MITA SUJAN, JAMES R. BETTMAN, and HARISH SUJAN*

The study findings suggest that prior expectations about salespeople affect how consumers process information in a selling situation. When the salesperson is seen as typical, product evaluations are unaffected by the quality of the product arguments cited. Thought listing and recall data provide additional support for the notion that analytical processing of information occurs only when the salesperson is discrepant from expectations.

Effects of Consumer Expectations on Information Processing in Selling Encounters

Consider the following scenario. A customer enters a clothing store and is approached by a salesperson. The customer has certain beliefs about clothing salespeople and expects that the salesperson will tell her that any style would look good on her. When the salesperson starts the encounter by stating that a new style would look great on her, the customer stops listening and evaluates the new style independently of the salesperson’s recommendation. Now imagine a slightly different interaction. The customer enters a clothing store and is told that one new style might not look good on her, but a different style might. The customer is surprised by the salesperson’s unexpected behavior and pays more attention to the arguments presented by the salesperson about the second style. These simple examples illustrate an issue of interest in current research on consumer information processing: how consumers process salesperson-provided information and, in particular, how prior expectations and beliefs about salespeople affect processing of that information.

A recent model, schema-triggered affect, relates prior expectations to both information processing and affective reactions in person perception (Fiske 1982; Fiske and Pavelchak 1984). This model provides a conceptual framework for studying how prior customer beliefs about salespeople influence selling outcomes. The purpose of our study is to use this conceptual framework to examine how prior expectations about salespeople affect both the processing of information from those salespeople and the product evaluations formed.

SCHEMA-TRIGGERED AFFECT

Recent research on person perception (Fiske 1982; Fiske and Pavelchak 1984) suggests that affective reactions to other individuals are governed by a person’s prior experiences and beliefs about that category of individuals. For example, if an unknown politician matches one’s expectations of the typical politician (Fiske 1982), the affect associated with the politician category—usually negative—is triggered and one has a spontaneous reaction toward the individual. This process of arriving at judgments is labeled “schema-triggered affect” or “category-based affect” because one’s previous experiences with the category or schema serve as the basis of judgment. The category-based affective model was advanced as an alternative to the piecemeal model of evaluation most often assumed to underlie judgments (Anderson 1974; Fishbein and Ajzen 1975). In a piecemeal model, it is assumed that individual items of information are combined and integrated into an overall judgment. The al-

*MITA SUJAN and HARISH SUJAN are Assistant Professors of Marketing, College of Business Administration, The Pennsylvania State University. JAMES R. BETTMAN is the Burlington Industries Professor of Business Administration, Fuqua School of Business, Duke University.

The authors thank Joanne S. Bettman for her assistance in developing the stimuli used in the study.

1. This work is consistent with the stereotyping literature (e.g., Bodenhausen and Wyer 1985; Tajfel 1969; Tajfel 1969; Tuchel 1969; Winter, Uleman, and Cunniff 1985).

2. A schema is an “internal structure developed through experience which organizes incoming information relative to previous experience” (Mandler and Parker 1976, p. 39).
The alternative notion is that for individuals who match one's expectations about a typical category member, one would respond on the basis of the individual's membership in the social category rather than evaluate the individual on a trait-by-trait or piecemeal basis.

The category-based affective model was specified more completely by Fiske and Pavelchak (1984). People's reactions to an individual were hypothesized to consist of two stages—an initial categorization stage in which they assessed how closely the individual matched the category and an evaluation stage. If the categorization attempt failed—either because no category was cued or because the individual had attributes inconsistent with those implied by the most available category—the perceiver was forced to evaluate the individual in a piecemeal mode, that is, trait by trait. However, if categorization was successful—the individual matched the perceiver's perception of the typical category member—the perceiver reacted to the individual on the basis of his or her affect toward the social category as a whole. In the match to category condition, there is no attempt to review and evaluate the individual's traits.

The category-based affect model has been empirically tested and supported in a variety of domains, including judgment of consumer products (Sujan 1985) and political candidates (Fiske 1982). In comparison with piecemeal (mismatch) processing, category-based (match) processing has been demonstrated to be more efficient (i.e., faster), and to result in more verbalizations related to the overall category and fewer references to the attributes of the particular instance (Sujan 1985).

