selling mechanisms.

One limitation of our results is that we consider a single auction. The results are of course immediately extended to the case of multiple licenses if the benefit for the seller of restricting a license does not depend on whether other licenses are also restricted. While this may be realistic in some cases, in others it is not. For example, if the restriction involves a requirement of open platforms (see Section II for a discussion of this requirement), then it is possible that the benefits for the seller are superadditive. In principle this situation can also be dealt with using a VCG mechanism, but that would be subject to the same criticisms that we have discussed for the single-object case. We thus leave a more thorough treatment of this case for future research.

Our results suggest that sellers such as the FCC can improve their auction design in environments where they view restrictions on the objects being sold as in the public interest. By switching from a contingent re-auction format to an exclusive-buyer mechanism, the FCC can improve the efficiency of its auction and may be able to increase its expected surplus. In some examples, the efficient exclusive-buyer mechanism generates greater expected seller surplus than any contingent re-auction. In such cases, the efficient exclusive-buyer mechanism dominates contingent re-auctions in terms of both efficiency and seller surplus. In addition, the parameters of the exclusive-buyer mechanism, reserve \(r \) and incremental payment \(p \), can be chosen to maximize any combination of efficiency and seller surplus, which may be valuable for a seller that is interested in both efficiency and its own surplus.

The paper proceeds as follows. In Section I, we review related literature. In Section II, we describe in more detail the contingent re-auction procedure used by the sellers.

5 Bidders may have concerns about the ability of sellers such as the FCC to maintain the secrecy of bids because of the Freedom of Information Act.

6 The Communications Act of 1934 (as amended by the Telecom Act of 1996) gives the FCC the legal authority to auction spectrum licenses. The language of the Act suggests that efficiency concerns should dominate revenue concerns in the FCC’s auction design choices. Section 309(j) of the Act states that one objective of the auctions is “recovery for the public of a portion of the value of the public spectrum,” but it also states that “the Commission may not base a finding of public interest, convenience, and necessity solely or predominantly on the expectation of Federal revenues.”
the FCC. In Section III, we describe our model. In Section IV, we provide results for contingent re-auctions in the general model with two-dimensional types. In Section V, we examine exclusive-buyer mechanisms, including the possibility of implementing the first-best or seller-optimal outcome with an exclusive-buyer mechanism. Section VI concludes and an appendix collects the proofs.

I. Literature

We are not aware of any literature that considers contingent re-auctions directly, but there are several strands of related literature. First, on sequential auctions, Ignatius J. Horstmann and Chantale LaCasse (1997) show that in common value environments the seller may choose not to sell an object, even if it receives bids above the announced reserve price, and then re-auction the item after some time in order to signal its private information about the value of the object. In the environment we consider, the seller has no private information. Ralph Cassady (1967), Orley Ashenfelter (1989), and Robert H. Porter (1995) indicate that goods that are not sold at an initial auction are often offered for sale again later, but in these cases it is the same items that are re-offered, not a modified version as in the cases we consider. David McAdams and Michael Schwarz (2007) show that a seller may benefit from being able to commit to a final round of offers. R. Preston McAfee and Daniel R. Vincent (1997) consider a model in which a seller is unable to commit not to re-auction an object if the announced reserve price is not met. They show that when the time between auctions goes to zero, the seller’s expected revenues converge to that of a static auction with no reserve price, and they characterize the optimal dynamic reserve price policy of the seller. In our model, we assume that the seller can commit to a reserve price in the second auction, but we do not exclude the possibility that the reserve price at the second auction is zero.

There is also a literature on auctions with resale by the winning buyer; see, e.g., Madhurima Gupta and Bernard Lebrun (1999); Philip A. Haile (2000, 2001, 2003); Charles Z. Zheng (2002); Rod Garratt and Thomas Tröger (2005); Garratt, Tröger, and Zheng (2006); Isa Hafalir and Vijay Krishna (2008); Lebrun (2007); and Marco Pagnozzi (2007). In our model, we assume no resale by buyers.

Vlad Mares and Jeroen M. Swinkels (2008) consider a procurement environment in which the buyer receives an external benefit if a particular supplier is chosen to supply the object. They characterize the optimal mechanism and show that in many environments an appropriately chosen second-price mechanism dominates a first-price auction with a handicap. The external benefit to Mares and Swinkels’ (2008) buyer is similar in flavor to our benefit B to the seller. However, in Mares and Swinkels (2008), whether the benefit is received depends on the identity of the winner, and in our paper it does not—it depends on whether the object is allocated in restricted or unrestricted form. Because of this difference, the underlying analytics in the two papers are different. The relevant comparisons in Mares and Swinkels (2008) are among the optimal mechanism, second-price mechanisms, and first-price mechanisms. The relevant

7 In Mares and Swinkels (2008), bidders’ types are one-dimensional so the optimal mechanism can be derived using standard techniques. In our model, bidders’ types are inherently two-dimensional because there are two forms of the object, restricted and unrestricted.
comparisons in our paper are between contingent re-auctions and exclusive-buyer mechanisms.

In our general model, buyers have two-dimensional types. Each buyer has privately known values for both the unrestricted and restricted versions of the object. As shown in Robert B. Wilson (1993), results for mechanism design problems with multidimensional types can be difficult to obtain. A number of papers have contributed to the development of methods for such problems, including Jean-Charles Rochet (1985); Steven A. Matthews and John Moore (1987); McAfee and John McMillan (1988); Mark Armstrong (1996); Rochet and Choné (1998); Thanassoullis (2004); and Manelli and Vincent (2007). The last four of these papers focus on the case of a multiproduct monopolist. With multidimensional types, it has been shown by Rochet and Philippe Choné (1998); John Thanassoullis (2004); and Manelli and Vincent (2007) for slightly different contexts that, for a large class of seller’s beliefs, it is optimal to allocate objects with probability strictly between zero and one.

The problem of maximizing the seller surplus in the one-dimensional version of our model, which we consider in Section VB, is related to the classic paper by Michael Mussa and Sherwin Rosen (1978), which studies a model in which a monopolist offers a quality differentiated spectrum of the same good. Some differences between their model and ours are apparent: in their setup, higher quality versions of the good cost more to produce and there is no benefit to the seller associated with particular quality levels. There is, however, a way of relabeling variables that shows that the two models have a similar structure. One significant difference is that we have a single object for sale and more than one buyer, hence the seller’s problem is not separable across buyers. In related work, Raymond J. Deneckere and McAfee (1996) show that it can be optimal for a seller to offer both damaged and undamaged versions of a product. In our model, the seller can only offer one version of the product, either restricted or unrestricted, so there is no price discrimination motivation for restricting the use of the product.

II. Contingent Re-Auction of Spectrum Licenses

FCC Auction 73 began on January 24, 2008, and ended on March 18, 2008. It was a large auction with 1,099 spectrum licenses in the 698–806 MHz band, which is referred to as the 700 MHz Band. The auction raised approximately $19 billion for the US government (the largest auction in FCC history).

As usual for an FCC auction, the licenses were defined by their geographic scope and their location in the electromagnetic spectrum. The band plan for the 700 MHz auction defined five blocks of licenses: A, B, C, D, and E. The D-block license was subject to conditions relating to a public/private partnership and provisions for a

8The A-block licenses were 12 MHz licenses defined over 176 medium-sized geographic areas referred to as Economic Areas. The B-block licenses were 12 MHz licenses defined over 734 small geographic areas referred to as Cellular Market Areas. The C-block licenses were 22 MHz licenses defined over 12 large geographic areas referred to as Regional Economic Area Groups. In the C block, bidders were also able to submit package bids on three packages: the eight licenses covering the 50 US states, the two Atlantic licenses (covering Puerto Rico, US Virgin Islands, and the Gulf of Mexico), and the two Pacific licenses (covering Guam, Northern Mariana Islands, and American Samoa). The D block was organized as a single 10 MHz nationwide license. The E-block licenses were 6 MHz licenses defined over the 176 Economic Areas.
re-auction of that spectrum in the event its reserve was not met were not specified, so we focus on the other blocks.

For blocks A, B, C and E, the FCC set block-specific aggregate reserve prices and attached significant performance requirements to the licenses. However, the FCC also ordered that if the reserve price for a block was not met, the block would be re-auctioned “as soon as possible” with less stringent requirements at the same reserve price.9

The performance requirements for the A, B, C, and E blocks included aggressive build-out requirements, asking license holders to provide service to a minimum percent of the geography covered by the A, B, and E-block licenses, and to a minimum percent of the population covered by the C-block licenses.10 Through these build-out requirements, the FCC sought to promote service across as much of the geographic area of the country and to as much of the population as practicable, something that it viewed as being in the public interest. If the reserve prices were not met, the build-out requirements were to be relaxed.

In addition, specifically for the C-block licenses, the FCC required “licensees to allow customers, device manufacturers, third-party application developers, and others to use or develop the devices and applications of their choice, subject to certain conditions.”11 The FCC viewed this requirement of open platforms for devices and applications as being for the benefit of consumers.12 In the event that the reserve price for the C block was not met, those licenses were to be offered without the open platform conditions.13

In the end, the reserve prices for the A, B, C, and E blocks were all met and so the re-auction was not invoked, although the FCC was prepared to do so if the reserves had not been met.

