On the Value of Dynamic Pricing

7th Annual INFORMS Revenue Management and Pricing Section Conference
June 28 & 29, 2007

Miguel Sousa Lobo
Duke University, Fuqua School of Business, mlobo@duke.edu
Is there value in dynamic pricing?

Empirical observation:
Widely used in some industries, non-existent in others.
Is it only due to institutional inertia, business constraints (operational, advertising, legal)?

Literature:
Different models, wide difference in reported value (from numerical simulations).
What does ‘dynamic pricing’ mean? Change selling price…

…for reasons other than uncertainty about the demand model:

● Deterministic: Seasonal pricing, product lifecycle management, skimming (segmentation over time), penetration pricing

● Pricing for capacity: To deal with variability in demand

…to deal with uncertainty about the demand model:

● Model learning: Bayesian updating

● Price exploration: Sacrifice short-term revenue for informativeness

…by mechanisms other than posted price (auctions, etc.)
Dynamic pricing here:

Changing a posted price over time to deal with uncertainty in demand.

This uncertainty can be either

period-specific uncertainty (change price to manage capacity), or
model uncertainty (change price due to learning or in order to learn).
Outline

• Model, problem typology
 – Capacitated vs. uncapacitated
 – Magnitude uncertainty vs. elasticity uncertainty

• Learning, informativeness, value of information, bounds

• Policy recommendations/predictions for each of the four cases
Uncapacitated

Period $k = 1, 2, \ldots, T$ (here $T = 2$)

Price p_k

Demand X_k

$$\text{maximize } \mathbb{E} \sum_{k=1}^{T} p_k X_k \quad \text{ (over adapted } p_k)$$

Capacitated

Inventory on-hand Y_k (initial inventory Y_1)

$$\text{maximize } \mathbb{E} \sum_{k=1}^{T} p_k (X_k \wedge Y_k) \quad \text{ (over adapted } p_k)$$

where $Y_{k+1} = Y_k - (X_k \wedge Y_k)$
Model uncertainty and period-specific uncertainty

Model uncertainty, $\theta : \Omega \rightarrow \Theta$ ($\Theta = \{1, 2\}$ for two realizations)
Period-specific uncertainty, ξ_k

$X_k : \Omega \rightarrow \mathbb{N}_0$, measurable $\sigma(p_k, \theta, \xi_k)$
X_k auto-correlated through model uncertainty
Conditional on model realization, demand is independent over time

Period-Specific Uncertainty

Here: $X_k|p_k, \theta \sim \text{Poisson}(\lambda(\theta(p_k)))$

$$\lambda(\theta(p_k)) = \mathbb{E}_{\xi_k}(X_k|p_k, \theta)$$

$$\lambda(p_k) = \mathbb{E}_{\theta}\lambda(\theta(p_k))$$
Model Uncertainty

Linear (or locally linearized) response to price

$$\lambda_\theta(p_k) = b_\theta - a_\theta p_k.$$

Two-parameter model, need to consider joint distribution of a_θ and b_θ. Are all directions for the uncertainty in the vector (a, b) equivalent?

Simplest model that preserves key features:

- Two time periods.
- Two equally-probable model realizations, each linear,
 $$\lambda_1 = b_1 - a_1 p \text{ and } \lambda_2 = b_2 - a_2 p.$$

How does shape of joint distribution impact:

- The cost and ability to learn about θ (cost in immediate revenue)?
- The value of learning about θ (reward in future revenue)?

And how does this interact with capacitated vs. uncapacitated?
Magnitude, or multiplicative uncertainty \[\lambda = (b - ap)(1 \pm \varepsilon) \]

Consumer response to price is known, uncertainty about market size.

Number of potential customers is uncertain.

Distribution of willingness-to-pay is known (uniform for linear).
Elasticity uncertainty \[\lambda = \lambda_0 - a(1 \pm \varepsilon)(p - p_0) \]

Mean demand is well known at some historical price (assumed to be the myopic-optimal price), response to price changes is uncertain.