This model appears to be very relevant to understanding how prior consumer beliefs and expectations affect selling outcomes. We therefore attempt to extend the work on category-based affect to consider how such affect, once evoked, guides further processing in a selling situation. Specifically we argue that, in an interpersonal interaction, systematic processing of further information is less likely once one has categorized an individual and reacted to that individual at a category level (see Wright 1986 for a similar argument). Rather, in a customer-salesperson interaction where the salesperson is categorized as typical, consumers may pay minimal attention to the salesperson-provided product information and may instead base their product judgments on simple heuristics consistent with their initial impressions. For example, such heuristics might be "he's a typical used car salesperson, so don't listen to his arguments and evaluate anything he pushes negatively" for the case of a salesperson category with negative affect, or "he seems like the typical IBM sales rep—I'm sure he'll get me a good, though expensive, computer" for a salesperson category with moderately positive affect. However, when the salesperson appears atypical, one might be more willing to process additional information and to suspend judgment about the product until the specific product arguments presented by the salesperson have been processed.

Thus, to summarize, the research on schema-triggered affect leads to the following notions about how consumers' schemas for salespeople might influence their information processing in selling encounters. First, when the salesperson encountered matches the typical salesperson for the category, schema-triggered reactions to the salesperson may trigger product evaluations based on simple heuristics consistent with the initial impression of the salesperson, with minimal information processing during the selling encounter. Second, when the salesperson encountered does not match the typical salesperson in the product category, the customer is more likely to process the specific arguments presented by the salesperson. Finally, it is important to note that these hypothesized patterns of consumer information processing are contingent upon consumers having a well-defined schema or prior expectations for the particular salesperson category. Previous sales literature (e.g., Mason 1965; Paul and Worthing 1970; Swan and Adkins 1981; Thompson 1972) indicates that we can realistically assume consumers have such expectations.

RESEARCH HYPOTHESES

The central idea of our study is that when a salesperson is consistent with a consumer's perception of the typical salesperson in the category, information is processed differently than when the salesperson is perceived to be inconsistent with the typical salesperson. This principle can be tested empirically by manipulating two factors, degree of match (match/mismatch) to the typical salesperson in a product category and strength (strong/weak) of the product arguments. We hypothesize that in the match condition, information is not processed beyond the initial stage of forming impressions of the salesperson. Therefore, in the match condition, product judgments should be guided more by simple heuristics or prior beliefs consistent with the initial impression and less by systematic processing of the product arguments. In the mismatch to salesperson condition, product judgments should be influenced more by detailed processing of the product arguments. Thus,

H₁: When the salesperson is discrepant from the salesperson schema for a product category, strength of product argumentation will have greater influence on consumers' product judgments than when the salesperson matches the salesperson schema.

In addition to influencing final product judgments, the use of either simple heuristics/prior beliefs consistent with the salesperson schema or more analytical processing (in the match and mismatch to salesperson schema conditions, respectively) should influence the cognitive responses to the persuasive communication (Greenwald 1968). Such responses typically are separated into counterarguments and support arguments (product-related thoughts) and source derogations (source-related thoughts) (Greenwald 1968; Wright 1980). Because consumers can generate other types of responses to a communication (e.g., statements of familiarity, etc.), product-related
thoughts and source-related thoughts do not necessarily sum to total responses. Predictions therefore can be made separately for these two types of thoughts.

The schema-triggered affect model predicts that evaluations are based on information presented beyond the initial impression stage only in the mismatch condition. In the match condition, evaluations are based on heuristics or prior beliefs consistent with the initial impression. In our study, salesperson-based information is used to create the initial impression and product-oriented information is presented by the salesperson only after the initial impression stage. Because more thoughts about information presented beyond the initial impression stage and fewer thoughts about information relevant to the initial impression stage are expected for the mismatch condition, the following effects are hypothesized.

H1: When the salesperson is discrepant from the salesperson schema for a product category, (a) more product-oriented thoughts are generated and (b) fewer salesperson-oriented thoughts are generated than when the salesperson matches the salesperson schema.

A final indicator of the underlying processes—schema-triggered affective reactions versus analytical processes—can be obtained from recall data. We hypothesize that product judgments are based on analytical processing of the product arguments presented by the salesperson only when the salesperson is atypical. Because judgments in the mismatch condition are based on such processing, the arguments should be recalled and judgments and recall should correspond. However, in the match condition, judgments are based more on initial impressions, so there is likely to be less recall of the specific arguments and no necessary relationship between judgment and any recall (Lichtenstein and Srull 1985). Hence, the following effects are hypothesized.