In the remainder of this paper, we analyze a contingent re-auction in the context of a theoretical model, and we contrast it with efficient and optimal mechanisms in an environment with seller-benefitting restrictions.

III. Model

The owner of a single object that can be sold either in restricted or unrestricted form faces a set \(N = \{1, \ldots, n\} \) of potential buyers. Buyer \(i \)'s expected payoff is

\[
u_i = h_i q_i^H + l_i q_i^L - m_i,\]

9See the Second Report and Order (FCC 07-132) at paragraph 307. The reserve prices were: Block A, $1.81 billion; Block B, $1.38 billion; Block C, $4.64 billion; Block D, $1.33 billion; Block E, $0.90 billion. The FCC stated that “Because of the value-enhancing propagation characteristics and relatively unencumbered nature of the 700 MHz Band spectrum, we believe these are conservative estimates.” (FCC Public Notice (DA 07-3415), paragraph 54)

10The Second Report and Order (FCC 07-132) at paragraph 153 states that for the A, B, and E-block licenses, “licensees must provide signal coverage and offer service to: (1) at least 35 percent of the geographic area of their license within four years of the end of the DTV transition, and (2) at least 70 percent of the geographic area of their license at the end of the license term.” For the C-block licenses, “licensees must provide signal coverage and offer service to: (1) at least 40 percent of the population of the license area within four years, and (2) at least 75 percent of the population of the license area by the end of the license term.” (paragraph 162).

12Second Report and Order (FCC 07-132), paragraph 201.

13Second Report and Order (FCC 07-132), paragraph 311. As discussed in paragraph 312, the band plan for the reauctioned C-block would also be modified.
where \(l_i \) and \(h_i \) denote buyer \(i \)'s privately known values for the object, in restricted and unrestricted form, \(q_i^L \) and \(q_i^H \) are the probabilities with which buyer \(i \) receives the restricted and unrestricted object, and \(m_i \) is buyer \(i \)'s expected payment to the seller. Buyer \(i \)'s type \((l_i, h_i)\) is obtained as the realization of an independent random variable with cumulative distribution function \(F_i \), density \(f_i \), and support contained in the set

\[
\{(l, h) \in [l, \tilde{l}] \times [h, \tilde{h}] | l \leq h\},
\]

where \(l, h \geq 0 \).

The seller derives an extra benefit \(B > 0 \), in addition to the sale revenue, if and only if the object is sold in restricted form. The seller’s costs of departing from the object, in either form, are normalized to zero. Thus, the seller’s expected surplus is

\[
u_0 = \sum_{i \in N} (m_i + Bq_i^L)\).
\]

We model the contingent re-auction procedure as follows. The seller first offers the restricted object for sale in a second-price or ascending-bid auction with reserve price \(r_1 \). If any bidder bids \(r_1 \) or above, the object is sold in restricted form. Otherwise the object is re-offered, this time in unrestricted form, in a second-price or ascending-bid auction with reserve price \(r_2 \). If no bidder bids \(r_2 \) or above at the second auction, the seller retains the object.

In referring to an ascending-bid auction, we need to be specific about the details of the auction format. A variety of formats are used in practice and in theory. For example, Milgrom and Robert J. Weber (1982) describe a variant that they refer to as a “Japanese English Auction,” where the price increases continuously until all but one bidder (irrevocably) cease to be active. Alternatively, one can assume that reentry is always possible, as is the case at many ascending-bid auctions used in practice. Intermediate versions are possible as well.

Our results do not depend on whether a sealed-bid second-price auction or an ascending-bid auction is used in the second stage to sell the unrestricted object. In the first stage, a sealed-bid second-price auction is equivalent to an ascending-bid auction without reentry (with the same reserve price); but the outcome is different if an ascending-bid auction with reentry is used. Given this, to minimize repetition in what follows, we use the term second-price auction to mean either a sealed-bid second-price auction or an ascending-bid auction without reentry, and we use the term ascending-bid auction to mean an ascending-bid auction with reentry.

The format used by the FCC in Auction 73 had \(r_1 = r_2 \) and limited the ability of bidders to freely exit and enter the bidding through “activity” requirements. However, because of the large number of licenses that were offered and because

15 In most of its auctions the FCC uses activity rules, which prevent bidders from waiting until the end of the auction before becoming active participants. To maintain their eligibility to bid, bidders must bid actively, or have a standing high bid in every round (FCC Auctions Glossary, http://wireless.fcc.gov/auctions/).
activity was calculated across all licenses, bidders did have some ability to enter and exit the bidding on individual licenses.

IV. Results for Contingent Re-Auctions

In this section, we prove existence and characterize the equilibrium bidding in contingent re-auctions. We restrict attention to weakly undominated strategies. We say that a bidder “bids \(x \)” to mean that: (i) at a second-price auction, the bidder offers \(x \); and (ii) at an ascending-bid auction with reserve price below \(x \), the bidder starts by bidding the reserve price and remains active in the auction (i.e., continues to attempt to raise the bid if it is not the current high bidder) until the price reaches \(x \). Whenever \(l_i \geq r_1 \), bidding \(l_i \) at the first auction dominates bidding any other value \(x \geq r_1 \). Similarly, whenever \(h_i \geq r_2 \), bidding \(h_i \) at the second auction dominates bidding any other value \(x \geq r_2 \). Thus, after ruling out dominated strategies, the conditional re-auction game becomes strategically equivalent to a game in which the strategy set of each bidder \(i \) consists of only two strategies: “go,” i.e., bid \(l_i \), and “wait,” i.e., do not bid at the first auction unless some other bidder bids at or above \(r_1 \), in which case bid \(l_i \) if allowed (i.e., if the first auction is ascending-bid), and bid \(h_i \) at the second auction.

For the results in this section, we assume that the value distributions \(F_1, \ldots, F_n \) have common support

\[
\Theta_1 = \ldots = \Theta_n = \{(l, h) \in \mathbb{R}_+^2 \mid l \in [l_\ell(h)], h \in [h_\ell, h]\},
\]

where \(l_\ell(h) \leq h \) denotes the upper bound on a bidder’s value for the restricted object when its value for the unrestricted object is \(h \). We assume that the expectations stated below exist, that the function \(l_\ell(h) \) is differentiable and the derivative is non-negative and bounded above. We will use the notations \(F_i(l_i | h_i) \) and \(z_i(h_i) \) to denote, respectively, the conditional cumulative distribution function of \(l_i \) given \(h_i \) and the marginal density of \(h_i \).

We start by observing that in any equilibrium with undominated strategies all bidders bid “truthfully” in the second auction, i.e., bidder \(i \) bids (up to) \(h_i \). This is true both for the ascending-bid auction format and the second-price format. Letting \(p_h(h_{-i}, r_2) = \max\{r_2, \max_j h_j \} \) denote the price paid by bidder \(i \) when it wins the second auction, we can write bidder \(i \)’s payoff as

\[
u_h^i(h_i, h_{-i}, r_2) = \max\{h_i - p_h(h_{-i}, r_2), 0\}.
\]

To determine when the second round is reached, we must consider the strategies in the first round. For each \(i \), let \(W_i \) denote the set of types for bidder \(i \) that choose the “wait” strategy in the first round with probability 1. In a second-price auction, this means not entering a bid at or above the reserve price. In an ascending-bid auction, this means not being the first to bid at or above the reserve price. In equilibrium the set of types of bidder \(i \) such that \(i \) mixes between “wait” and “go” has
zero measure,\(^{16}\) thus any equilibrium in undominated strategies is determined by a collection of subsets \(\{W_1, \ldots, W_n\}\). We assume that all types \((l_i, h_i)\) with \(l_i < r_i\) are elements of \(W_i\), as these types at least weakly prefer to wait. When \((l_i, h_i) \notin W_i\), bidder \(i\) chooses a “go” strategy in the first round. Conditional on participating in the first auction, the only weakly dominant strategy is to bid \(l_i\).

The second round is reached only if all bidders adopt a “wait” strategy in the first round. The expected surplus for bidder \(i\) of type \((l_i, h_i)\) from adopting the “wait” strategy depends on how likely it is that other bidders also “wait” since it is only when all bidders “wait” that the second stage is reached.

The expected surplus from the second auction for type \((l_i, h_i)\) of bidder \(i\) is

\[
V^i_h(h_i \mid W_{-i}) = E_{l_i \sim h_i}[u^i(h_i, h_{-i}, r_2) \mid (l_{-i}, h_{-i}) \in W_{-i}] \Pr[(l_{-i}, h_{-i}) \in W_{-i}],
\]

where \(W_{-i} \equiv \Pi_{j \neq i} W_j\). Note that \(V^i_h\) only depends on \(h_i\), not on \(l_i\), and is nondecreasing in \(h_i\).

The expected payoff from the “go” strategy depends only on \(l_i\) since the unrestricted object is never sold. Let \(V^i_l(l_i \mid W_{-i})\) be the value of bidding in the first auction when the set of types \(W_{-i}\) is expected to “wait.” Intuitively, it is clear that \(V^i_l(l_i \mid W_{-i})\), is nondecreasing in \(l_i\).

