Market-Based Corrective Actions1

Philip Bond, University of Pennsylvania
Itay Goldstein, University of Pennsylvania
Edward Simpson Prescott,2 Federal Reserve Bank of Richmond

July 2008

1We thank Beth Allen, Franklin Allen, Mitchell Berlin, Alon Brav, Thomas Chemmanur, Douglas Diamond, Alex Edmans, Andrea Eisfeldt, Gary Gorton, Wei Jiang, Richard Kihlstrom, Rajdeep Sengupta, Annette Vissing-Jorgensen, an anonymous referee, and the editor (Paolo Fulghieri) for their comments and suggestions. We also thank seminar and conference participants at Arizona State, Boston University, CEMFI, Columbia, Cornell, Duke, the European Summer Symposium in Financial Markets (Gerzensee), the Federal Reserve Banks of Cleveland, New York, Philadelphia, and Richmond, the Federal Reserve Board, Goethe (Frankfurt), HEC Paris, IDEI (Toulouse), Imperial College, INSEAD, LSE, MIT, NYU, Northwestern, Princeton, Rutgers, SAET, SIFR (Stockholm), the University of Maryland, the University of Minnesota, the University of Pennsylvania, the University of Virginia, the Washington University Conference on Corporate Governance, the Western Finance Association, and Yale. This paper previously circulated under the title: “Market-Based Corrective Actions: The Case of Bank Supervision.”

2The views expressed in this paper do not necessarily reflect the views of the Federal Reserve Bank of Richmond or the Federal Reserve System.
Market-Based Corrective Actions

Abstract

Many economic agents take corrective actions based on information inferred from the market prices of firms’ securities. Examples include directors and shareholder activists intervening in the management of firms and bank supervisors taking actions to improve the health of financial institutions. We provide an equilibrium analysis of such situations in light of a key problem: if the agent uses market prices when deciding on a corrective action, prices adjust to reflect this use and potentially become less revealing. We show that there is a strong complementarity between market information and the agent’s information, so that a market-based corrective action leads to the agent’s preferred outcome only when the information gap is not too large. We demonstrate that the type of security being traded matters, and discuss other measures that can increase the efficiency of learning from the market.
1 Introduction

An established view in financial economics is that financial-market prices provide useful and important information about firms’ fundamentals. The idea, going back to Hayek (1945), is that financial markets collect the private information and beliefs of many different people who trade in firms’ securities, and hence provide an efficient mechanism for information production and aggregation. A large body of empirical evidence demonstrates the ability of financial markets to produce information that accurately predicts future events. One of the most cited examples is provided by Roll (1984), who suggests that orange juice futures predict the weather better than the National Weather Service.

Given this basic premise, it is not surprising that many economic agents take actions (or are encouraged to take actions) driven by the information that is summarized in market prices. In corporate governance, it is widely believed that low market valuations trigger the replacement of CEOs by the board of directors or attract various actions by shareholder activists. In bank supervision, regulators are frequently encouraged to learn from market prices of bank securities before making an intervention decision. Even corporate managers are believed to be influenced by market prices of their firms’ securities when making a decision to invest or acquire another firm.

Our paper deals with a fundamental theoretical issue that needs to be considered when market-based actions are discussed or advocated. Since market prices are forward looking, they reflect information, not only about firms’ fundamentals, but also about the resulting actions of various agents (i.e., directors, activists, regulators, or managers). In some cases, this considerably complicates the inference of information from the price. Let us consider the example of a board of directors that is deciding whether to replace a CEO. If the board knows that the CEO is of low quality they will replace him. This corrective action will benefit the shareholders of the firm and thus increase the price of its shares. So inferring information from the price about the quality of the CEO is a challenge: a moderate price may indicate either that the CEO is bad and that the board is expected to intervene and replace him, or that the CEO is not bad enough to justify intervention.
We provide a theoretical analysis of such a situation in a general framework. Specifically, we characterize the rational-expectations equilibria of a model in which the price of a firm’s security both affects and reflects the decision of an agent on whether to take an action that affects the value of the firm. Our focus is on the theoretically challenging, yet empirically relevant, case described above, i.e., where the price exhibits non-monotonicity with respect to the fundamentals due to the positive effect that the agent’s corrective action (taken when the fundamentals are bad) has on the value of the firm’s security. In this case, learning from the price is complicated by the fact that two or more fundamentals may be associated with the same price. The equilibrium analysis, in turn, becomes quite challenging given that the price has to reflect the expected action, which depends on the price in a non-trivial way.