H2: When the salesperson is discrepant from the salesperson schema for a product category, there is (a) greater recall of product arguments presented and (b) greater correspondence between recall and product judgment than when the salesperson matches the salesperson schema.

These hypotheses were tested in an experiment that examined how prior expectations about typical salespeople in a category affected subsequent processing and reactions to the information presented by a salesperson.

METHOD

Pretest: Measuring Salesperson Schemas

Sixty-five undergraduate business students at The Pennsylvania State University participated in a preliminary study to measure salesperson schemas. Subjects were informed that the study was an exploration of consumers’ impressions of various types of salespeople. Subjects were asked to think about types of salespeople toward whom consumers generally felt positive (negative). The order of eliciting positive and negative salesperson schemas was randomized across subjects. Subjects then were asked to list (1) the product such a salesperson was likely to be selling, (2) the typical appearance of such salespeople, and (3) the opening sales pitch such a salesperson would be likely to use. Similar free-elicitation methods have been used in prior research to measure schemas for personality types (e.g., Cantor and Mischel 1979; Lurigio and Carroll 1985).

The product categories most frequently associated with negatively evaluated salespeople were used cars (59% mentions), clothing (21% mentions), and household appliances (17% mentions). Product categories most frequently associated with positively evaluated salespeople were computers (31% mentions) and industrial products (23% mentions).

To confirm these salesperson schemas, a second group of 22 subjects drawn from the same population was asked to rate the typical salesperson for a set of product categories, including those mentioned in the free-elicitation task. The average ratings ranged from being moderately positive (for the typical computer salesperson) to being strongly negative (for the typical used car salesperson) and were consistent with the free-elicitation responses (e.g., the computer salesperson was rated positively and the clothing store salesperson negatively). Thus, there was some indication that the subject population held consensually understood salesperson schemas. On the basis of the pretests, computer salespeople (affect moderately positive, 5.2 on a 7-point scale) and clothing store salespeople (affect moderately negative, 3.4) were used in constructing the stimuli for the experiment.

The responses of subjects in the first pretest group who mentioned either computer and/or clothing salespeople were analyzed further to obtain a profile of the typical salesperson for each of these product categories. Idiosyncratic attributes (i.e., attributes mentioned by only one subject) were eliminated, leaving for each category the attributes elicited by two or more subjects (Cantor and Mischel 1979). These attributes were used to instantiate the salesperson schemas used in the experiment and to create the match and mismatch conditions for those schemas.

Procedure

Subjects were 134 Pennsylvania State University undergraduate business students who participated as volunteers in the experiment. Students were believed to be appropriate subjects for the product categories used, as students should have both interest in and relevant knowledge of those products.

The questionnaire contained an instruction sheet, the experimental manipulation appropriate to the condition the subject was in, and the measuring instruments. The

[2] Moderately evaluated salespeople were used, rather than strongly evaluated salespeople (e.g., used car salespeople), for two reasons. First, we believed that strong prior evaluations might lead to floor or ceiling effects in evaluations and hence might not allow the effects of the arguments to be shown. Second, no strongly positive category was found.
instruction sheet explained: "The purpose of this study is to understand how people form impressions of other individuals. Today you will be looking at an interaction of a salesperson with a customer. Try and form an impression of the salesperson."

Note that the task required subjects to form an impression of the salesperson, even though product evaluation and recall of product arguments were the major dependent variables. This salesperson impression task was believed to be most appropriate for two main reasons. First, in the schema-triggered affect model, assessment of the salesperson is a prerequisite to testing the contingency aspects of the model. Therefore our model may not be applicable in situations where an assessment of the salesperson is not performed naturally. The second reason for using the salesperson impression instructions was consistency with previous work (e.g., Petty and Cacioppo 1984) on systematic versus heuristic processing of information. This work has shown that such impression formation instructions allow subjects to perform either simple or more complex processing and are less likely to bias subjects toward systematic information processing than instructions to evaluate the information itself.

After reading the task instructions, subjects read a description of the salesperson, the opening statement used by the salesperson, and the product arguments used by the salesperson to persuade the customer. They then filled in the dependent measures and the manipulation checks. Finally, subjects were debriefed and thanked for their participation.