Thus, in equilibrium, for each \(h_i > r_2\) there is a threshold value \(d_i(h_i)\) such that types with \(l_i < d_i(h_i)\) prefer to suppress their bids and wait for the second auction, while types with \(l_i > d_i(h_i)\) bid at or above the reserve price in the first auction. Thus, in every equilibrium the set \(W_i\) of types of agent \(i\) that adopt the “wait” strategy takes the form

\[
W_i = \{(l_i, h_i) \mid l_i \leq d_i(h_i)\}
\]

for some function \(d_i\), which we refer to as the delay threshold function. We illustrate a possible delay threshold function in Figure 1.

The particular form taken by the delay threshold function depends on the auction format, since the functions \(V^i_l(l_i \mid W_{-i})\) are different depending on the auction format (we remind the reader that the value of \(V^i_l(h_i \mid W_{-i})\) does not depend on the auction format). We will use \(d^p_i\) to denote the function in the case of a second price auction and \(d^a_i\) for an ascending English auction.

In a second-price auction, once the bids are submitted, no bidder can revise its behavior. Thus, a bidder that chooses to stay out of the first auction cannot react to others bidding above the reservation price \(r_i\) and earns zero surplus. In contrast, an ascending-bid first-round auction (with reentry) allows any bidder to respond to others initiating the bidding in the first round.

In the next proposition we focus on ascending-bid contingent re-auctions (we comment on the second-price format in Section IVB) and prove that an equilibrium

\(^{16}\)If, contrary to our assumption on the support of the value distributions, the type space were one dimensional, e.g., \(l_i = \alpha h_i\) for some \(\alpha \in (0, 1)\), then the set of types that mix might have positive measure in that one-dimensional space.
exists when bidders are symmetric. Although we do not have a proof for the case of asymmetric bidders, we have no reason to believe that equilibria would not exist in that case as well.

We say that an equilibrium is symmetric if there is a function \(d \) such that \(d_i = d \) for each \(i \). The next proposition establishes that a symmetric equilibrium exists when bidders are symmetric. For the purposes of this proposition, we assume that \(\bar{F}(l|h) \), the function describing the highest possible value for \(l \) given a certain value of \(h \), has a bounded derivative. We also remind the reader that \(F(l|h) \) and \(z(h) \) are, respectively, the conditional cumulative distribution function of \(l \) given \(h \) and the marginal density of \(h \).

PROPOSITION 1: When bidders are ex ante symmetric, i.e., \(F_1 = \ldots = F_n \), there exists a symmetric perfect Bayesian equilibrium of the ascending-bid contingent re-auction characterized by a nondecreasing and continuous function \(d^A : [\bar{h}, \bar{h}] \rightarrow [r_1, \bar{l}(h)] \). The function \(d^A \) has derivative

\[
(3) \quad d^{A'}(h_i) = \left(\frac{\int_{h_i}^{\bar{h}} F(d^A(x) \mid x) z(x) dx}{\int_{h_i}^{\bar{h}} F(d^A(x) \mid x) z(x) dx + \int_{h_i}^{\bar{h}} F(d^A(h_i) \mid x) z(x) dx} \right)^{n-1}
\]

whenever \(r_1 < d^A(h_i) < \bar{l}(h_i) \).
The discussion before the proposition makes clear why an equilibrium should be characterized by delay threshold functions. The proof of Proposition 1 shows that the functions are nondecreasing and shows that in a symmetric case it is possible to find a single function d^A which, when adopted by all players, constitutes an equilibrium. Equation (3) is derived by noting that when $d^A(h_i) < \bar{l}(h_i)$, the type $(d^A(h_i), h_i)$ has to be indifferent between bidding in the first auction and waiting. Since, in the case of an ascending auction, the decision to bid in the first auction is relevant only when all other agents decide to wait, the indifference condition is equivalent to

$$E_{l-\bar{l}}[\max\{d^A(h_i) - p_i(l_{i-1}, r_i), 0\}| l_j \leq d^A(h_j) \text{ each } j \neq i]$$

$$= E_{h_{i-1}}[\max\{h_i - p_{h}(h_{i-1}, r_2), 0\}| l_j \leq d^A(h_j) \text{ each } j \neq i].$$

The differential equation (3) is obtained from (4) and it is useful because it provides a way to compute the equilibrium delay function. Notice in particular that condition (3) implies $d^A(h_i) < 1$ whenever $d^A(h_i) < \bar{l}(h_i)$. This result can be used to fully characterize the delay function in some special cases. For example, consider the case $\bar{l}(h_i) = h_i$ and suppose first that $r_1 < \bar{l}(h_i)$. Since any type (l, h) earns nothing in the second auction, then all types with $l > r_1$ must prefer participation in the first auction, so that $d^A(h) = r_1$. For $h_i > h$ the delay function grows with slope strictly less than 1, while $\bar{l}(h_i)$ grows with slope 1. Thus, $d^A(h_i)$ never touches $\bar{l}(h_i)$, and we can characterize the function d^A by solving the integral equation (3) over the interval $[h, \bar{h}]$ with initial condition $d^A(h) = r_1$. On the other hand, suppose $r_1 \geq \bar{l}(h_i)$. In this case it must be that $d^A(h_i) = \bar{l}(h_i)$. We then look for a value h^* such that $d^A(h_i) = \bar{l}(h_i)$ for $h_i \leq h^*$, and d^A is characterized by the integral equation (3) otherwise. The initial condition thus requires $V^*_h(h^*) = V^*_i(\bar{l}(h^*))$, and a solution is obtained by solving (3) and this initial condition jointly in h^* and d^A, with $d^A(h) = \bar{l}(h)$ for $h \leq h^*$.

As another example, suppose $\bar{l}(h_i) = \bar{l}$ for each h_i (i.e., the support is rectangular). The only interesting case here is $r_1 < \bar{l}$. Thus, $d^A(h) = r_1$. The function d^A must then increase with strictly positive slope until it reaches the value \bar{l}, and remain equal to \bar{l} afterwards. In particular, suppose that we solve the integral equation (3) over the interval $[\bar{h}, \bar{h}]$ with initial condition $d^A(h) = r_1$ and we find that $d^A(\bar{h}) < \bar{l}$. Then we have found the solution. Otherwise, there must be a value h^* such that d^A solves the integral equation (3) over the interval $[\bar{h}, h^*]$ with initial condition $d^A(h) = r_1$, and it is equal to \bar{l} when $h \geq h^*$.

17The part of the proof about existence is technical in nature and it is based on an application of Schauder’s Fixed-Point Theorem. To conserve space, that part of the proof has been put in the online Appendix associated with this paper. See Nancy L. Stokey, Robert E. Lucas Jr., and Edward C. Prescott (1989) for a statement of Schauder’s Fixed-Point Theorem.
A. Strategic Delay

We now turn to the characterization of the symmetric equilibria. One important question for the auction designer is the following. Suppose that a reserve price r_1 is imposed in the first auction. It is obvious that all types with $l_i < r_1$ will not bid in the first auction, but will wait for the second auction. However, it is not true that all types with $l_i > r_1$ are willing to bid in the first auction. In fact, Proposition 1 implies that, as long as there are types (l_i, h_i) such that $l_i > r_1$ and $h_i > r_2$, then in any equilibrium there are types with $l_i > r_1$ that prefer to wait for the second auction. This is formally proved in the next corollary.

COROLLARY 1: If bidders are ex ante symmetric and $\{(l_i, h_i) \in \Theta_i | l_i > r_1, h_i > r_2\}$ has positive measure, then in every equilibrium there is a positive-measure set of types (l_i, h_i) with $l_i > r_1$ that do not bid in the first auction of an ascending-bid contingent re-auction unless some other bidder enters a bid of r_1 or more.

PROOF:
See the Appendix.

The intuition for Corollary 1 is straightforward: if l_i is close to r_1, bidder i’s expected surplus from the first auction is small relative to its expected surplus at the second auction. Thus, if l_i is close to r_1, bidder i prefers not to bid in the first auction. Of course, if some other bidder enters a bid of r_1 or more, a bidder’s best reply is then to bid up to l_i.

The corollary implies that if the seller wants the object to be sold for values l_i above a threshold \hat{l}, then the reserve price should be set at a level strictly less than \hat{l}. It also implies that in every equilibrium there is “excessive delay” in the sense that the second auction is reached with a probability strictly higher than $\Pr[l_i \leq r_1]$. It is worth pointing out that the result of Corollary 1 holds for any reserve price $r_1 > \underline{l}$. In fact, there is a kind of “multiplier effect” similar to the one discussed in Brusco and Lopomo (2008). When the reservation price is $r_1 > \underline{l}$ all types with $l_i \in [\underline{l}, r_1)$ prefer not to bid in the first auction, thus making the probability of reaching the second auction strictly positive. This implies that types with $l_i = r_1 + \varepsilon$ also prefer to delay if ε is sufficiently small, since the expected gain in the first auction is small. In turn, this increases the probability that the second auction is reached, thus potentially convincing other types to delay the bid.

