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Mathematical problem: Hidden Hamiltonian cycle model

e Given a weighted undirected complete graph on n vertices
e Latent: a Hamiltonian cycle C*
e Edge weight

Weirf]\df' P ec(C*
Q egC”
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Mathematical problem: Hidden Hamiltonian cycle model

e Given a weighted undirected complete graph on n vertices
e Latent: a Hamiltonian cycle C*
e Edge weight

Weirf]\df' P ec(C*
Q egC”

e Goal: observe W, recover C* with high probability

Remarks:

e For this talk, @ = N(0,1) and P = N(u,1), so that

W = u - adj matrix of C* + noise

“signal”

e Hidden Hamiltonian cycle planted in Erdos-Rényi graph
[Broder-Frieze-Shamir '94]
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Motivation: Link information in Chicago datasets

@ Reconstitute chromatin in vitro upon naked DNA
® Produce cross-links by fixing chromatin with formaldehyde

AGCTCGACTTGCAATTTCCGAGCTATGGCCAGTACTGCATACGGGCTTACGCGTAC

~— e

Chicago datasets generate cross-links among contigs [Putnam et al. '16 ]

On average more cross-links exist between adjacent contigs
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Ordering DNA contigs with Chicago cross-links
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Ordering DNA contigs with Chicago cross-links

Reduces to traveling salesman problem (TSP)

Find a path (tour) that visits every contig exactly once with the
maximum number of cross-links
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Key challenges for DNA scaffolding with Chicago data

e Computational: TSP is NP-hard in the worst-case

e Statistical: spurious cross-links between contigs that are far apart
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Key challenges for DNA scaffolding with Chicago data

e Computational: TSP is NP-hard in the worst-case

e Statistical: spurious cross-links between contigs that are far apart

Key questions:

e How to efficiently order hundreds of thousands of contigs?

e How much noise can be tolerated for accurate DNA scaffolding?

Jiaming Xu (Duke) Recovery Threshold for TSP LP 5



Mathematical model for DNA scaffolding
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Mathematical model for DNA scaffolding
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Mathematical model for DNA scaffolding
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Chicago dataset [Putnam et al. '16] P =Pois(\1), Q = Pois(Aa)
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What is known information-theoretically

Maximum likelihood estimator reduces to TSP
Xpgp = arg max (W, X)

s.t. X is the adjacency matrix of some Hamiltonian cycle

Theorem (Sharp threshold)

If u? < 4logn, exact recovery is information-theoretically impossible
If 2 > 4logn, MLE succeeds in exact recovery
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What is known algorithmically

e Spectral methods fail miserably:
» 1> n?? (spectral gap of cycle is too small)

W= U + Gaussian noise
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e Spectral methods fail miserably:
» 1> n?? (spectral gap of cycle is too small)

W= U + Gaussian noise
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What is known algorithmically

e Spectral methods fail miserably:
» 1> n?? (spectral gap of cycle is too small)

W= U + Gaussian noise

e Thresholding method: u > /8logn
e Greedy merging [Motahari-Bresler-Tse '13]: 1t > 1/6logn
e This talk: linear programming achieves sharp threshold

12
>4: LP succeeds
logn
12
< 4: Everything fails
logn
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In general

Threshold determined by Battacharyya distance (a.k.a. Rényi divergence
of order 1):

B(P,Q) 2 —2log / VAPdQ
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In general

Threshold determined by Battacharyya distance (a.k.a. Rényi divergence
of order 1):
B(P,Q) = —210g/ v/ dPdQ

LP succeeds when

‘ B(P,Q) — logn — +0o0

optimal under mild assumptions
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Convex relaxations of TSP



Integer Linear Programming reformulation of TSP

Krsp = argmx (W, X)

s.t. ZXij =2, Vi
J
ij € {07 1}
Z XijZQ, V@#IC[H]

il jgl
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Integer Linear Programming reformulation of TSP

Krsp = argmx (W, X)

s.t. ZXij =2, Vi
J
X5 €{0,1}
Z XijZQ, V@#IC[H]

il jel

e The last constraint: subtour elimination
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Subtour LP