Independent Variables

Affect toward the typical salesperson in a category. Both positively and negatively valenced schemas were used to ensure that the schema-triggered model was generalizable to both positive and negative schemas. On the basis of the pretest, the positive affect category was evoked by stating that "Joe Smith" was a computer salesperson selling home computers and the negative affect category was evoked by stating that "Joe Smith" was a clothing salesperson selling suits.

In addition to the product category labels, a short description of the appearance of the salesperson was provided, based on the attributes listed by the pretest subjects to describe the typical salesperson in each of the two product categories. The computer salesperson was described as dressed in a white shirt and blue tie. The clothing store salesperson was described as dressed in a formal three-piece suit. Thus, category labels and prototypical descriptions of appearance were used to maximize the probability that the relevant salesperson schema was available in memory.

Match/mismatch to the salesperson schema. Match/mismatch to the salesperson schema was created by using an opening statement that was either consistent with or discrepant from the type of opening ascribed to the typical salesperson in each of the two product categories. Pretest subjects attributed product-oriented sales approaches to clothing store salespeople (i.e., any product was said to look good on the customer) and customer-oriented sales approaches to computer salespeople (i.e., determining customer needs). Thus, match and mismatch to the salesperson schemas could be manipulated by using both types of opening approaches for both product categories. A product-oriented opening would be a match for the clothing store salesperson and a mismatch for the computer salesperson. Conversely, a customer-oriented opening would be a match for the computer salesperson and a mismatch for the clothing store salesperson.

Strong/weak arguments. All subjects read six arguments presented by the salesperson advocating the product. All of the six arguments seen by a subject were one of two different kinds, strong or weak. Each argument was listed in point form followed by a statement restating the argument in greater detail. Manipulation of the strength of the argument was in the detailed statement. Thus, the strong and weak arguments did not differ in the points raised but in the detailed arguments used to support those points.

Dependent Variables

Product evaluations. This was the major dependent measure in the study. Subjects were asked to indicate their evaluation of the product on three 7-point semantic differential scales. The responses on these scales were fairly highly intercorrelated and subjects' ratings were

Note, therefore, that together with positivity/negativity of the schema, other factors such as product sold and appearance were also varied. However, because different results were not predicted on the basis of the positivity/negativity of the schema, this confound is not crucial to the experiment.

1 The customer-oriented opening was: "Hi! Can I help you?" He listens carefully while the customer explains his needs, and then says: "We have several computers that I can demonstrate (suits that you can try on). From what you've told me, I think you'll find one with the features you want (which will satisfy your needs). Look at this, for example." The product-oriented opening was: "Hi! Can I help you?" He pauses briefly for the customer to explain his needs, and then continues: "There is a particular suit I would like you to try on (computer I would like you to see). I know you will look good in it (it will be good for you). Take a look at it, it's really classy (nifty)."

2 Note that some aspects of the salespeople (i.e., appearance) are prototypical for all cases, whereas others (i.e., the opening approach) are used to manipulate match/mismatch. Ensuring that the category schema was initially available required that some prototypical feature be used. We believed the category name alone would not suffice. Appearance was deemed to be a good feature to invoke the schema initially. However, a stronger feature, such as the opening, was used to manipulate match/mismatch after the initial schema presumably had been instantiated.

3 In an independent pretest, 10 subjects rated the strong arguments and 10 subjects rated the weak arguments. The strong arguments, in comparison with the weak arguments, were rated as more "convincing," "competent," and likely to "prompt purchase" (all measures were significant at p < .05). Pretest ratings of the strong and weak arguments also were not different on "difficult to understand" or "hard to follow."
summed to form one index of product evaluation (coefficient alpha = .79).

Cognitive responses. Subjects were asked to write down their thoughts relating to the sales interaction. Standard cognitive response instructions were used. The responses were collected immediately after subjects had read the description of the sales interaction and before the evaluation measures (cf. Wright 1980).

Subjects' responses were coded as product-oriented thoughts, salesperson-oriented thoughts, and other thoughts by two judges. The judges were blind to the hypotheses and the treatment conditions. The interjudge reliability was 94%. Disagreements were resolved by discussion and all responses were coded. Product-oriented and salesperson-oriented thoughts together accounted for 92% of the subjects' total responses to the communication.