In some situations delay can be significant. The extreme case is $d_i^1(h_i) = \overline{l}(h_i)$ for each h_i, so that the equilibrium involves delay with probability 1. For this to be an equilibrium it must be the case that every type (l_i, h_i) prefers to wait for the second auction rather than participate in the first. If all the other bidders “wait,” then the payoff from waiting is simply $E_{h_i} \left[\max \{ h_i - p_h(h_{-i}, r_2), 0 \} \right]$. Since for each h_i, the type l_i that receives the highest expected payoff from bidding in the first auction is $\overline{l}(h_i)$, the condition for having an equilibrium involving delay with probability 1 is that for each h_i,
\(E_{i \rightarrow i} [\max \{ l(h_i) - p_i(h_i, r_1), 0 \}] \leq E_{h \rightarrow i} [\max \{ h_i - p_h(h_i, r_2), 0 \}] \).

We record this result in the following corollary.

COROLLARY 2: Assuming symmetric bidders, if condition (5) holds, then there exists an equilibrium of the ascending-bid contingent re-auction in which the bidders do not bid in the first auction, and bid up to their values in the second auction, i.e., delay occurs with probability one.

In general, condition (5) is easier to satisfy if \(r_1 \) is large and \(r_2 \) is low; it is trivially satisfied if \(r_1 \geq \bar{l}(h) \). When condition (5) is not satisfied, then any equilibrium must involve some bidding activity in the first auction.

B. Extension to a Second-Price Format

The analysis for the second-price auction is similar to that for the ascending-bid auction, but the equilibrium bids in the first stage are different. The reason is that the value of not bidding in the first auction is lower because a bidder cannot respond if another bidder enters a bid at or above the reserve price. Because the waiting strategy has a lower payoff, we expect that fewer delays occur under a second-price format than under an ascending-bid format. However, we cannot conclude that in an ascending-bid auction we surely observe more delay than in a second-price auction. What complicates things is that an increased delay by other bidders typically increases both the value of the “wait” strategy and the value of the “go” strategy for bidder \(i \). The equilibrium has to balance these effects, and it is not clear what the final result is.

There are however a couple of observations that we can make. The first relates to the existence of an equilibrium with total postponement. For the ascending-bid format we have seen that such an equilibrium is possible when condition (5) holds for each \(h_i \). Assuming that all other bidders wait with probability 1, the expected value of waiting does not change under a second-price format, but the value of the first auction increases. In fact, if all the other players are expected not to participate in the first auction, bidding in the first auction gives the object to the bidder for sure at price \(r_1 \), for a surplus of \(l_i - r_1 \). Thus, the relevant condition for the existence of an equilibrium with total postponement is that for each \(h_i \),

\(\bar{l}(h_i) - r_1 \leq E[\max \{ h_i - p_h(h_i, r_2), 0 \}] \).

Clearly, condition (6) is more difficult to satisfy than condition (5). Thus, equilibria with total postponement are less frequent with a second-price format than with an ascending-bid format.

The second observation is that, with a second-price format, as the number of bidders increases the equilibrium converges to one with “sincere” bidding, i.e., one in which all bidders with \(l_i > r_1 \) bid in the first auction. This is proved in the following proposition.
PROPOSITION 2: Assume symmetric bidders and a symmetric equilibrium of the second-price contingent re-auction and let \(d_n \) be the delay threshold function when there are \(n \) bidders. Then \(\lim_{n \to \infty} d_n(h_i) = r_1 \) for each \(h_i \).

PROOF:
See the Appendix.

Proposition 2 shows that strategic delay is not an issue for a second-price contingent re-auction as the number of bidders grows large. A similar result does not hold for an ascending-bid contingent re-auction. The easiest way to grasp the intuition is to compare the conditions for the existence of an equilibrium with full postponement. For the second-price format, a quick inspection of condition (6) leads to the conclusion that the condition cannot be satisfied for large values of \(n \), since the right-hand side goes to zero while the left-hand side is unaffected by \(n \). For the ascending-bid auction, the relevant condition is (5). Looking at that condition it is easy to see that both sides converge to zero as \(n \) goes to infinity. Thus, whether or not the condition holds as \(n \) gets large depends on the probability distribution; in fact, it is possible to produce examples in which the equilibrium with total postponement exists for each \(n \).

Although Proposition 2 shows that as the number of bidders grows large at a second-price contingent re-auction, equilibrium bidding converges to sincere bidding, the outcomes do not necessarily converge to the efficient outcomes. To see this, note that in this auction format the object is sold in restricted form whenever \(r_1 < \max_i l_i \). But it is efficient to sell the object in unrestricted form if \(\max_i l_i + B < \max_i h_i \). Thus, the outcome is inefficient whenever \(r_1 < \max_i l_i < \max_i h_i - B \).

C. Inefficiency of the Contingent Re-Auction

Efficiency requires that the object be allocated in restricted form if \(\max_i l_i > \max_i h_i + B \) and in unrestricted form if the opposite inequality holds. A number of our results point to the inefficiency of the contingent re-auction format.

One can construct simple examples in which the contingent re-auction is efficient. However, for the well-behaved two-dimensional type space that is the focus of our analysis, contingent re-auctions are never efficient unless we are in the extreme case in which the object should always be allocated in restricted form or always in unrestricted form.

Proposition 2 shows that at an ascending-bid contingent re-auction, under certain conditions bidders never bid in the first auction, so the efficient allocation of the restricted object is never achieved. Proposition 1 implies that the derivative of the delay threshold function for an ascending-bid contingent re-auction is less than 1,

18 For example, a contingent re-auction with appropriately chosen reserve prices is efficient if bidders have a common, fixed value for the unrestricted object. More generally, it is sufficient that there exist \(\hat{h} \) such that \(l_i > h_i - B \) implies \(h_i < \hat{h} \) and \(l_i < h_i - B \) implies \(h_i = \hat{h} \).
specifically \(d^{A'}(h_i) < 1 \) whenever \(d^{A'}(h_i) < \bar{l}(h_i) \). But efficiency requires a delay threshold function that has slope equal to 1, i.e., \(d^{\text{eff}}(h_i) = h_i - B \).

Proposition 2 implies that in a second-price contingent re-auction, even as \(n \rightarrow \infty \), the outcome is inefficient because in the limit the delay threshold function has slope zero. As the number of bidders increases, the probability with which at least one other bidder bids at the first auction also increases, and so in the limit no bidder is willing to delay. This suggests that the efficiency of a second-price contingent re-auction may be reduced by the addition of more bidders. If the delay threshold function is below the efficient delay threshold, i.e., \(d^{S}(h_i) < d^{\text{eff}}(h_i) \) for \(h_i > r_2 \), then a reduction in the slope of \(d^{S} \) increases inefficiency.

The inefficiency of the contingent re-auction is particularly striking in some special cases. Consider in particular the case of a single dimensional space.

DEFINITION 1: The type set \(\Theta_i \) is single-dimensional if \(\Pr(l_i = \phi(h_i)) = 1 \) for some strictly increasing function \(\phi \). If the function \(\phi \) is linear then we say that the types are linearly related.

When a type set is single-dimensional, the probability distribution over types can be described by the function \(\phi \) which relates \(l_i \) to \(h_i \), and a cumulative distribution function \(F \) with support \([\bar{h}_i, \bar{h}] \subset \mathbb{R}_+\). In our framework, it is reasonable to assume that the function \(\phi \) is strictly increasing. When the expression \(h_i - \phi(h_i) \) (the difference between the value of the unrestricted object and the value of the restricted object) is also strictly increasing then one can show that if \(r_2 \leq \bar{h} \), bidders never bid in the first auction of an ascending-bid contingent re-auction. In this simple setting, any bidder with the highest value for the unrestricted object also has the highest value for the restricted object, i.e., \(h_i \geq h_j \Leftrightarrow l_i \geq l_j \). A bidder will win the first auction if and only if it would also win the second auction, and conditional on winning, the expected payoff from the second auction is greater than from the first auction. Thus, not bidding at the first auction is the unique weakly dominant strategy for each bidder and the seller never receives the benefit \(B \). A simple case in which \(h_i - \phi(h_i) \) is increasing is that of linearly related types, i.e., \(l_i = \alpha h_i \) with \(\alpha \in (0, 1) \).

PROPOSITION 3: Suppose that the type set \(\Theta_i \) is single-dimensional, with \(l_i = \phi(h_i) \) and \(\phi \) strictly increasing. Suppose further that the difference \(h_i - \phi(h_i) \) is increasing in \(h_i \) and \(r_2 \leq \bar{h} \). Then, in the unique equilibrium of the ascending-bid contingent re-auction no bidder bids at the first auction, implying that the object is always sold in unrestricted form.

In a second-price contingent re-auction one can show that with two bidders the equilibrium bid strategies in the first auction involve bidding in the first auction if \(h_{i,} \) and hence \(l_{i,} \) is sufficiently large, waiting if \(h_i \) is sufficiently low, and mixing on a middle region of values. As a result, the object is allocated in restricted form whenever at least one of the bidders has a value for the unrestricted object that is sufficiently large, and it is allocated in unrestricted form whenever both bidders have values for the unrestricted object that are sufficiently low. This is the reverse of what one would want for efficiency.
Regardless of whether an ascending-bid or second-price contingent re-auction is used, when efficiency requires that the object sometimes be allocated in restricted form and sometimes in unrestricted form, it is not generally possible to achieve the first-best with a contingent re-auction. Given this assessment of the contingent re-auction, it is worth considering whether some other mechanism can do better in terms of efficiency.