Xsup = arg max (W, X)
s.t. ZXZ']' =2, Vi
J

Xij S [0, 1]
Z XijZQ, V@#IC[TL}

il jgl
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Subtour LP

Xsup = arg max (W, X)
s.t. ZXZ']' =2, Vi
J

Xij S [0, 1]
Z XijZQ, V@#IC[TL}

il jel

e Replacing the integrality constraint with box constraint: SUBTOUR
LP relaxation [Dantzig-Fulkerson-Johnson '54, Held-Karp '70]

e Exponentially many linear constraints, nevertheless solvable using
interior point method
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F2F LP

Xpop = arg max (W, X)
s.t. ZXZ‘]‘ =2, Vi
J

Xij €10,1]

e Further dropping subtour elimination constraints = Fractional
2-factor (F2F) LP
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F2F LP

Xpop = arg max (W, X)
s.t. ZXZ‘]‘ =2, Vi
J
Xij € [0,1]
e Further dropping subtour elimination constraints = Fractional
2-factor (F2F) LP

e Extensively studied in worst case [Boyd-Carr '99, Schalekamp-Williamson-van
Zuylen '14]
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F2F LP

Xpop = arg max (W, X)
s.t. ZXZ‘]‘ =2, Vi
J

Xij €10,1]

e Further dropping subtour elimination constraints = Fractional
2-factor (F2F) LP

e Extensively studied in worst case [Boyd-Carr '99, Schalekamp-Williamson-van
Zuylen '14]

e How it performs in our random instance?
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Optimality of Fractional 2-Factor LP

Theorem (Bagaria-Ding-Tse-Wu-X. '18)

If u? — 4logn — oo, then XFQF = X* with high probability.
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Optimality of Fractional 2-Factor LP

Theorem (Bagaria-Ding-Tse-Wu-X. '18)

If u? — 4logn — oo, then XFQF = X* with high probability.
Remarks

e Achieving the IT-limit 2 = 4logn
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Belief propagation

Max-Product Belief Propagation

mi—j(t) = wij — 211(}7%1&)( {me_i(t —1)}
mi—;(0) = wij

After T iterations, for each vertex i, keep the two largest incoming
messages my_,;(T") and delete the rest.
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Belief propagation

Max-Product Belief Propagation

mi—j(t) = wij — 211(}7%1&)( {me_i(t —1)}
mi—;(0) = wij

After T iterations, for each vertex i, keep the two largest incoming
messages my_,;(T") and delete the rest.

e BP is exact provided the optimal solution of F2F is integral
[Bayati-Borgs-Chayes-Zecchina '11]

e It can be shown that 7' = O(n?logn) whp
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Theoretical analysis of convex relaxation



Primal approach vs Dual approach: high level

e Dual argument:

» Construct dual witness that certify the ground truth whp (KKT
conditions)
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Primal approach vs Dual approach: high level

e Dual argument:
» Construct dual witness that certify the ground truth whp (KKT
conditions)
» Successful in proving SDP relaxation attaining sharp threshold for
graph partitions: community detection, densest subgraph, etc
[Abbe-Bandeira-Hall '14, Hajek-Wu-X. '14,'15, Bandeira '15, Perry-Wein '15]

Jiaming Xu (Duke) Recovery Threshold for TSP LP 17



Primal approach vs Dual approach: high level

e Dual argument:

» Construct dual witness that certify the ground truth whp (KKT
conditions)

» Successful in proving SDP relaxation attaining sharp threshold for
graph partitions: community detection, densest subgraph, etc
[Abbe-Bandeira-Hall '14, Hajek-Wu-X. '14,'15, Bandeira '15, Perry-Wein '15]

» Limitations: construction is ad hoc

Jiaming Xu (Duke) Recovery Threshold for TSP LP 17



Primal approach vs Dual approach: high level

e Dual argument:

» Construct dual witness that certify the ground truth whp (KKT
conditions)

» Successful in proving SDP relaxation attaining sharp threshold for
graph partitions: community detection, densest subgraph, etc
[Abbe-Bandeira-Hall '14, Hajek-Wu-X. '14,'15, Bandeira '15, Perry-Wein '15]