Recall of product features. After filling in the cognitive responses, product evaluations, and some of the manipulation checks, subjects were asked to recall the product features pointed out by the salesperson. The number of distinct features retrieved was counted for each subject.

RESULTS

The hypotheses were examined in a 2 (positive/negative salesperson schema) × 2 (match/mismatch to schema) × 2 (strong/weak arguments) between-subjects analysis of variance design.8

Manipulation Checks

After all dependent variables were collected, subjects rated the typical salesperson for a set of product categories. Consistent with pretest subjects' ratings, home computer salespeople are rated as moderately positive and clothing store salespeople are rated as moderately negative (F = 105.9; p < .01; means = 5.0 versus 3.8 where 7 is very positive and 1 is very negative).9 Thus the positively and negatively valenced salesperson schemas were successfully manipulated.

The manipulation of match/mismatch to salesperson schema was checked by asking subjects to respond on three 7-point agree-disagree scales that assessed how "expected," "similar," and "typical" the salesperson was. The coefficient alpha for these measures is .84, and they are combined into a single scale. The main effect of match/mismatch to salesperson schema is significant (F = 61.6; p < .01). The described salesperson is rated to be more similar to the typical salesperson in the category in the match conditions (mean = 2.6, where 1 is maximally similar) than in the mismatch conditions (mean = 4.3). Further, no other effects are significant.

The manipulation of strong/weak arguments was checked by having subjects respond to scale items that measured how strong, convincing, and competent the arguments were. The coefficient alpha for these items is .93 and the items are combined into a single scale. The main effect of strong/weak arguments is significant (F = 51.4; p < .01) and strong arguments are rated as more convincing on the combined scale than weak arguments (3.3 versus 5.1, where 1 is maximally convincing). These findings are consistent with the pretest results. Results for each of the major dependent variables are discussed next; the cell means for the dependent measures are reported in Table 1.

Product Evaluations

H1 suggests that because more analytical processing occurs in the mismatch to salesperson schema conditions, the strength of product argumentation should have a greater influence on product judgments when the salesperson is discrepant from the typical salesperson than when the salesperson matches the typical salesperson. The analysis of variance results, with the product evaluation index as the dependent measure, show a significant interaction between match/mismatch and strong/weak arguments, as proposed (F = 7.95; p < .01). The difference between the match and mismatch conditions was examined by conducting planned comparisons between the cell means. In the mismatch conditions, as hypothesized, strong arguments resulted in higher product evaluations than weak arguments (t = 4.6, p < .01; means = 4.9 versus 3.6, where 7 is the best evaluation possible).10 In the match conditions, strong versus weak arguments did not produce differences in product evaluations (t < 1, n.s.; means = 4.0 versus 3.7). Further, the three-way interaction between product category, match/mismatch, and strong/weak arguments is not significant, indicating that this result holds for both product categories. Thus, H1 is supported.

Types of Thoughts

An analysis of variance on the total number of cognitive responses produced no significant effects. On average, subjects generated 4.4 cognitive responses. To examine differences in types of cognitive responses, analyses were conducted on the number of product-oriented and salesperson-oriented thoughts.11

Product-oriented thoughts. Product-oriented thoughts

8To conserve space, the degrees of freedom are not reported for each separate F-value or t-value in the text. The degrees of freedom for the numerator equal 1 for all F-values and range from 123 to 126 for the denominator of the F-values and for the t-values (the range is due to missing data for some analyses).

9Because all subjects provided ratings of the typical salesperson for a set of product categories, a repeated-measures analysis was conducted for this one measure.

10Here and in the rest of the article, t-tests are conducted with the mean square error from the overall analysis of variance table (Kirk 1968, p. 73).