V. Exclusive-Buyer Mechanisms

An exclusive-buyer mechanism is an auction, with reserve price r, for the exclusive right to choose between being awarded the restricted object at no additional cost, and buying the unrestricted object for a fixed incremental payment p. Given the assumption of private values, our results are not affected by whether the auction is second-price or ascending-bid. In either format, the unique weakly dominant strategy for each bidder is to bid its value for the right to choose.

Because of the simplicity of the optimal strategies in an exclusive-buyer mechanism, we can analyze the mechanism in a two-dimensional type environment without difficulty. We begin by establishing the equilibrium strategies in the exclusive-buyer mechanism. Our results apply for exclusive-buyer mechanisms whose first-stage auctions use either a second-price or ascending-bid format.

If bidder i wins the first-stage auction, then in the second stage it chooses the restricted object if $l_i > h_i - p$ and the unrestricted object if $l_i < h_i - p$. The bidder is indifferent if $l_i = h_i - p$. Thus, bidder i receives value $\max\{l_i, h_i - p\}$ from winning the first-stage auction. It follows that there is an equilibrium of the first-stage auction in non-weakly-dominated strategies in which each bidder i bids $\max\{l_i, h_i - p\}$.

A. Efficiency

In the efficient allocation, buyer i receives the unrestricted object if

$$h_i > \max\{\max_{j\neq i} h_j, \max_j l_j + B\},$$

and buyer i receives the restricted object if

$$B + l_i > \max\{\max_{j\neq i} h_j, \max_j l_j + B\}.$$

This outcome can be implemented by an exclusive-buyer mechanism with no reserve price and an incremental payment for the unrestricted object equal to B.

To see this, note that bidder i has value $\max\{l_i, h_i - B\}$ from winning the first-stage auction. Thus, the winner of that auction will be the buyer with the maximal value of $\max\{l_i, h_i - B\}$. If buyer i is the winning bidder and $l_i > h_i - B$, then efficiency requires that buyer i receive the object in restricted form. If buyer i is the winning bidder and $l_i < h_i - B$, then efficiency requires that buyer i receive the object in unrestricted form. With an incremental price of B for the unrestricted object in the second stage of the exclusive-buyer mechanism, this is the outcome.
PROPOSITION 4: The efficient outcome can be implemented with an exclusive-buyer mechanism with no reserve price in the first stage and an incremental payment of \(B \) for the unrestricted object in the second stage.

The efficient mechanism described in Proposition 4 is (ex post) outcome equivalent to a Vickrey-Clarke-Groves (VCG) mechanism, but it is an indirect mechanism that can be implemented with a simple auction. Thus, this mechanism overcomes many of the implementation issues generally associated with VCG mechanisms (see Rothkopf 2007). For example, an ascending-bid auction format can be used to preserve the privacy of information regarding the winning bidder’s willingness to pay, and implementation of the efficient mechanism requires only that the mechanism designer know \(B \).

As mentioned in the introduction, the design of practical efficient mechanisms in a multi-object environment remains an open question.\(^\text{19}\) In a multi-object context, there is an additional issue of whether the seller has a preference for whether the buyers coordinate on either the restricted or unrestricted object.\(^\text{20}\) In addition, there are unresolved design issues in environments with post-auction externalities, although such issues are beyond the scope of this paper.

The exclusive-buyer mechanism can accommodate arbitrarily many possible restrictions. To see this, let \(q \in [0, 1] \) denote the level of restriction, with \(q = 0 \) denoting no restriction and \(q = 1 \) the maximum restriction. Let \(B(q) \) be the benefit to the seller when the version with restriction \(q \) is sold, where \(B \) is an increasing function of \(q \). If the incremental price associated with restriction \(q \) is \(p(q) = B(1) - B(q) \), then the outcome of the exclusive-buyer mechanism is efficient. The mechanism can accommodate either a discrete number or a continuum of possible restrictions.

An exclusive-buyer mechanism for a single object is not vulnerable to collusion by a coalition of losing bidders nor is it vulnerable to the use of multiple bidding identities by a single bidder, issues that can arise in a multi-object VCG (Ausubel and Milgrom 2006).

Although Proposition 4 focuses on efficiency rather than the maximization of seller surplus, we show in Proposition 5 that the exclusive-buyer mechanism can be optimal for the seller in some environments if the reserve price and the price for the unrestricted object are chosen appropriately. In addition, in some numerical examples the efficient exclusive-buyer mechanism has greater expected seller surplus than the optimal contingent re-auction.\(^\text{21}\)

We remind the reader that the result is for the sale of a single object. As we pointed out in the introduction, further issues may arise when there are multiple objects and the benefit of selling one object in restricted form may depend on whether or not other objects are sold in restricted form. In principle, efficient mechanisms for this

\(^{19}\)In theory, a VCG mechanism is efficient under the assumption of private values.

\(^{20}\)For example, a small country selling only nationwide licenses might prefer multiple winners in order to achieve post-auction competition, but it might also prefer that all winners coordinate on the same standards. We thank a referee for this example.

\(^{21}\)For example, with two symmetric bidders drawing their values \((l, h)\) from the uniform distribution on \([0, 1] \times [3, 4]\), for any \(B \in [3, 4] \), the expected seller surplus from the efficient exclusive buyer mechanism is greater than from the optimal contingent re-auction.
Remark: As suggested by a referee, an alternative way to achieve efficiency which is very similar to the exclusive buyer auction is to run a “two prices” auction. This is an English auction in which at each stage \(t \) a bidder \(i \) can either offer a price \(p_1^i(t) \) for the object in restricted form or a price \(p_2^i(t) \) for the object in unrestricted form. At round \(t \) the object is provisionally allocated in restricted form to bidder \(i \) if \(p_1^i(t) \geq \max_{j \in N} p_1^j(t) \) and \(p_1^i(t) + B \geq \max_{j \in N} p_2^j(t) \), that is, the price offered by \(i \) for the restricted object is higher than the price offered for the restricted object by any other bidder and it is no less than \(B \) than the highest price offered for the unrestricted bidder. Otherwise, the object is allocated in unrestricted form to the bidder \(i \) offering the highest \(p_2^i(t) \). The reserve prices are initially set at \(r \) for the restricted object and \(r + B \) for the unrestricted object.

When there is a single object this alternative scheme also produces the efficient allocation and it can be considered equivalent to the exclusive buyer mechanism. With multiple objects, things become more complicated. For example, imagine that there are two objects. Let \(B_i \) be the benefit accruing to the seller if object \(i \) only is sold in restricted form and \(B_{12} \neq B_1 + B_2 \) the benefit when both objects are sold in restricted form. In this case efficiency requires that the difference between the prices for the restricted and unrestricted versions of object \(i \) depend on the whether or not object \(j \neq i \) is allocated in restricted form.

The alternative scheme proposed here can be adapted by varying the premium necessary at each stage to obtain the unrestricted object in auction \(i \) depending on whether object \(j \neq i \) is provisionally allocated in restricted form or not. The exclusive buyer mechanism can also be adapted, modifying the second stage and asking for different prices depending on the choices in other auctions. Reaching efficiency with one or the other of these mechanisms may not be trivial, and whether or not the mechanisms are reasonably simple is not obvious either. We leave this for future research.

B. Optimality with Linearly-Related Types

While efficiency may be a key criterion for sellers such as the FCC, other sellers may be more focused on maximizing their own surplus. A complete analysis of the optimal revenue-maximizing (or surplus maximizing, if the benefit \(B \) is taken into account) mechanism for the seller runs in the usual difficulties which are found when the type space is multidimensional. Essentially, the issue is that with multidimensional types it is not clear which of the many incentive compatibility constraints are going to be binding and this impedes the adoption of the standard techniques used in single-dimensional mechanism design.\(^{22}\) A more complete description of the multidimensional mechanism design problem can be found in Rochet and Choné (1998).

As mentioned in Section I, with multidimensional types, for different contexts it has been shown by Rochet and Choné (1998), Thanassoulis (2004), and Manelli

\(^{22}\) Given the difficulty of finding analytical solutions to the problem, numerical techniques have been used. See Alex Belloni, Lopomo, and Shouqiang Wang (2010) for a numerical analysis of the problem discussed in this paper.
and Vincent (2007) that for a large class of beliefs for the seller, optimality requires a random allocation rule that allocates objects with probability strictly between zero and one. These results suggest that the solution of the mechanism design problem with two-dimensional types in our context is also likely to be characterized by a random allocation rule. Given the practical considerations in the real-world applications we consider, such a random allocation rule is likely not feasible. However, as we now show, standard mechanism design techniques allow us to characterize the optimal mechanism for the single-dimensional case.

