Homework #6

Prof. Jose Wynne

This assignment is about applying the log-linearization method to approximate rational expectation models.

1. The Optimal Growth Model

Simulate the optimal growth model with labor and adjustment costs by solving

\[
\max \sum_{t=0}^{\infty} \beta^t \left[c_t^\alpha (1 - h_t)^{1-\alpha} \right]^{1-\mu} / (1 - \mu)
\]

subject to

\[
c_t + i_t = s_t A_t^{1-\theta} k_t^{1-\theta} - \frac{\phi}{2} [k_{t+1} - (1 + \lambda)\bar{k}]^2
\]

\[
k_{t+1} = (1 - \delta)k_t + i_t
\]

\[
A_t = (1 + \lambda)A_{t-1}
\]

\[
s_t = \rho s_{t-1} v_t, \quad v_t \sim i.i.d \text{ LogN}(1, \sigma^2_v)
\]

\[
k_0, s_0, A_0 \text{ given}
\]

The variable \(c_t \) is consumption, \(h_t \) is labor supply, and \(k_t \) is the capital stock at \(t \) as usual. Let \(\bar{k} \) be the capital stock in steady state. This problem solves the allocations of a competitive economy where agents don’t internalize the full cost of adjustment.\(^1\) For your simulations let \(\beta = .98, \alpha = .5, \mu = .5, A_0 = 1, \lambda = .025, \theta = .36, \phi = .003 \delta = .025, \rho = .95 \) and \(\sigma_v = .00712 \). See that \(\beta(1 + \lambda)\alpha(1-\mu) < 1. \)\(^2\)

1) Find the steady state values of the de-trended variables.
2) Find the first order conditions of the de-trended dynamic problem.
3) Log-linearize the system of first order conditions around the non-stochastic steady state.
4) Generate impulse responses for de-trended capital, investment, consumption, employment and output variables for a one standard deviation shock. Simulate 5 periods before and 25 after the innovation.
5) Simulate this economy during 50 periods starting at the de-trended steady state by generating the a vector of shocks for each period. Show all the variables like before after using the H-P filtering approach. Compute the business cycle statistics like you did in

1 How would this problem change with adjustment costs of the following form?

\[
\frac{\phi}{2} [k_{t+1} - (1 + \lambda)k_t]^2
\]

2 What is the importance of this condition?
HW#5.

6) Sensitivity analysis. What are the consequences of increasing ϕ in the economy? And μ?

7) What would you say are the drawbacks of this method?

Report your computational strategy clearly. Hand in your homework and codes as requested by your TA.

2. **Letting the computer do the Log-linearization**

Program an algorithm that does the log-linearization for you. That is, program a matlab function that returns the matrices of the log-linear system of equations for the Optimal Growth Model. Repeat exercises 1) to 5) of Problem 1 for the same parameter values. Is your matlab function giving you about the same results?