11Because the data are in count form, a log-transformation was performed on the thought data for analysis (Mosteller and Tukey 1977).
Table 1
CELL MEANS FOR VARIOUS DEPENDENT MEASURES

<table>
<thead>
<tr>
<th>Dependent measures</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Clothing store salesperson</td>
<td>Computer store salesperson</td>
<td>Clothing store salesperson</td>
<td>Computer store salesperson</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strong arguments</td>
<td>Weak arguments</td>
<td>Strong arguments</td>
<td>Weak arguments</td>
<td>Strong arguments</td>
</tr>
<tr>
<td>Product evaluation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall scale (7 is best)</td>
<td>4.0</td>
<td>3.7</td>
<td>3.9</td>
<td>3.7</td>
<td>5.4</td>
</tr>
<tr>
<td>Cognitive response</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of salesperson-oriented thoughts</td>
<td>4.2</td>
<td>3.2</td>
<td>3.1</td>
<td>2.5</td>
<td>2.4</td>
</tr>
<tr>
<td>Number of product-oriented thoughts</td>
<td>0.3</td>
<td>1.0</td>
<td>0.5</td>
<td>1.2</td>
<td>1.1</td>
</tr>
<tr>
<td>Recall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of arguments recalled</td>
<td>3.7</td>
<td>3.2</td>
<td>2.3</td>
<td>3.1</td>
<td>4.1</td>
</tr>
<tr>
<td>Correlation between recall and product evaluation</td>
<td>-0.08</td>
<td>0.37</td>
<td>0.07</td>
<td>-0.22</td>
<td>0.24</td>
</tr>
<tr>
<td>Cell sizes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>15</td>
<td>17</td>
<td>17</td>
<td>16</td>
<td>18</td>
</tr>
</tbody>
</table>

relate to evaluation of product attributes (e.g., “software is important to me”), recognition of attribute tradeoffs (e.g., “if the suit is written up in a fashion magazine it must be expensive”), request for information on additional attributes (e.g., “what about warranties”), and other aspects of the product. Statements of simple liking/disliking for the product (e.g., “I hate it”) were excluded, because they could be due to either systematic processing of the product arguments or affective responses to the customer-salesperson interaction triggered by the salesperson schema.

H₃ₐ proposes that more product-oriented thoughts would be generated in the mismatch conditions than in the match conditions. The analysis of variance for the number of product-oriented thoughts is significant ($F = 9.7; p < .01$). More product-oriented thoughts were produced in the mismatch conditions (mean = 1.6) than in the match conditions (mean = .8), supporting H₃ₐ.

Salesperson-oriented thoughts. Salesperson-oriented thoughts relate to thoughts relevant to the salesperson’s traits (e.g., “the salesperson was too pushy”), strategies (e.g., “he demonstrated many products”), and appearance (e.g., “he looked like he would be selling suits”) and other aspects of the salesperson per se. Statements of simple liking/disliking for the salesperson (e.g., “I liked the salesperson”) were included, as they also would be indicators of responses to the salesperson.¹²

H₂₉ proposes that more salesperson-oriented thoughts would be generated in the match to salesperson schema conditions, as evaluation of the sales encounter would be guided to a greater extent by impressions of the salesperson. The analysis of variance for the number of salesperson-oriented thoughts shows a significant match/mismatch main effect ($F = 4.3; p < .05$). More salesperson-oriented thoughts were produced in the match conditions (mean = 3.3) than in the mismatch conditions (mean = 2.4). Thus, H₂₉ is supported.

Recall

The basic hypothesis is that when the salesperson is discrepant from the salesperson schema, in contrast to when the salesperson matches the salesperson schema, subjects would have greater recall of the product arguments presented (H₃ₐ) and greater correspondence between recall and product judgments (H₃ₐ). The main effect for match/mismatch for the number of product arguments recalled approached significance ($F = 3.0; p < .09$). Recall of product features presented was greater in the mismatch conditions (mean = 3.6) than in the match conditions (mean = 3.1). Thus, H₃ₐ is marginally supported.

The relationship between recall and product judgments was tested by examining the correlations between the number of product arguments recalled and the three-item product evaluation scale. The correlation between recall and judgment was expected to be positive in the strong argument conditions (the more cognent arguments recalled the higher the product evaluation) and negative in the weak argument conditions (the more specious arguments recalled the lower the product evaluation) and this correspondence was expected to be greater in the mismatch than in the match conditions. For subjects given

¹²To have the analyses for product-related thoughts and salesperson-related thoughts be consistent, the analyses for both types of thoughts were rerun including statements of simple affect toward the product and excluding statements of simple affect toward the salesperson. The pattern of results was essentially the same for both measures as those reported in the text and inclusion (or exclusion) of affective statements did not change the results.
cogent arguments, the overall recall-judgment correlation is moderately positive and significant ($r = +.32; p < .01$). As expected, this relationship is stronger in the mismatch to salesperson schema conditions ($r = +.44; p < .01$), but is insignificant in the match to salesperson schema conditions ($r = +.04$, n.s.). In the spurious argument conditions, the overall recall-judgment correlation is small and insignificant ($r = -.06$, n.s.). Further, in the mismatch conditions the relationship is negative, as expected, but is not significant ($r = -.15$, n.s.). In the match conditions, the relationship remains small and insignificant ($r = +.05$, n.s.). Thus, there is some weak support for H_2, that memory for specific product arguments influences product judgments only in the mismatch to salesperson schema conditions.