Before describing the results of our analysis, let us explain the relation between our model and existing literature. A key feature of our analysis is that prices in financial markets affect the real value of securities via the information they provide to decision makers. In this, our model is different from the vast majority of papers on financial markets, where the real value of securities is assumed to be exogenous (e.g., Grossman and Stiglitz (1980)). Our paper contributes to a growing literature that analyzes models in which an economic agent seeks to glean information from a market price and then takes an action that affects the value of the security – see, Fishman and Hagerty (1992), Khanna, Slezak, and Bradley (1994), Boot and Thakor (1997), Dow and Gorton (1997), Fulghieri and Lukin (2001), Goldstein and Guembel (2008), Bond and Eraslan (2008), and Dow, Goldstein and Guembel (2008).\footnote{See also Subrahmanyam and Titman (1999) and Foucault and Gehrig (2008) for models where the information in the price affects a corporate action, but this is not reflected in the price of the security, and Ozdenoren and Yuan (2008) where the effect of prices on real value is not due to information.}

The above papers, however, do not consider the main case of interest in our model, where the price function is non-monotone with respect to the fundamentals, and thus the inference from the price is complicated by the fact that one price can be consistent with two or more fundamentals. Hence, all these other papers are nested as a special case of our model, the analysis of which is summarized in Section 3.1, where the price function is monotone.
Perhaps the only theoretical mention of the problem we focus on here is made by Bernanke and Woodford (1997) in the context of monetary policy. They observe that if the government tries to implement a monetary policy that is based on inflation forecasts, it might lead to non-existence of rational-expectations equilibria.\footnote{For a similar observation in the context of bank supervision, see the recent working paper by Birchler and Facchinetti (2007).} Our analysis goes much beyond this basic observation. In particular, by studying a richer model, we are able to demonstrate under what conditions an equilibrium exists, and to characterize the informativeness of the price and the efficiency of the resulting corrective action when an equilibrium does exist. Thus, we make a first step in analyzing the equilibrium results of a very involved problem, where the use of market data is self defeating in the sense that the reflection of the expected market-based action in the price destroys the informational content of the price.

Turning to the results of our equilibrium analysis, we show that a key parameter in the characterization of equilibrium outcomes is the quality of the information held by the agent making the corrective-action decision. When the agent has relatively precise information, he is able to learn from market prices and implement his preferred intervention rule as a unique equilibrium. When the agent’s information is moderately precise, additional equilibria exist in which the agent intervenes either too much, or too little. Interestingly, in this range, the type of equilibrium – i.e., whether there is too much or too little intervention – depends on whether the traded security has a convex payoff (equity) or a concave payoff (debt). Finally, when the agent’s information is imprecise, he is unable to implement his preferred intervention strategy in equilibrium.

Our analysis generates several normative implications for market-based corrective actions. First and foremost, we demonstrate that there is a strong complementarity between an agent’s direct sources of information and his use of market data. An agent’s direct sources of information are crucial for the efficient use of market data. This implication is derived despite the fact that our model endows the market with perfect information about the fundamentals. The role of the agent’s own information in our model is thus to enable him to tell whether movements in the price are due to changes in fundamentals or changes
in expectations regarding the agent’s own action. Second, we analyze other measures that help the agent implement his preferred market-based intervention policy, even when the information gap between the market and the agent is not small. These measures include tracking the prices of multiple traded securities, revelation of the agent’s information (transparency or disclosure), and introducing a security that pays off in the event that the agent takes a corrective action (a prediction market).