Solving the problem explicitly is possible in the single-dimensional case, i.e., if \(l_i = \phi(h_i) \) for some strictly monotone function \(\phi \), although the resulting mechanism may turn out to be quite complicated. In the special case of linearly related types, i.e., \(l_i = \alpha h_i \), we can show that under standard regularity conditions, there exists an exclusive-buyer mechanism that maximizes the seller’s expected surplus among all feasible selling procedures.\(^{23}\)

Let \(v_H(h) \equiv h - (1 - F(h))/f(h) \) and \(v_L(h) \equiv B + \alpha v_H(h) \). Using standard mechanism design techniques, the seller’s problem boils down to maximizing

\[
E_h \left[\sum_{i=1}^{n} v_H(h_i)q^H_i(h) + v_L(h_i)q^L_i(h) \right]
\]

subject to

\[
\sum_{i=1}^{n} [q^H_i(h) + q^L_i(h)] \leq 1 \quad \forall h \in [h, \bar{h}],
\]

and

\[
h_i \geq h'_i \implies A_i(h_i) \geq A_i(h'_i),
\]

where \(A_i(h_i) \equiv E_{h_{-i}}[q^H_i(h_i, h_{-i})] + \alpha E_{h_{-i}}[q^L_i(h_i, h_{-i})] \).

Imposing the usual regularity condition that \(v_H \) is strictly increasing, we have that \(v_L \) is also strictly increasing, and \(0 < v'_L(h_i) = \alpha v'_H(h_i) < v'_H(h_i) \). Thus, \(v_L \) crosses \(v_H \) at most once from above, and the horizontal axis at most once from below. This implies that there exist two thresholds \(h_r \) and \(h_s \) such that \(\underline{h} \leq h_r \leq h_s \leq \bar{h} \), and

\[
w(h_i) \equiv \max\{0, v_L(h_i), v_H(h_i)\} =
\begin{cases}
 v_H(h_i), & \text{if } h_i \in [h_s, \bar{h}]; \\
 v_L(h_i), & \text{if } h_i \in [h_r, h_s]; \\
 0, & \text{if } h_i \in [h, h_r].
\end{cases}
\]

\(^{23}\)As pointed out by a referee, the proof easily extends (with minor modifications) to the case \(l_i = \alpha h_i - \gamma \), with \(\gamma > 0 \).
Setting

\[
q^H_i(h) = \begin{cases}
1, & \text{if } v_H(h_i) = w(h_i) > \max_{j \in N - i} \{w(h_j)\} \\
0, & \text{otherwise;}
\end{cases}
\]

and

\[
q^L_i(h) = \begin{cases}
1, & \text{if } v_L(h_i) = w(h_i) > \max_{j \in N - i} \{w(h_j)\} \\
0, & \text{otherwise;}
\end{cases}
\]

maximizes the expression in (7) subject to (8). The functions in (10) and (11) automatically satisfy the monotonicity condition in (9) and thus, together with any \(n\)-tuple of payment functions \(m_1, \ldots, m_n\) consistent with (18) in the Appendix and such that the lowest type of each buyer pays nothing, solve the seller’s problem.

We now show that there is an exclusive-buyer mechanism that maximizes the expected seller surplus among all feasible selling procedures. Using the intuition from standard mechanism design, the object should be allocated to the buyer with the highest virtual valuation, provided this is positive. The same intuition carries over in our model, with the twist that the object is allocated in unrestricted form when the “virtual unrestricted valuation” \(v^H\) is higher than the “virtual restricted valuation” \(v^L\). Thus, surplus maximization requires that the object is not allocated when \(v^H\) and \(v^L\) are both negative, is allocated in restricted form when \(v^L \geq \max \{v^H, 0\}\), and is allocated in unrestricted form when \(v^H > \max \{v^L, 0\}\).

Given our assumptions, \(v^L < 0\) implies \(v^H < -B/\alpha < 0\), so the interval over which both \(v^L\) and \(v^H\) are non-positive is \([h_r, h_s]\). The interval over which \(v^L \geq v^H\) is \([h_r, h_s]\), and the interval over which \(v^H \geq v^L\) is \([h_s, \bar{h}]\).

Thus, an optimal mechanism should exclude buyers with \(h < h_r\), assign the object in restricted form when the highest valuation buyer has \(h_i \in (h_r, h_s)\), and assign the object in unrestricted form when the highest valuation buyer has \(h_i > h_s\). This can be accomplished by the exclusive-buyer mechanism by appropriately choosing the first-stage reserve price and incremental payment.

PROPOSITION 5: In an environment with linearly-related types, i.e., \(l_i = \alpha h_i\), an optimal mechanism for the seller is an exclusive-buyer mechanism with reserve price \(r^* = \alpha h_r\) and incremental payment for the unrestricted object \(p^* = (1 - \alpha)h_s\).

PROOF:

See the Appendix.

In the mechanism of Proposition 5, the optimal reserve price and the incremental price for the unrestricted object are independent of the number of buyers. Those parameters depend only on \(B\) and the distribution \(F\). If \(B\) is zero, then \(h_r = h_s\) and so the object is never allocated in restricted form. If \(B\) is sufficiently large, then \(h_s = \bar{h}\) and so the object is never allocated in unrestricted form.
In the environment of Proposition 5, the optimal mechanism is not necessarily efficient; however, conditional on allocating the object, and conditional on the form of the object allocated, it is always allocated to the highest-valuing buyer.

C. Implementation

It would be straightforward for a seller such as the FCC to implement an exclusive-buyer mechanism. The FCC’s existing auction software should be able to accommodate exclusive-buyer mechanisms being offered simultaneously for multiple licenses using their simultaneous multiple round auction format, although with multiple licenses and externalities across licenses, the outcome need not be efficient.

Given the FCC’s familiarity with offering bidding credits (refunds), it could implement the second stage by offering a bidding credit to a bidder selecting a restricted license in the second stage, rather than charging an additional amount for the unrestricted license. The FCC would need to determine the bidding credit for the restricted licenses. The choice of bidding credit would need to balance the goals of efficiency and the recovery of value for the taxpayers. In contrast, in the contingent re-auction format, the FCC has to determine a reserve price to balance those same goals, but in the contingent re-auction format it may be that no choice of reserve price does a particularly good job on either dimension.

To maximize efficiency in the exclusive-buyer mechanism, the FCC would want to choose a bidding credit equal to the public value associated with the restriction. To maximize seller surplus, numerical examples we have examined suggest that one would want a smaller bidding credit, although the theory allows for the possibility that one might want a larger bidding credit. In balancing the goals of efficiency and revenue, the bidding credit would need to be some intermediate value. Since the expected surplus generated is continuous in the choice of bidding credit, small deviations from the optimal value would not have a large effect on the outcome.

An exclusive-buyer mechanism allows the FCC the option of specifying multiple possible restrictions with different associated bidding credits. For example, the FCC might offer a larger bidding credit to a bidder accepting a build-out requirement of 75 percent of the territory than to a bidder accepting a build-out requirement of only 60 percent.

VI. Conclusion

Based on our results, we can offer some comments regarding contingent re-auctions that may improve their implementation, should sellers choose to use that mechanism. Specifically, by using a second-price auction or an ascending-bid auction with strict activity rules (limits on the ability to exit and enter bidding), one can avoid the extreme equilibria involving no bids in the first auction that arise in contingent re-auctions using ascending-bid auctions that allow bidders to “wait and see” before entering the bidding.

Loosely speaking, contingent re-auctions allocate the object in restricted form whenever at least one bidder has a sufficiently high value for the restricted object, whereas efficiency requires that the object be allocated in restricted form whenever
all bidders have sufficiently low values for the unrestricted object. This suggests that in environments with correlation between bidders values for the restricted and unrestricted object, the contingent re-auction will perform poorly in terms of efficiency.

Moving away from the contingent re-auction, we identify an easily implemented efficient mechanism for our general environment. It is an exclusive-buyer mechanism with no reserve price and an incremental price for the unrestricted object equal to the seller’s benefit from the restriction. Thus, a seller interested in maximizing expected total surplus can do so with no knowledge of the number of bidders or the underlying type distributions and without asking winning bidders to reveal their valuations. The mechanism can be adapted easily to accommodate multiple possible restrictions. Furthermore, in some numerical examples the seller’s expected surplus generated by the efficient exclusive-buyer mechanism actually increases relative to the optimal contingent re-auction. Thus, at least in some examples, the seller can achieve an increase in efficiency and an increase in its own expected surplus simultaneously by switching from an optimal contingent re-auction to the efficient exclusive-buyer mechanism. Such a switch can also provide benefits to buyers, whose expected surplus can increase.

When buyers’ types are one-dimensional, the parameters of an exclusive-buyer mechanism can be chosen so that the mechanism maximizes the seller’s expected surplus among all feasible selling procedures. With two-dimensional types, the usual technical complications arise. However, numerical results in Belloni, Lopomo, and Wang (2010) suggest that the exclusive-buyer mechanism in which the reserve price and incremental payment are chosen to maximize the seller’s expected surplus performs well when compared with the seller’s optimal mechanism.

To conclude, our primary recommendation is that sellers in environments with seller-benefitting restrictions consider using an exclusive-buyer mechanism, tailored to maximize efficiency or seller surplus, depending upon the seller’s objectives.