» Limitations: construction is ad hoc

e Primal argument:

» No feasible solution other than the ground truth has a better
objective value whp

Jiaming Xu (Duke) Recovery Threshold for TSP LP 17



Primal approach vs Dual approach: high level

e Dual argument:

» Construct dual witness that certify the ground truth whp (KKT
conditions)

» Successful in proving SDP relaxation attaining sharp threshold for
graph partitions: community detection, densest subgraph, etc
[Abbe-Bandeira-Hall '14, Hajek-Wu-X. '14,'15, Bandeira '15, Perry-Wein '15]

» Limitations: construction is ad hoc

e Primal argument:
» No feasible solution other than the ground truth has a better
objective value whp
» Key: for LP, can restrict to extremal points (vertices of the feasible
polytope)
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Dual approach

e KKT conditions (Farkas' lemma): Xpop = X* < JucR" (dual
certificate):

ui +u; < Wiy, forin~jinC*
ui—i—ujZWij, for i+ jin c*
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Dual approach

e KKT conditions (Farkas' lemma): Xpop = X* < JucR" (dual
certificate):

ui +u; < Wiy, forin~jinC*
ui—i—ujZWij, for i+ jin c*

e One feasible choice of dual:
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ui =g min{Wj; : j ~ i}
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Dual approach

e KKT conditions (Farkas' lemma): Xpop = X* < JucR" (dual
certificate):

u; +uj; < Wi, for i ~ jin C*
ui—i—ujZWij, for i+ jin c*

e One feasible choice of dual:

1
ui =g min{Wj; : j ~ i}

e This certificate shows correctness if y2 > 6logn (same as greedy
merging)
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Synthetic data experiment

Planted Hamiltonian cycle model with Gaussian weights (n =1000)
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Primal approach

e Show whp for all extremal points X # X*:
(W, X) < (W, X7)
e F2F polytope:
X 01> X =2
j=1

e The proof heavily exploits the characterization of extremal points
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Primal approach

e Show whp for all extremal points X # X*:
(W, X) < (W, X7)

e F2F polytope:

X €0,y X5 =2
j=1

e The proof heavily exploits the characterization of extremal points

» F2F polytope is not integral: fractional vertices exist
» Characterization [Balinski '65]: for any vertex X of F2F polytope

e Half integrality
Xi; €{0,1/2,1}
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Primal approach

e Show whp for all extremal points X # X*:
(W, X) < (W, X7)

e F2F polytope:

X €0,y X5 =2
j=1

e The proof heavily exploits the characterization of extremal points

» F2F polytope is not integral: fractional vertices exist
» Characterization [Balinski '65]: for any vertex X of F2F polytope

e Half integrality
Xij € {03 1/2, 1}

e 1/2's form disjoint odd cycle connected by path of 1's.
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Primal approach

e Show whp for all extremal points X # X*:
(W, X) < (W, X7)

e F2F polytope:

X €0,y X5 =2
j=1

e The proof heavily exploits the characterization of extremal points

» F2F polytope is not integral: fractional vertices exist
» Characterization [Balinski '65]: for any vertex X of F2F polytope

e Half integrality
Xi; €{0,1/2,1}
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Proof of correctness for F2F LP



Proof Outline

@ Encode the solution: for any extremal point X, represent
2(X — X™) as a bicolored multigraph Gx

w(Gx) = (W, 2(X — X¥))
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Proof Outline

@ Encode the solution: for any extremal point X, represent
2(X — X™) as a bicolored multigraph Gx

w(Gx) = (W, 2(X — X¥))

® Divide and conquer: decompose Gx as edge-disjoint union of
graphs in some family F

w(Gx) =Y w(F), FeF

%
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Proof Outline

@ Encode the solution: for any extremal point X, represent
2(X — X™) as a bicolored multigraph Gx

w(Gx) = (W, 2(X — X¥))

® Divide and conquer: decompose Gx as edge-disjoint union of
graphs in some family F

w(Gx) =Y w(F), FeF

%

® Counting: Show that whp w(F') < 0 for all F' € F
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Step 1: Bicolored multigraph representation