Our paper also offers several positive implications. Our leading applications have been the subject of wide empirical research trying to detect the relation between market prices and the resulting actions. Our paper suggests that the quality of information of agents outside the financial market and the shape of the security, whose price is observed, are key factors affecting the relation between the price and the resulting action. In addition, we argue that two key features of our theory have to be taken into account in empirical research on market-based intervention. First, if agents use the market price in their intervention decision, there will be dual causality between market prices and the intervention decision. In the context of shareholder activism in closed-end funds, Bradley, Brav, Goldstein, and Jiang (2008) conduct empirical analysis that indeed takes into account this dual causality. Failing to account for the dual causality will produce results that appear as just a weak relation between prices and actions. Second, when the information that agents have outside the financial market is not precise enough, our model generates equilibrium indeterminacy, which might make the relation between market prices and intervention more difficult to detect.

The remainder of the paper is organized as follows. In Section 2, we present the general model and discuss its various applications. Section 3 provides a characterization of equilibrium outcomes as a function of the information gap between the market and the agent. In Section 4, we discuss robustness issues and extensions of the basic model. Section 5 studies ways to improve the efficiency of learning from the market. Section 6 concludes. All proofs are relegated to Appendix A.
2 The model

The model has one firm, an agent, and a financial market that trades a security of the firm. There are three dates, \(t = 0, 1, 2 \). At date 0, the price of the security is determined in the market. At date 1, the agent may take an action (intervene) that affects the value of the firm. At date 2, security holders are paid. As we discuss in the introduction, this is a general framework that can capture various situations where an agent seeks information from a security price in order to decide whether to take an action that ultimately affects the value of the security. We first describe the set-up of the general model and define an equilibrium. Then, we discuss in more detail some possible applications involving corporate governance, bank supervision, and managerial investment decisions.

2.1 The general set-up

The firm: In the absence of intervention, the firm’s assets generate a gross expected cash flow of \(\theta \) at date 2. We will often refer to \(\theta \) as the fundamental of the firm. The fundamental \(\theta \) is stochastic and is realized at date 0. Throughout, we assume that the fundamental \(\theta \) is drawn uniformly from some interval \([\underline{\theta}, \bar{\theta}]\).

Different types of investors may have claims on the firm’s cash flows. These include depositors (in case of a bank), debt holders, and equity holders. Most of our applications deal with agents learning from the price of the firm’s equity. Hence, we will be primarily interested in the value of the firm’s equity and will elaborate on this below.

The agent: We model the agent as having the opportunity to intervene in the firm’s business at date 1. If the agent intervenes, the firm’s date 2 expected cash flow increases by an amount \(T(\theta) \). Thus, when \(T(\theta) > 0 \) intervention is a corrective action. We assume that \(T(\theta) \) is weakly decreasing in \(\theta \). That is, the benefit from the agent’s intervention is high when the firm’s fundamentals are low. This is a natural assumption reflecting the idea that there is more room for improvement when the state is bad. Still, \(\theta + T(\theta) \) is increasing

\[\text{\footnotesize3} \text{Although we model intervention as a binary decision, we do allow for probabilistic intervention. However, since we will also require that the agent’s decision be time-consistent (see below), probabilistic intervention rarely occurs.} \]
in θ, that is, in the presence of intervention, the total expected cash flow available to the firm is increasing in fundamentals.

When deciding whether to intervene, the agent weighs the cost against the benefit. We assume a fixed cost of intervention C, which is borne by the agent.\(^4\) The benefit of intervention for the agent is denoted as $V(\theta)$, which is decreasing in θ. Assuming that the benefit of intervention is higher than the cost when fundamentals are very low and lower than the cost when fundamentals are very high, that is, $V(\theta) > C > V(\bar{\theta})$, there is a unique $\hat{\theta} \in [\underline{\theta}, \bar{\theta}]$ at which the agent is indifferent between intervening and not intervening, i.e., $V(\hat{\theta}) = C$. For fundamentals below (above) $\hat{\theta}$, a fully informed agent would strictly prefer to intervene (not intervene).

One simple way to think about the agent’s problem is that he is interested in maximizing total surplus. In this case, V coincides with T and the agent only wishes to intervene when $T(\theta)$ is greater than C. There are also other interpretations in which $V \neq T$. We will elaborate on this issue when we discuss the possible applications of our model.