APPENDIX—Proofs

PROOF OF PROPOSITION 1:

As discussed in the main text, in any perfect Bayesian equilibrium in undominated strategies bidder \(i\) bids \(h_i\) at the second auction and bids in the first auction (what we have called the “go” strategy) if and only if \(l_i > d_i(h_i)\); the function \(d_i(h_i)\) is determined as part of the equilibrium.

More specifically, call \(d^A_i : \{h_i, \bar{h}\} \rightarrow [r_1, \bar{l}(\bar{h})]\) the function for an ascending-bid auction. We now show that \(d^A_i\) is a nondecreasing and continuous function (the proof for the function \(d^S_j\) characterizing a second-price auction is similar).

If a type \((l_i, h_i)\) bids \(r_i\) in the first auction, it will trigger participation by all other players. Thus, the price paid in case of victory is \(p_i(l_{-i}, r_i) = \max\{r_i, \max_{j \neq i} l_j\}\), which in turn implies that the expected payoff from being the first to bid at \(r_i\) in the first auction is

\[
V^A_i(l_i) = E_{l_{-i}}[\max\{l_i - p_i(l_{-i}, r_i), 0\}].
\]

Notice that the payoff is independent of the set \(W\) that decides to delay.
The expected payoff from delaying is
\[
D_i(l_i, h_i \mid W_{-i})
\]
\[
= E_{l_{-i}, h_{-i}}[\max \{l_i - p_l(l_{-i}, r_1), 0\} \mid (l_{-i}, h_{-i}) \notin W_{-i}] \Pr[(l_{-i}, h_{-i}) \notin W_{-i}]
\]
\[
+ V^i_h(h_i \mid W_{-i}).
\]

Thus, in equilibrium, the types that choose to delay must have \(V^i_l(l_i) \leq D_i(l_i, h_i \mid W_{-i})\). Let
\[
d^\star_i(h_i) \equiv \sup\{l_i \in [0, \bar{l}(h_i)] \mid V^i_l(l_i) \leq D_i(l_i, h_i \mid W_{-i})\}.
\]
After manipulations, \(V^i_l(l_i) \leq D_i(l_i, h_i \mid W_{-i})\) can be written as
\[
E_{l_{-i}, h_{-i}}[\max \{l_i - p_l(l_{-i}, r_1), 0\} \mid (l_{-i}, h_{-i}) \in W_{-i}]
\]
\[
\leq E_{l_{-i}, h_{-i}}[\max \{h_i - p_l(h_{-i}, r_2), 0\} \mid (l_{-i}, h_{-i}) \in W_{-i}],
\]
so that the left-hand side depends on \(l_i\) only and the right-hand side depends on \(h_i\) only. Since the left-hand side of (12) is nondecreasing in \(l_i\), it follows that for each \(h_i\) the types \((l_i', h_i)\) with \(l'_i \in [0, d^\star_i(h_i)]\) prefer to delay, while types \((l_i', h_i)\) with \(l'_i > d^\star_i(h_i)\) prefer to participate in the first auction. The function \(d^\star_i(h_i)\) is nondecreasing because the right-hand side of inequality (12) is nondecreasing, and it is continuous because the left-hand side of (12) is continuous in \(l_i\) and the right-hand side of (12) is continuous in \(h_i\).

To prove existence of a symmetric equilibrium when all bidders are ex ante symmetric, we observe that a symmetric equilibrium is entirely determined by a continuous and bounded delay function \(d(\cdot)\). Let \(\Xi\) be the space of possible delay functions \(d\). Existence is proved by constructing a mapping \(\xi : \Xi \to \Xi\), showing that the mapping has a fixed point \(d^\ast\) and that \(d^\ast\) is an equilibrium. The details are in the online Appendix.

We now proceed to show that the function \(d^A\) has derivative given by the expression in (3). To improve readability we use \(d\) instead of \(d^A\) for the delay threshold. If we define
\[
V^i_h(h_i) = \int^h_{l_i} \ldots \int^h_{l_i} \int^h_{l_i} d(h_i) \ldots d(h_i) (h_i - \max\{r_2, \max_j h_j\}) \Pi_{j \neq i} f(l_j, h_j) dl_{-i} dh_{-i}
\]
and
\[
V^i_l(l_i) = \int^l_{h_i} \ldots \int^l_{h_i} \int^l_{h_i} \int^l_{h_i} (l_i - \max\{r_1, \max_j l_j\}) \Pi_{j \neq i} f(l_j, h_j) dl_{-i} dh_{-i},
\]
If the delay threshold function d is differentiable at h_i and $d(h_i) < \tilde{l}(h_i)$, then it must be the case that

$$(13) \quad V^*_i(d(h_i)) = V^*_h(h_i)$$

in an open neighborhood of h_i. If d is differentiable then differentiation of both sides of (13) yields

$$\frac{dV^*_h(h_i)}{dh_i} = \frac{dV^*_i(d(h_i); d)}{dl_i} d'(h_i),$$

which in turn implies

$$(14) \quad d'(h) = \frac{dV^*_h(h_i)}{dV^*_i(d(h_i); d)} \frac{dl_i}{dl_i}.$$

Since types are independent across bidders we have

$$\frac{dV^*_h(h_i)}{dh_i} = \int_{\tilde{h}}^{h_i} \cdots \int_{\tilde{h}}^{h_i} \int_{l}^{d(h_1)} \cdots \int_{l}^{d(h_n)} \Pi_{j \neq i} f(l_j, h_j) dl_{-i} dh_{-i}$$

$$= \left(\int_{\tilde{h}}^{h_i} F(d(x) \mid x) z(x) dx \right)^{n-1}$$

and

$$\frac{dV^*_i(l_i; d)}{dl_i} = \int_{\tilde{l}}^{h_i} \cdots \int_{\tilde{l}}^{h_i} \int_{l}^{\min\{l_i, d(h_1)\}} \cdots \int_{l}^{\min\{l_i, d(h_1)\}} \Pi_{j \neq i} f(l_j, h_j) dl_{-i} dh_{-i}$$

$$= \left(\int_{\tilde{l}}^{h_i} F(\min\{l_i, d(x)\} \mid x) z(x) dx \right)^{n-1}.$$

Thus, condition (14) can be written as

$$d'(h_i) = \left(\int_{\tilde{h}}^{h_i} F(d(x) \mid x) z(x) dx \right)^{n-1},$$

and since the function d is nondecreasing this is equivalent to the expression in (3).
PROOF OF COROLLARY 1:
Suppose not. By Proposition 1 the equilibrium bidding functions in the first auction must be such that \(d(h_i) = r_1 \) for each \(i \) and \(h_i \in [h, \bar{h}] \). Suppose that all bidders other than \(i \) use this strategy and consider the best response of type \((r_1 + \varepsilon, h_i)\) of bidder \(i \), with \(h_i > r_2 \). The expected payoff from not bidding in the first auction is

\[
V^i_h(h_i) = \int_{h}^{\bar{h}} \ldots \int_{h}^{\bar{h}} \int_{l}^{r_1} \ldots \int_{l}^{r_1} \left(h_i - \max\{r_2, \max_{j \neq i} h_j\}\right) \Pi_{j \neq i} f(l_j, h_j) dl_{-i} dh_{-i},
\]

while the expected payoff from bidding \(l_i \geq r_1 \) in the first auction is

\[
V^i_l(r_1 + \varepsilon) \leq \int_{h}^{\bar{h}} \ldots \int_{h}^{\bar{h}} \int_{l}^{r_1+\varepsilon} \ldots \int_{l}^{r_1+\varepsilon} \left(r_1 + \varepsilon - r_1\right) \Pi_{j \neq i} f(l_j, h_j) dl_{-i} dh_{-i} < \varepsilon.
\]

For \(h_i > r_2 \), \(V^i_h(h_i) > 0 \), which implies that there is some value \(\bar{\varepsilon}(h_i) > 0 \) such that \(V^i_l(r_1 + \varepsilon) \leq V^i_h(h_i) \) for each \(\varepsilon < \bar{\varepsilon}(h_i) \). This implies that it is not a best response for types \((l_i, h_i)\) with \(l_i \in (r_1, r_1 + \bar{\varepsilon}(h_i)) \) to bid their value in the first auction.

PROOF OF PROPOSITION 2:
In this proof we consider a second-price auction, so to improve readability, we use the notation \(d \) instead of \(d^S \) for the delay threshold. When \(n \) is sufficiently large, condition (6) cannot hold. Thus, in every equilibrium we have \(d(h_i) < \bar{l}(h_i) \) for some \(h_i \). Equation (3), which is obtained for the case of the ascending-bid format, shows that whenever \(d(h_i) < \bar{l}(h_i) \) then \(d'(h_i) \) is less than 1 and \(d'(h_i) \) converges to zero as \(n \) goes to infinity.