A
AN

X*: true cycle
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Step 1: Bicolored multigraph representation

1
2
1 1
2 2
1 1 1
1 1
2 2
1
2

X: extremal solution
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Step 1: Bicolored multigraph representation

1
2

1 1

2 2

1 1 1 —

1 1

2 2
1
2

X extremal solution Gx
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Step 1: Bicolored multigraph representation

1
2

1 1

2 2

1 1 1 —

1 1

2 2
1
2

X extremal solution Gx

key observation

G x is always balanced: red degree = blue degree
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Step 2: Edge decomposition

Theorem (Kotzig '68)

Every connected balanced bicolored multigraph has an alternating
Eulerian circuit.
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Step 2: Edge decomposition

Theorem (Kotzig '68)

Every connected balanced bicolored multigraph has an alternating
Eulerian circuit.

Remarks

e An Eulerian circuit may traverse a double edge twice

!

“Dumbbell” structure
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Step 2: Edge decomposition

U: collection of graphs recursively constructed
@ Start with an even cycle in alternating colors

® Blossoming procedure: At each step, contract an edge in any
cycle and attach a flower (alternating path of double edges followed
by an alternating odd cycle)

Obtained by starting with an 10-cycle and blossoming 3 times
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Step 2: Edge decomposition

U: collection of graphs recursively constructed
@ Start with an even cycle in alternating colors

® Blossoming procedure: At each step, contract an edge in any
cycle and attach a flower (alternating path of double edges followed
by an alternating odd cycle)

Obtained by starting with an 10-cycle and blossoming 3 times

However, not every G x is of this form...
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e Graph homomorphism ¢ : U — F' is a vertex map that preserves
edges and edge multiplicity
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e Graph homomorphism ¢ : U — F' is a vertex map that preserves
edges and edge multiplicity

U F
Lemma (Decomposition)

Every balanced bicolored multigraph G with edge multiplicity at most 2
can be decomposed as an edge-disjoint union of graphs in

F={F:U — F forsomeU € U}

1 2 5 1 2 2 5
O decompose
_—
4 3 6 4 3 3 6
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e Graph homomorphism ¢ : U — F' is a vertex map that preserves
edges and edge multiplicity

U F
Lemma (Decomposition)

Every balanced bicolored multigraph G with edge multiplicity at most 2
can be decomposed as an edge-disjoint union of graphs in

F={F:U — F forsomeU € U}

1 2 5 1 2 2 5
O decompose
_—
4 3 6 4 3 3 6

e It remains to show minpe r w(F) < 0 whp

Jiaming Xu (Duke) Recovery Threshold for TSP LP 26



Step 3: Counting and large deviation arguments

Fiy = 1{F € F : E(F) consists of k double edges and ¢ single edges }

Lemma

For any k > 0 and ¢ > 3. With probability at least 1 — n=©k+0),

Jpax (w(F) —Ew(F)]) <(1+¢€) (2k+ 1) \/logn
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Step 3: Counting and large deviation arguments

Fiy = 1{F € F : E(F) consists of k double edges and ¢ single edges }

Lemma

For any k > 0 and ¢ > 3. With probability at least 1 — n~®k+0),

Jpax (w(F) —Ew(F)]) <(1+¢€) (2k+ 1) \/logn

Remarks

e Total: 2k + ¢ edges, half red half blue.
e Weights on red edges ~ N (—p, 1); weights on blue edges ~ N (0, 1)

_2k’+€

w(F) ~N< w, 4k+£>
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Real-data experiment

e 1000 DNA contigs of size 100 kbps
e 0.45 million Chicago cross-links

e Subsample each cross-link with probability p
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Homosapiens [Putnam et al 16, Genome Research]
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Conclusion and remarks

1*/logn

R o'd

4 6

IT limit/F2F greedy thresholding
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https://arxiv.org/abs/1804.05436

Conclusion and remarks

Z.l (.5 ©?/logn

R o'd

IT limit/F2F greedy thresholding
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