The value of the security: An anticipated intervention by the agent affects the value of the traded security and is reflected in the security’s date-0 price. We let $X(\theta)$ denote the value of the security absent intervention. Note that $X(\theta)$ is strictly increasing in the fundamental θ. We denote the expected value of intervention for the security holders as $U(\theta)$. Intervention affects the value of the security through its effect on the firm’s cash flows, i.e.,

$$U(\theta) = X(\theta + T(\theta)) - X(\theta).$$

\(^1\)

Information: A key point in our analysis is that the agent does not know θ, and may learn it from the market price of the firm’s security. We assume that the realization of θ is known in the market at date 0, and that it serves as a basis for the price formation. In addition, at date 0, the agent observes a noisy signal of θ: $\phi = \theta + \xi$. We assume that ξ, the noise with which the agent observes the fundamental, is uniformly distributed over $[-\kappa, \kappa]$, and that ϕ is not observed by the market.\(^5\)

\(^4\)Having a fixed cost C is not necessary for our analysis. The only thing that we will need is that C is not decreasing too fast in θ.

\(^5\)The general nature of the inference problem studied in our paper does not depend on the assumption
One limitation of our information structure is that it assumes that the agent always knows less than the information collectively possessed by market participants (i.e., the information of market participants aggregates to θ, while the agent only observes a noisy signal of θ). This assumption helps simplify the analysis and exposition in the paper, without harming its main goal, which is to analyze equilibrium outcomes when the agent learns from the market. In Section 4, we discuss the robustness of our model to this assumption and consider an extension in which the agent sometimes has more information than the market.

2.2 Equilibrium

2.2.1 Market price

When making his intervention decision, the agent possesses two pieces of information: his own signal ϕ and the observed price of the firm’s security P. An intervention policy is thus a function $I(P, \phi)$, where $I \in [0, 1]$ is the probability of intervention.

For a given intervention policy $I(\cdot, \cdot)$, the price of the security incorporates the intervention probability. Specifically, the equilibrium pricing function P satisfies the rational expectations equilibrium (REE) condition

$$P(\theta) = X(\theta) + E_\theta [I(P(\theta), \phi) | \theta] U(\theta) \text{ for all } \theta \in [\underline{\theta}, \bar{\theta}].$$

(2)

The first component in this expression is the expected value of the security absent intervention given the fundamental θ. The second component is the additional value stemming from the possibility of intervention, the probability of which depends on the price $P(\theta)$ and the agent’s own signal ϕ. that the noise in the agent’s signal is uniformly distributed. It only depends on having some noise in the agent’s signal and on the non-monotonicity of the price with respect to the fundamentals (to be explained later). However, the details of the analysis do make use of the uniformity assumption.
2.2.2 Time consistency

For most of the analysis (Section 5.4 is the exception), we also require the agent’s intervention policy to constitute a “best response” to the market price. That is, we require the intervention policy to be *time consistent*. This implies that the agent intervenes with probability 1 when the expected benefit from intervention is greater than the cost and intervenes with probability 0 when the expected benefit is smaller than the cost. Thus, under time consistency, I is either 0 or 1, except for the case in which the expected benefit is exactly equal to the cost. In this case, the agent may choose to play a mixed strategy.

For a given pricing function $P(\cdot)$, the observation of a particular price P_t tells the agent that the market observed a fundamental θ_0 such that $P(\theta_0) = P_t$. Formally, the intervention policy $I(\cdot, \cdot)$ is time consistent given a pricing function $P(\cdot)$, when for all equilibrium realizations $(\hat{P}, \hat{\phi})$ of the price-signal pair,

$$I(\hat{P}, \hat{\phi}) = \begin{cases} 1 & \text{if } E_{\theta} [V(\theta) | P(\theta) = \hat{P} \text{ and } \hat{\phi}] > C \\ 0 & \text{if } E_{\theta} [V(\theta) | P(\theta) = \hat{P} \text{ and } \hat{\phi}] < C \end{cases}.$$ (3)

(Note that if the expected value of intervention exactly equals the cost C, any probability of intervention is time consistent.)

2.2.3 Equilibrium definition

The formal definition of an equilibrium is as follows:

Definition 1 A pricing function $P(\cdot)$ and an intervention policy $I(\cdot, \cdot)$ together constitute an equilibrium if they satisfy the REE condition (2) and the time-consistency condition (3).