Common structure:

Uncertainty about both market size and consumer response \[\Rightarrow \sim \text{two-dimensional uncertainty} \]

Uncertainty at a given price removed by repeated pricing at that level \[\Rightarrow \sim \text{one-dimensional uncertainty} \]
Learning

θ is the common uncertainty accross periods

Prior model probability: $P(\theta = 1) = P(\theta = 2) = \frac{1}{2}$

Posterior model probability: $\psi(p, x) = P(\theta = 1|p_1 = p, X_1 = x)$

Bayesian updating:

$$\psi(p, x) = \frac{P(x|p, \theta = 1)P(\theta = 1)}{P(x|p, \theta = 1)P(\theta = 1) + P(x|p, \theta = 2)P(\theta = 2)}$$

$$= \frac{\frac{\lambda_1^x}{x!}e^{-\lambda_1}}{\frac{\lambda_1^x}{x!}e^{-\lambda_1} + \frac{\lambda_2^x}{x!}e^{-\lambda_2}}.$$

Expectation of the posterior model probability

$$E_X \psi(p, X) = \frac{1}{2}, \text{ for any } p$$
Variance of the posterior model probability

Prior measure of the expected informativeness of the observation.

Mean demand given price \(p \) under each model realization

\[
\lambda_1(p) = \mathbb{E}_X(X|p, \theta = 1) \quad \lambda_2(p) = \mathbb{E}_X(X|p, \theta = 2)
\]

Write \(\lambda_1 = \lambda - \frac{1}{2} \delta \sqrt{\lambda} \) and \(\lambda_2 = \lambda + \frac{1}{2} \delta \sqrt{\lambda} \)

(with Poisson, \(\delta \) is the ratio between the separation of the means and the average standard deviation: \(\delta = \Delta \lambda/\sigma \))

\[
\text{Var}_X \psi(p, X) = \frac{1}{8} \sum_{x=0}^{\infty} \frac{\lambda^x}{x!} e^{-\lambda} \left(\frac{(1 - \frac{\delta}{2\sqrt{\lambda}})xe^{\frac{1}{2}\delta \sqrt{\lambda}} - (1 + \frac{\delta}{2\sqrt{\lambda}})xe^{-\frac{1}{2}\delta \sqrt{\lambda}}}{(1 - \frac{\delta}{2\sqrt{\lambda}})xe^{\frac{1}{2}\delta \sqrt{\lambda}} + (1 + \frac{\delta}{2\sqrt{\lambda}})xe^{-\frac{1}{2}\delta \sqrt{\lambda}}} \right)^2
\]

with \(\lambda \) and \(\delta \) functions of \(p \)
Bounds on $\text{Var}_X \psi(X)$

$$\frac{1}{4} \left(1 - e^{-\frac{1}{4}\delta^2}\right) \leq \text{Var}_X \psi(X) \leq \frac{1}{2} \left(\frac{1}{1 + e^{-\delta^2}} - \frac{1}{2}\right).$$

The upper bound is from lower limit on Poisson rate, highest variance for a given δ.

The lower bound is given by variance with Gaussian (upper limit on Poisson rate), then lower bound on Gaussian variance.

Can also do polynomial approximations and bounds:

$$\text{Var}_X \psi(X) = \frac{1}{8}\delta^2 - \frac{1}{24}\delta^4 + O(\delta^6)$$
Myopic Price

Uncapacitated: \[p_k = \frac{\hat{b}_{k-1}}{2\hat{a}_{k-1}} \]

Capacitated: \[p_k = \frac{\hat{b}_{k-1} - Y_k/(T - k + 1)}{\hat{a}_{k-1}} \]

Expected Cost of Deviation from Myopic Price in First Period

\[\Delta R_1 = -\hat{a} (\Delta p_1)^2, \quad \text{where} \quad p_1 = \frac{\hat{b}}{2\hat{a}} + \Delta p_1 \]
Expected Value of Information in Second Period

For each case: compute expected increase in second-period revenue as a function of first-period price informativeness.

Example: for uncapacitated w/ elasticity uncertainty, the expected second-period gain as a function of first-period price informativeness is

\[
\frac{\Delta R_i}{\mathbb{E}R_0} = \left(\frac{\Delta a}{2} \right)^2 \text{Var } \psi + \text{h.o.t.}
\]

more precisely:

\[
\frac{1}{1 - \left(\frac{\Delta a}{2} \right)^2} \leq \frac{\Delta R_i/\mathbb{E}R_0}{\left(\frac{\Delta a}{2} \right)^2 \text{Var } \psi} \leq \frac{1}{\left(1 - \left(\frac{\Delta a}{2} \right)^2 \right)^2}
\]
Four cases

