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Mathematical problem: Hidden Hamiltonian cycle model

• Given a weighted undirected complete graph on n vertices

• Latent: a Hamiltonian cycle C∗

• Edge weight

We
ind.∼

{
P e ∈ C∗

Q e /∈ C∗

• Goal: observe W , recover C∗ with high probability

Remarks:

• For this talk, Q = N(0, 1) and P = N(µ, 1), so that

W = µ · adj matrix of C∗︸ ︷︷ ︸
“signal”

+ noise

• Hidden Hamiltonian cycle planted in Erdös-Rényi graph
[Broder-Frieze-Shamir ’94]
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Motivation: Link information in Chicago datasets

1 Reconstitute chromatin in vitro upon naked DNA

2 Produce cross-links by fixing chromatin with formaldehyde

AGCTCGACTTGCAATTTCCGAGCTATGGCCAGTACTGCATACGGGCTTACGCGTAC

Chicago datasets generate cross-links among contigs [Putnam et al. ’16 ]

On average more cross-links exist between adjacent contigs
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Ordering DNA contigs with Chicago cross-links

DNA	Scaffolding

Reduces to traveling salesman problem (TSP)

Find a path (tour) that visits every contig exactly once with the
maximum number of cross-links
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Key challenges for DNA scaffolding with Chicago data

• Computational: TSP is NP-hard in the worst-case

• Statistical: spurious cross-links between contigs that are far apart

Key questions:

• How to efficiently order hundreds of thousands of contigs?

• How much noise can be tolerated for accurate DNA scaffolding?
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Mathematical model for DNA scaffolding
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Chicago dataset [Putnam et al. ’16]

P = Pois(λ1), Q = Pois(λ2)
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What is known information-theoretically

Maximum likelihood estimator reduces to TSP

X̂TSP = argmax
X
〈W,X〉

s.t. X is the adjacency matrix of some Hamiltonian cycle

Theorem (Sharp threshold)

If µ2 < 4 log n, exact recovery is information-theoretically impossible
If µ2 > 4 log n, MLE succeeds in exact recovery
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What is known algorithmically

• Spectral methods fail miserably:
I µ� n2.5 (spectral gap of cycle is too small)

µW = + Gaussian noise

• Thresholding method: µ >
√
8 log n

• Greedy merging [Motahari-Bresler-Tse ’13]: µ >
√
6 log n

• This talk: linear programming achieves sharp threshold

µ2

log n
> 4 : LP succeeds

µ2

log n
< 4 : Everything fails
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In general

Threshold determined by Battacharyya distance (a.k.a. Rényi divergence
of order 1

2):

B(P,Q) , −2 log
∫ √

dPdQ

LP succeeds when
B(P,Q)− log n→ +∞

optimal under mild assumptions
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Convex relaxations of TSP



Integer Linear Programming reformulation of TSP

X̂TSP = argmax
X
〈W,X〉

s.t.
∑
j

Xij = 2, ∀i

Xij ∈ {0, 1}∑
i∈I,j /∈I

Xij ≥ 2, ∀∅ 6= I ⊂ [n]

• The last constraint: subtour elimination
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Subtour LP

X̂SUB = argmax
X
〈W,X〉

s.t.
∑
j

Xij = 2, ∀i

Xij ∈ [0, 1]∑
i∈I,j /∈I

Xij ≥ 2, ∀∅ 6= I ⊂ [n]

• Replacing the integrality constraint with box constraint: SUBTOUR
LP relaxation [Dantzig-Fulkerson-Johnson ’54, Held-Karp ’70]

• Exponentially many linear constraints, nevertheless solvable using
interior point method
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F2F LP

X̂F2F = argmax
X
〈W,X〉

s.t.
∑
j

Xij = 2, ∀i

Xij ∈ [0, 1]

• Further dropping subtour elimination constraints =⇒ Fractional
2-factor (F2F) LP

• Extensively studied in worst case [Boyd-Carr ’99, Schalekamp-Williamson-van

Zuylen ’14]

• How it performs in our random instance?
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Optimality of Fractional 2-Factor LP

Theorem (Bagaria-Ding-Tse-Wu-X. ’18)

If µ2 − 4 log n→∞, then X̂F2F = X∗ with high probability.

Remarks

• Achieving the IT-limit µ2 = 4 log n

Jiaming Xu (Duke) Recovery Threshold for TSP LP 14
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Belief propagation

Max-Product Belief Propagation

mi→j(t) = wij − 2ndmax
6̀=j

{m`→i(t− 1)}

mi→j(0) = wij

After T iterations, for each vertex i, keep the two largest incoming
messages m`→i(T ) and delete the rest.