2.3 Applications

Before turning to the analysis of the model, let us describe our leading applications.
2.3.1 Corporate governance

The term corporate governance covers actions taken by various economic agents aiming to control corporate managers and ensure that they are acting in the best interest of shareholders. The idea that market valuations of firms’ securities are important for corporate governance has been long recognized. For example, Jensen and Meckling (1979) write:

“The existence of a well-organized market in which corporate claims are continuously assessed is perhaps the single most important control mechanism affecting managerial behavior in modern industrial economies.”

Players in the corporate governance arena include the board of directors, shareholder activists, and others. A large empirical literature shows that these agents’ actions are correlated with market valuations, and this evidence is typically interpreted as indicating that market valuations affect actions. One of the most important decisions that has to be made by the board of directors is whether to replace an acting CEO. A large literature (e.g., Warner, Watts, and Wruck (1988), Jenter and Kanaan (2006), and Kaplan and Minton (2006)) on CEO replacement finds that low market valuations (which presumably indicate poor CEO performance) increase the incidence of CEO replacement. Low market valuation is also regarded as a key determinant of shareholder activism. For example, a large number of the events described by Brav, Jiang, Partnoy, and Thomas (2008) in their study on hedge-fund activism are triggered by a hedge fund’s belief that the firm’s market valuation is below its potential value (for a broad literature review on shareholder activism, see Gillan and Starks (2007)).

Corporate-governance actions can be easily mapped into our model. Let θ denote the expected cash flow of the firm absent a corrective action by the board of directors or by the activist, and $T(\theta)$, which is decreasing in θ, denote the change in expected cash flow as a result of taking the action. Let C denote the private cost that directors or activists have to bear when taking a corrective action. These costs can be quite significant. In the context of the board of directors replacing the CEO, C can represent a reputational cost or a loss of private benefit resulting from fighting against an acting CEO. Taylor (2008)
estimates the private cost borne by directors to be 5.6% of firm value, on average. In the context of shareholder activism, we are not aware of any formal estimate of the private costs borne by activists, but it is widely agreed that shareholders, who wish to intervene in the firm’s business, have to incur significant costs to cover legal battles and convince other shareholders to vote for their proposal (see e.g., Gillan and Starks (2007)). In the model, the corrective action is taken if, in expectation, the benefit to the agent, \(V(\theta) \), is greater than the cost \(C \). A common assumption is that the board of directors maximizes total surplus, i.e., that it wishes to replace the CEO if the benefit of doing this, \(T(\theta) \), is greater than the cost \(C \). Hence, in this context, \(V(\theta) \) coincides with \(T(\theta) \). In the context of shareholder activism, activists care about their own profits, and hence \(V(\theta) \) is different from \(T(\theta) \). Our model applies provided that the benefit that activists derive from activism \(V(\theta) \) increases in the degree to which activism improves the firm’s fundamentals, i.e., decreases in \(\theta \).

2.3.2 Bank supervision

In the United States, a bank regulator who believes that a bank is performing poorly possesses a variety of mechanisms by which he can attempt to improve the bank’s health. These range from encouraging bank management to correct identified problems to formal agreements that restrict capital distributions and management fees, limit bank activities, or even dismiss senior officers or directors. Furthermore, regulators can lend to a bank if it is having trouble borrowing in the interbank market for liquidity or other reasons. Under some circumstances, these regulatory actions are even mandated by the prompt corrective action provisions in the Federal Deposit Insurance Corporation Improvement Act of 1991.7

6 If instead a board maximizes its own welfare, and owns a fraction \(\alpha \) of the firm’s equity, then \(V \) is simply equal to \(\alpha T \), and our model still applies.