A similar argument can be made for the second price format. Let \(b_j(l_j, h_j) \) be the bidding function used by bidder \(j \) in the first auction. Thus,

\[
W_j = \{(l_j, h_j) \mid b_j(l_j, h_j) < r_1\}.
\]

Bidding \(l_i \geq r_1 \) in the first auction yields

\[
V^i_l(l_i \mid W_{-i}) = E_{l_{-i}, h_{-i}}[s_i(l_i, h_{-i}, l_{-i}; b_{-i})],
\]

where

\[
s_i(l_i, h_{-i}, l_{-i}; b_{-i}) = \begin{cases}
 l_i - \max\{r_1, \max_{j \neq i} b_j(l_j, h_j)\}, & \text{if } \max_{j \neq i} b_j(l_j, h_j) < l_i \\
 0, & \text{otherwise.}
\end{cases}
\]

By waiting the bidder obtains \(V^i_h(h_i \mid W_{-i}) \), the same expression as in an ascending auction. In equilibrium, the types that decide to delay must be such that \(V^i_l(l_i \mid W_{-i}) \leq V^i_h(h_i \mid W_{-i}) \) and whenever \(d(h_i) < \bar{l}(h_i) \) we must have \(V^i_l(d(h_i) \mid W_{-i}) = V^i_h(h_i \mid W_{-i}) \).
Let d_n be the equilibrium delay function when there are n bidders. At this point we can apply the same reasoning used for the ascending-bid format and show that

$$d'_n(h_i) = \left(\frac{\int_{h_i}^{h} F(d_n(x) \mid x) z(x) \, dx}{\int_{h_i}^{\tilde{h}} F(\max\{d_n(h_i), d_n(x)\} \mid x) z(x) \, dx} \right)^{n-1}$$

so $\lim_{n \to +\infty} d'_n(h_i) = 0$. This in turn implies

$$\lim_{n \to +\infty} \int_{h_i}^{h} d'_n(x) \, dx = 0.$$

If $r_1 \leq \tilde{l}(h)$ then $\lim_{n \to +\infty} d_n(h) = r_1$ and

$$\lim_{n \to +\infty} d_n(h_i) = \lim_{n \to +\infty} \left(d_n(h) + \int_{h_i}^{h} d'_n(x) \, dx \right) = r_1$$

for each h_i. If $r_1 > \tilde{l}(h)$ then for each ε let n_ε be such that for every $n \geq n_\varepsilon$, the slope of $d'_n < \varepsilon$, and let h^*_n be the point at which the function $d_n(h_i)$ departs from $l(h)$ and the slope of the function d_n becomes lower than ε. Notice further that, for each n, type $(\tilde{l}(h^*_n), h^*_n)$ must be indifferent between bidding and not bidding in the first auction. The solution must therefore satisfy

$$\frac{V^*_h(h^*_n; d^*_n)}{V^*_l(\tilde{l}(h^*_n); d^*_n)} = 1$$

for each n, which in turn implies that the limit as n grows to infinity must also be 1.

Let $h^*_\infty = \lim_{n \to -\infty} h^*_n$. We want to show that $\lim_{n \to -\infty} \tilde{l}(h^*_n) = r_1$. Notice that we must have $\lim_{n \to -\infty} d^*_n(h) = \tilde{l}(h^*_\infty)$ for each h, we have

$$1 = \lim_{n \to -\infty} \frac{V^*_h(h^*_n; d^*_n)}{V^*_l(\tilde{l}(h^*_n); d^*_n)}$$

$$= \lim_{n \to -\infty} \frac{(h^*_n - E^n[\max\{r_j, \max_{j \neq i} h_j\} \mid h_j < h^*_n, l_j < \tilde{l}(h^*_n) \text{ each } j \neq i])}{(\tilde{l}(h^*_n) - r_1)}$$

$$\cdot \lim_{n \to -\infty} \left(\frac{\Pr[h_j < h^*_n, l_j < \tilde{l}(h^*_n)]}{\Pr[l_j < \tilde{l}(h^*_n)]} \right)^{n-1},$$

where E^n denotes the expectation taken when there are n bidders. Here we have exploited the fact that, since the slope of d_n becomes arbitrarily close to zero after
types \(\hat{l}(h^*_n) \) wins only when all other types do not participate, i.e., \(\Pr[l_j < \hat{l}(h^*_n)] \). Thus \(V'_n(l(h^*_n); d^*_n) \) converges to \((\hat{l}(h^*_n) - r_1)(\Pr[l_j < \hat{l}(h^*_n)])^{n-1} \).

Since the second limit is zero, the only way in which (15) can be satisfied is if

\[
\lim_{n \to \infty} \frac{(h^*_n - E^n[\max \{r_2, \max_{j \neq i} h_j\}; h_j < h^*_n, l_j < \hat{l}(h^*_n) \text{ each } j \neq i])}{(\hat{l}(h^*_n) - r_1)} = \infty,
\]

but for this to be the case the denominator must converge to zero, thus establishing

\[
\lim_{n \to \infty} \hat{l}(h^*_n) = r_1.
\]

PROOF OF PROPOSITION 5:

When \(l = \alpha h \), the type space is \(\Theta \equiv [h, \overline{h}]^n \). By the revelation principle we restrict attention to the set of direct mechanisms. Formally, a direct mechanism consists of an assignment rule \(q = (q^H_i, q^L_i)_{i=1}^n : \Theta \to \Delta^{2n} \), where \(\Delta^{2n} \) denotes the simplex in \(\mathbb{R}^{2n} \), and a payment rule \(m = (m_1, \ldots, m_n) : \Theta \to \mathbb{R}^n \), specifying, for any profile of reported types \(h = (h_1, \ldots, h_n) \in \Theta \), (i) the probabilities \(q^H_i(h) \) and \(q^L_i(h) \) that buyer \(i \) is awarded the object in unrestricted and restricted form, respectively, and (ii) its payment \(m_i(h) \) to the seller. A mechanism \((q, m) \) satisfies incentive compatibility if truth-telling is a Bayesian-Nash equilibrium, i.e., \(\forall h'_i, h_i \in V, \forall i \in N \)

\[
(\text{IC}) \quad \hat{U}_i(h_i, h_i) \geq \hat{U}_i(h'_i, h_i),
\]

and individual rationality if each buyer has no incentive to decline participation, i.e., \(\forall h_i \in V, \forall i \in N \)

\[
(\text{IC}) \quad \hat{U}_i(h_i, h_i) \geq 0,
\]

where \(\hat{U}_i \) denotes buyer \(i \)'s interim expected payoff function given by

\[
\hat{U}_i(h'_i, h_i) \equiv E_{h \sim [h, \overline{h}]}[h, q^H_i(h'_i, h_\sim) + \alpha h_i q^L_i(h'_i, h_\sim) - m_i(h'_i, h_\sim)].
\]

Maximizing pointwise the seller’s objective function given in (7), we find that the object should be given to the buyer with the highest virtual valuation:

\[
q^H_i(h) = \chi^H_i(h) \equiv \begin{cases} 1, & \text{if } v^H_i(h) > \max \{0, v^L_i(h), v^H_j(h), v^L_j(h), j \neq i\} \\ 0, & \text{otherwise}; \end{cases}
\]

\[
q^L_i(h) = \chi^L_i(h) \equiv \begin{cases} 1, & \text{if } v^L_i(h) > \max \{0, \max_{j \neq i} v^L_j(h), v^H_j(h)\} \\ 0, & \text{otherwise}. \end{cases}
\]

The functions \((\chi^H_i, \chi^L_i)\), together with any payment functions \(m_i \) that satisfy the standard envelope condition, e.g.,

\[
M_i(h_i) = h_i Q^H_i(h_i) + \alpha h_i Q^L_i(h_i) - \int_{b_i}^{h_i} [Q^H_i(x) + \alpha Q^L_i(x)] dx,
\]
constitute a solution if and only if the function

\[
A_i^*(h_i) \equiv \int_{\Theta_i} \left[\chi_i^H(h) + \alpha \chi_i^L(h) \right] dF_{-i}(h_{-i})
\]

is nondecreasing for all \(i \in N \). Given the assumption that \(F \) is regular, it follows that \(A_i \) is nondecreasing. In fact, these assumptions guarantee that the ex-post assignment functions \(\chi_i^H \) and \(\chi_i^L \) defined in (16) and (17) are such that, for all \(i \in N \), the function

\[
a_i(h_i, h_{-i}) \equiv \chi_i^H(h_i, h_{-i}) + \alpha \chi_i^L(h_i, h_{-i})
\]

is nondecreasing in \(h_i \) for all \(h_{-i} \), guaranteeing that \(A_i(h_i) \) is nondecreasing. Thus, the mechanism \((\chi, m^*) \), where

\[
m_i^*(h_i, h_{-i}) \equiv h_i \chi_i^H(h_i, h_{-i}) + \alpha h_i \chi_i^L(h_i, h_{-i}) - \int_{h_i}^{h_{-i}} \left(\chi_i^H(z, h_{-i}) + \alpha \chi_i^L(z, h_{-i}) \right) dz,
\]

satisfies ex-post incentive compatibility and ex-post individually rationality and maximizes the seller’s surplus among all interim incentive compatible and interim individually rational mechanisms.

One can show that the exclusive-buyer mechanism defined in Proposition 5 implements the allocation and generates the expected payments required of an optimal mechanism.

REFERENCES