DISCUSSION

Our findings show that customers’ prior notions about typical salespeople may be crucial for comprehending the process of selling encounters. The notions of schema-triggered affect suggest that in persuasion situations where the salesperson appears typical, one is more likely to base judgments on prior beliefs or simple heuristics than to process available product arguments. The multiple dependent measures provide converging evidence for this basic hypothesis. When the salesperson described appeared typical, subjects’ product judgments were unaffected by the quality of the product arguments cited. Further, more salesperson-oriented thoughts were generated and fewer of the product’s features were recalled. Conversely, when the salesperson described appeared atypical, subjects exhibited significantly more positive attitudes when the product was advocated by cogent rather than spurious arguments. Subjects also generated more product-oriented thoughts and tended to recall more of the product’s features. There is also some marginal support for the notion that judgment was based on memory for specific product facts when the salesperson was atypical but not when the salesperson was typical. Thus, the data as a whole suggest that subjects engage in more systematic or analytical processing when the salesperson encountered is discrepant from the salesperson schema in memory, and that they engage in more simple or heuristic processing when the salesperson matches the salesperson schema in memory.

Effects of Involvement and Interest

Analytical versus simple heuristic processing generally has been studied in an involvement context (e.g., Chaiken 1980; Petty, Cacioppo, and Schumann 1983). Subjects in our experiment rated their involvement with the product category (e.g., “I’ve spent a reasonable amount of time looking for a new suit”) and their interest in the task (e.g., “The questionnaire was interesting”). Analyses of variance on the task involvement and product involvement measures showed that neither task nor product involvement was confounded with the match/mismatch to salesperson conditions. Thus, the results cannot be explained in terms of involvement. Therefore, in our study, consumers’ prior knowledge about salespeople had an effect on the type of processing independent of interest or involvement in the product category.

Limitations and Implications for Future Research

The analyses of involvement are reassuring, but they do not eliminate the possibility that the subjects were relatively uninvolved in the overall task because real salespeople and arguments were not encountered in an actual face-to-face interaction. Subjects’ use of schema-triggered affect in the match conditions might prove to be less likely, and hence the differences between match and mismatch conditions might be smaller, in a highly involving purchase situation. Further, the instructions asked subjects to form an impression of the salesperson, thereby focusing attention on whether the salesperson was typical or not. This focus on the salesperson may or may not occur naturally. These limitations indicate a need for further research in the field involving face-to-face encounters.

Our study reinforces the recognized need for more research examining the relationship between memory and judgments. Traditional models of consumer judgment are based on an assumed strong correspondence between recall and evaluative judgments; however, this appears to be the exception rather than the rule (cf. Bettman 1986). Even in the mismatch to salesperson schema conditions, the relationship obtained between recall and judgment was tenuous, especially for weak arguments. If consumers are naturally skeptical, weak arguments could easily disrupt the memory-judgment relationship by creating a floor effect. Thus, specifying more completely the motivational and information-processing factors leading to the memory-judgment relationship might be important to a better understanding of consumer judgments (Lichtenstein and Srull 1985).

The overall pattern of findings suggests that it may be worthwhile to explore further the conditions under which consumers engage in simple heuristic information processing, as well as the kinds of simple information-processing mechanisms that often may underlie persuasion effects. The notions of schema-triggered affect (Fiske 1982; Fiske and Pavelchak 1984) suggest one mechanism by which previously learned rules are used to make current judgments. Our findings support the usefulness of this model for understanding how prior knowledge affects persuasion and evaluation processes. They also imply that the cues triggering judgments of salesperson typicality/nontypicality may be crucial determinants of the outcomes of selling processes. Studies of salesperson perception focusing on such cues would be important in furthering our understanding of how customers’ prior beliefs affect the outcomes of selling interactions.
REFERENCES