7 As an example of the type of actions that US regulators may take, consider the following 2002 written agreement with PNC bank, which was instigated by accounting irregularities. To ensure that PNC implemented among other things the necessary risk management systems and internal controls, the bank was required to hire an independent consultant to “review the structure, functions, and performance of PNC’s management and the board of directors oversight of management activities The primary purpose of the [review] shall be to assist the board of directors in the development of a management structure that is adequately staffed by qualified and trained personnel suitable to PNC’s needs.” (Board of Governors of
As Feldman and Schmidt (2003) and Burton and Seale (2005) document, bank supervisors in the United States make substantial use of market information in assessing a bank’s condition. Moreover, many proposals call for strengthening the reliance on market data. For example, a recent proposal suggests requiring banks to regularly issue subordinated debt, partly so that supervisors could use the price of debt to monitor the health of issuing banks (see Evanoff and Wall (2004) and Herring (2004)). This proposal is based in part on evidence that bank security prices reflect underlying risk and contain information that regulators do not have – see, for example, Krainer and Lopez (2004) and the surveys by Flannery (1998) and Furlong and Williams (2006). In a similar fashion, Gary Stern, the President of the Federal Reserve Bank of Minneapolis, argued that market data could complement supervisory assessments because it is generated “on a nearly continuous basis” by “a very large number of participants [who] have their funds at risk of loss,” and is “nearly free to supervisors.”

The mapping to our model is again straightforward. One simple interpretation of our model in the context of bank supervision is that the supervisor is interested in maximizing total surplus. By intervening in the bank’s business, he can increase the expected cash flows by $T(\theta)$ (which coincides here with $V(\theta)$), but he also has to bear a private cost of C. Hence, he wishes to intervene if and only if $T(\theta)$ is greater than C. Another way to think about the regulator’s problem is that he is interested in protecting depositors, and thus will intervene only when the probability that the bank will not have enough resources to pay depositors is high. In this case, $V(\theta)$ is clearly different from $T(\theta)$: $V(\theta)$ represents the benefit to the deposit insurer from intervention, while $T(\theta)$ is the change in total expected

8See: http://www.minneapolisfed.org/pubs/region/01-09/stern.cfm
9Note that although the expected payout of a deposit insurer is decreasing in θ, the reduction in the payout associated with intervention is not necessarily decreasing. However, one can show that under very mild assumptions V is either decreasing, or increasing then decreasing. Consequently, provided that the

For more details on actions that US regulators can take see Spong (2000). Appropriate regulation is the subject of a substantial literature, see, e.g., the recent paper of Morrison and White (2005) for one positive theory of bank regulation along with the references cited therein.
2.3.3 Managerial investment decisions

A growing empirical literature demonstrates that firm managers use information from the market price of their firms’ securities when making corporate investment decisions (see: Luo (2005), Chen, Goldstein and Jiang (2007), and Bakke and Whited (2008)). To fix ideas, let us concentrate on an acquisition decision. After a firm announces that it is going to acquire another firm, its stock price will react to reflect the beliefs in the market about whether the acquisition is a good idea or not. Luo (2005) provides evidence consistent with the idea that managers use the information in the reaction of the market to decide whether to cancel the acquisition.

In the language of our model, \(\theta \) can be thought of as the expected cash flow of the (potentially) acquiring firm, assuming that the acquisition goes through. The manager is the agent who can take a corrective action and cancel the acquisition. If the acquisition is cancelled, the cash flow of the firm will be \(\theta + T(\theta) \). However, if he cancels the acquisition, the manager will have to bear a private cost \(C \). This cost could represent a forgone private benefit of control that the manager could achieve if the acquisition took place, or a reputational cost that the manager bears if the acquisition is cancelled. Assuming that the benefit

\[V(\theta) > C \]

This is the only property of \(V \) that we use in our analysis. Details are contained in an earlier draft, and are available upon request.

In the world of regulation and policy making, learning from market prices occurs also outside the context of bank supervision. Piazzesi (2005) demonstrates the importance of accounting for the dual relation between monetary policy and market prices in explaining bond yields. Another example is the Sarbanes-Oxley Act of 2002. Section 408 of the act calls for the Securities and Exchange Commission to consider market data — namely, share price volatility and price-to-earnings ratios — when deciding whether to review the legality of a firm’s disclosures. A final example is class action securities litigation. Courts in the United States use share price changes as a guide for determining damages (see, e.g., Cooper Alexander (1994)).