• BP is exact provided the optimal solution of F2F is integral
[Bayati-Borgs-Chayes-Zecchina ’11]

• It can be shown that T = O(n2 log n) whp
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Theoretical analysis of convex relaxation



Primal approach vs Dual approach: high level

• Dual argument:
I Construct dual witness that certify the ground truth whp (KKT

conditions)

I Successful in proving SDP relaxation attaining sharp threshold for
graph partitions: community detection, densest subgraph, etc
[Abbe-Bandeira-Hall ’14, Hajek-Wu-X. ’14,’15, Bandeira ’15, Perry-Wein ’15]

I Limitations: construction is ad hoc

• Primal argument:
I No feasible solution other than the ground truth has a better

objective value whp
I Key: for LP, can restrict to extremal points (vertices of the feasible

polytope)
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Dual approach

• KKT conditions (Farkas’ lemma): X̂F2F = X∗ ⇐⇒ ∃u ∈ Rn (dual
certificate):

ui + uj ≤Wij , for i ∼ j in C∗

ui + uj ≥Wij , for i 6∼ j in C∗

• One feasible choice of dual:

ui =
1

2
min{Wij : j ∼ i}

• This certificate shows correctness if µ2 > 6 log n (same as greedy
merging)

Jiaming Xu (Duke) Recovery Threshold for TSP LP 18
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Synthetic data experiment
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Primal approach

• Show whp for all extremal points X 6= X∗:

〈W,X〉 < 〈W,X∗〉

• F2F polytope: X ∈ [0, 1]n×n :

n∑
j=1

Xij = 2


• The proof heavily exploits the characterization of extremal points

I F2F polytope is not integral: fractional vertices exist

I Characterization [Balinski ’65]: for any vertex X of F2F polytope

• Half integrality
Xij ∈ {0, 1/2, 1}

• 1/2’s form disjoint odd cycle connected by path of 1’s.
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Proof of correctness for F2F LP



Proof Outline

1 Encode the solution: for any extremal point X, represent
2(X −X∗) as a bicolored multigraph GX

w(GX) = 〈W, 2(X −X∗)〉

2 Divide and conquer: decompose GX as edge-disjoint union of
graphs in some family F

w(GX) =
∑
i

w(Fi), Fi ∈ F

3 Counting: Show that whp w(F ) < 0 for all F ∈ F
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Step 1: Bicolored multigraph representation

11 1

1
2

1
2

1 1

1 1

X∗: true cycle

1
2

1
2

1
2

1
2

X: extremal solution

=⇒

GX

key observation

GX is always balanced: red degree = blue degree
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Step 2: Edge decomposition

Theorem (Kotzig ’68)

Every connected balanced bicolored multigraph has an alternating
Eulerian circuit.

Remarks

• An Eulerian circuit may traverse a double edge twice

“Dumbbell” structure
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Step 2: Edge decomposition

U : collection of graphs recursively constructed

1 Start with an even cycle in alternating colors

2 Blossoming procedure: At each step, contract an edge in any
cycle and attach a flower (alternating path of double edges followed
by an alternating odd cycle)

Obtained by starting with an 10-cycle and blossoming 3 times

However, not every GX is of this form...
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cycle and attach a flower (alternating path of double edges followed
by an alternating odd cycle)

Obtained by starting with an 10-cycle and blossoming 3 times

However, not every GX is of this form...

Jiaming Xu (Duke) Recovery Threshold for TSP LP 25



• Graph homomorphism φ : U → F is a vertex map that preserves
edges and edge multiplicity
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Lemma (Decomposition)

Every balanced bicolored multigraph G with edge multiplicity at most 2
can be decomposed as an edge-disjoint union of graphs in

F = {F : U → F for some U ∈ U}

21

34

5

6
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• It remains to show minF∈F w(F ) < 0 whp
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Step 3: Counting and large deviation arguments

Fk,` = {F ∈ F : E(F ) consists of k double edges and ` single edges }

Lemma

For any k ≥ 0 and ` ≥ 3. With probability at least 1− n−Θ(k+`),

max
F∈Fk,`

(w(F )− E [w(F )]) ≤ (1 + ε) (2k + `)
√
log n

Remarks

• Total: 2k + ` edges, half red half blue.

• Weights on red edges ∼ N (−µ, 1); weights on blue edges ∼ N (0, 1)

w(F ) ∼ N
(
−2k + `

2
µ, 4k + `

)

Jiaming Xu (Duke) Recovery Threshold for TSP LP 27



Step 3: Counting and large deviation arguments

Fk,` = {F ∈ F : E(F ) consists of k double edges and ` single edges }

Lemma

For any k ≥ 0 and ` ≥ 3. With probability at least 1− n−Θ(k+`),

max
F∈Fk,`

(w(F )− E [w(F )]) ≤ (1 + ε) (2k + `)
√
log n

Remarks

• Total: 2k + ` edges, half red half blue.

• Weights on red edges ∼ N (−µ, 1); weights on blue edges ∼ N (0, 1)

w(F ) ∼ N
(
−2k + `

2
µ, 4k + `

)
Jiaming Xu (Duke) Recovery Threshold for TSP LP 27



Real-data experiment

• 1000 DNA contigs of size 100 kbps

• 0.45 million Chicago cross-links

• Subsample each cross-link with probability p
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Homosapiens [Putnam et al 16, Genome Research]
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Conclusion and remarks
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