<table>
<thead>
<tr>
<th></th>
<th>Magnitude uncertainty</th>
<th>Elasticity uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncapacitated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>max. $E \sum_{k=1}^{T} p_k X_k$</td>
<td>Case 1</td>
<td>Case 2</td>
</tr>
<tr>
<td>Capacitated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>max. $E \sum_{k=1}^{T} p_k (X_k \land Y_k)$</td>
<td>Case 3</td>
<td>Case 4</td>
</tr>
</tbody>
</table>
Case 1: Uncapacitated w/ Magnitude Uncertainty

\[p^*_{\theta=1} = p^*_{\theta=2} = \frac{1}{2} \frac{b_1}{a_1} = \frac{1}{2} \frac{b_2}{a_2} \]

Optimal price independent of \(\theta \) \(\Rightarrow \) Information has no value

Uncapacitated \(\Rightarrow \) No need to adjust price to manage capacity

Static price is optimal
Case 2: Uncapacitated w/ Elasticity Uncertainty

Assume historical pricing is consistent with beliefs
⇒ Confounding price equals myopic-optimal price

\[\lambda = q_0 - \frac{q_0}{p_0} (1 \pm \varepsilon)(p - p_0) \]

the price elasticity of demand is

\[e = \frac{dq}{q} \frac{1}{dp/p} = -\frac{q_0}{p_0} \frac{p}{q} \]

so that at \(p_0 \) we have \(e = -1 \).
No learning at confounding price.

Deviation from myopic price allows for learning, which allows for more accurate pricing in second period, which leads to higher expected revenue.

Too large a deviation: better learning, but too high cost in first period, overall loss in expected revenue.
By comparing lower-order terms in Δp_1 (and using concavity of higher-order terms), we find it is optimal to deviate from static price when model uncertainty is high and period-specific variance is low:

$$(\Delta e)^2 > \sqrt{2} p^* \left(\frac{\sigma}{\lambda} \right)^3$$

with $\Delta e = \Delta a/(2a)$ the uncertainty in the price elasticity of demand. Approximations and bounds for:

- Optimal price exploration (magnitude of deviation from myopic)

![Graph showing relationship between Δp and σ^2.]

- Expected gain from dynamic pricing, etc.
Case 3: Capacitated w/ Magnitude Uncertainty

Changing the price results in small changes in δ

\Rightarrow Deviations from myopic price provide minimal gain in learning.

Deviations have significant cost \Rightarrow Myopic price is nearly optimal.

In 2nd period: update model estimate, price for remaining capacity.

(Exact with modified model where $\delta(p) = \frac{\Delta \lambda}{\sqrt{\lambda}}$ is constant.)
Case 4: Capacitated w/ Elasticity Uncertainty

Assume demand well-known at myopic price, $p = (Y/T - b)/a$.

Confounding quantity is initial capacity divided by number of time periods.
If period-specific variance is low, little value in learning
 • Second period capacity will be near confounding quantity
 • Model information has low value

If period-specific variance is high, learning is too costly
 • λ is small, δ is small unless price deviation is large
 • Learning requires large deviations, high cost

\Rightarrow Never optimal to deviate
Policy recommendations/predictions

<table>
<thead>
<tr>
<th>Uncapacitated</th>
<th>Magnitude uncertainty</th>
<th>Elasticity uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>max. $E \sum_{k=1}^{T} p_k X_k$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static pricing</td>
<td></td>
<td>Price exploration (active learning)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitated</th>
<th>Pricing for capacity (passive learning)</th>
<th>Pricing for capacity (no learning)</th>
</tr>
</thead>
<tbody>
<tr>
<td>max. $E \sum_{k=1}^{T} p_k (X_k \land Y_k)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

23
Other possible extensions

Optimal timing of the price move
- 1st period of length τ, 2nd period $T - \tau$ (τ chosen at $t = 0$)
- Compute approximations, tight bounds for optimal τ
- Example, uncapacitated with elasticity uncertainty:
 - as exploration becomes more valuable $\tau \to 0$,
 - as exploration becomes less valuable $\tau \to T/2$,
 - hence no impact on conditions for exploration to be of value

Multiple periods
- Generally hard problem, maybe extend bounds for some cases?
- Continuous time?

Information loss, model drift

Value of reserving capacity (right not to sell), or τ as a stopping time