Other theoretical papers study different dimensions of market-based regulation. Faure-Grimaud (2002), Rochet (2004), and Lehar, Seppi, and Strobl (2007) study the effect of market prices on a regulator’s commitment ability. Morris and Shin (2005) argue that transparency by the central bank may be detrimental as it reduces the ability of the central bank to learn from the market.
to the manager from cancelling the acquisition $V(\theta)$ coincides with the benefit to the firm $T(\theta)$ multiplied by the fraction of the firm owned by the manager, α say, the manager will only cancel the acquisition if he expects that $\alpha T(\theta)$ exceeds C.11

3 Equilibrium analysis of market-based corrective actions

We start by defining an important class of equilibria in which the agent can perfectly infer the market’s information.

Definition 2 A fully revealing equilibrium is an equilibrium in which each price is associated with one fundamental, and thus the fundamental can be inferred from the price. An equilibrium is essentially fully revealing if when a price is associated with more than one fundamental the agent can still distinguish among the different fundamentals based on his signal.

In both fully revealing and essentially fully revealing equilibria, the agent chooses his preferred action based on θ: he intervenes when θ is less than the cutoff value $\hat{\theta}$ and does not intervene when θ is above $\hat{\theta}$. Thus, we will often refer to fully revealing and essentially fully revealing equilibria as agent-preferred equilibria. Clearly, no other equilibrium has the agent’s preferred action with certainty, since the combination of the price and the agent’s signal in other equilibria does not enable the agent to infer θ perfectly.

From (1), the price function for the security under the agent’s preferred intervention rule is given by

$$P(\theta) = \begin{cases} X(\theta + T(\theta)) & \text{if } \theta < \hat{\theta} \\ X(\theta) & \text{if } \theta > \hat{\theta} \end{cases}$$

The main question we are interested in is whether an agent-preferred equilibrium exists and if it does, then whether it is the unique equilibrium outcome.

11The empirical analysis of Kau, Linck, and Rubin (2008) is consistent with managers considering both the market reaction to the acquisition announcement and their own private benefits from the acquisition when deciding whether or not to go ahead with the acquisition.
3.1 Monotone price function: $T(\hat{\theta}) \leq 0$

We start with a simple case where agent-preferred intervention is the unique equilibrium outcome, independent of the accuracy of the agent’s signal. This happens when intervention at $\hat{\theta}$ reduces the firm’s expected cash flow, i.e., $T(\hat{\theta}) \leq 0$. Some forms of intervention indeed fall within this case. A leading example in the context of bank supervision is a firesale liquidation of bank assets. Here, the regulator liquidates in order to ensure payment to depositors. This, however, reduces the cash flows to other claim holders and thus the value of their securities declines. The formal result for this case is in Proposition 1.

Proposition 1 If $T(\hat{\theta}) \leq 0$ then (for all agent signal accuracies κ) an equilibrium with agent-preferred intervention exists, and is the unique equilibrium.

To see the intuition behind this result, it is useful to inspect Figure 1, which displays the price function (4) for this case. (Note that Figure 1 and the other figures in the paper are only schematic. In particular, the functions are drawn as linear functions, although they need not be linear.) In the figure we see the price of the security under intervention – $X(\theta + T(\theta))$ – and the price under no intervention – $X(\theta)$. The agent wishes to intervene...
if and only if $\theta < \hat{\theta}$, and thus his preferred intervention generates a price function which is depicted by the bold lines in the figure. The key property of this function is that it is monotone in θ. Hence, every level of the fundamental θ is associated with a different price. This implies that the agent can learn the realization of θ precisely from the price and thus act in his preferred way, regardless of how imprecise his signal is.

This case of a monotone price function is the one analyzed in the existing literature on the feedback effect from asset prices to the real value of securities (see the introduction). We now turn to the case which is the focus of our analysis – that of a non-monotone price function.

3.2 Non-monotone price function: $T(\hat{\theta}) > 0$

In most situations things are not as simple as described in the previous subsection. Whenever V is of the form αT (for some constant $\alpha > 0$) as it is in many of our applications, intervention is necessarily a corrective action at all fundamentals $\theta \leq \hat{\theta}$.12 Economically, $T(\hat{\theta}) > 0$ when the agent would like to intervene so as to improve the firm’s health, but intervention is privately costly. For the remainder of the paper we focus on the case in which intervention is corrective at $\hat{\theta}$ and below. Figure 2 displays the price function (4) for this case.

Inspection of Figure 2 reveals the difficulty in obtaining an equilibrium with agent-preferred intervention when $T(\hat{\theta}) > 0$. The difficulty stems from the fact that under agent-preferred intervention, the price function is non-monotone and that the non-monotonicity occurs around $\hat{\theta}$. That is, when the fundamental decreases and crosses the threshold $\hat{\theta}$, the agent wishes to intervene. Intervention, in turn, increases the value of the security (because $T(\hat{\theta}) > 0$), which implies that the price is non-monotone with respect to the fundamentals. While in our model non-monotonicity arises in part from the discreteness of the intervention decision, it is important to note that this feature is certainly not necessary for non-monotonicity. Indeed, Birchler and Facchinetti (2007) recently show that, as long as there is some fixed cost in intervention, non-monotonicity will be a feature of the price

12When $V = \alpha T$, then $T(\hat{\theta}) = C/\alpha > 0$.

function even if the intervention decision is continuous.13

The implication of the non-monotonicity in the price under agent-preferred intervention is that fundamentals on both sides of $\hat{\theta}$ have the same price. In particular, there is a range of fundamentals between $\tilde{\theta} \equiv \hat{\theta} - T(\hat{\theta})$ and $\hat{\theta} + T(\hat{\theta})$, where, under agent-preferred intervention, each fundamental has the same price as another fundamental. This implies that the agent can infer neither the level of the fundamental, nor his preferred action, from the price alone. Essentially, the fact that the price reflects the expected reaction of the agent to the price makes learning from the price more difficult. A natural conjecture that follows from this discussion is that the possibility of achieving agent-preferred intervention in equilibrium depends on the precision of the agent’s signal. A precise signal will enable the agent to distinguish between different fundamentals that have the same price. We thus

\begin{figure}[h]
\centering
\includegraphics[width=0.7\textwidth]{figure2.png}
\caption{Security price under agent-preferred intervention when $T(\hat{\theta}) > 0$}
\end{figure}

13In the context of bank supervision there is empirical evidence that suggests such non-monotonicity in the price of debt due to potential intervention. DeYoung, Flannery, Lang, and Sorescu (2001) show that the price of bank debt increases in response to an unexpectedly poor exam rating for lower quality banks. Related, Covitz, Hancock, and Kwast (2004) and Gropp, Vesala, and Vulpes (2006) document that only a weak relation between the market price of debt and risk is observed when the government support of debt holders is more likely.
provide a complete analysis of equilibrium outcomes based on the precision of the agent’s signal.

As it turns out, the shape of the value of the firm’s security with respect to the fundamentals is an important determinant of equilibrium outcomes. To present our results in the most efficient way we focus below on one case. In most of our applications, the security that agents attempt to learn from is equity. Since equity is typically convex with respect to expected cash flow \(\theta \), we focus the presentation on the results for a convex security.\(^{14}\) Specifically, we assume that both \(X(\theta) \) and \(X(\theta + T(\theta)) \) are convex with respect to \(\theta \). Another assumption we make in the analysis below is that \(|T'(\theta)| \) is sufficiently small in the range between \(\hat{\theta} - 2\kappa \) and \(\hat{\theta} + 2\kappa \). This implies that the benefit from intervention does not decrease very fast in the fundamental. Intuitively, this helps preserve the features implied by a convex security by ensuring that \(U(\theta) \) (defined as \(X(\theta + T(\theta)) - X(\theta) \)) is increasing.

We have also analyzed the model for the cases in which \(T(\theta) \) decreases fast and/or the security is concave. We briefly discuss the results of this alternative analysis in Section 4. The analysis of a concave security is particularly relevant for bank supervision, since most policy proposals suggest that regulators learn from the price of a bank’s debt.\(^{15}\)

\(^{14}\)To see that equity is typically convex with respect to expected cash flow, consider a firm with a face value of outstanding debt \(D \); and let the final cash flow be given by \(\theta + \varepsilon \), where \(\varepsilon \) and \(\theta \) are independent, \(E[\varepsilon|\theta] = 0 \), and the distribution of \(\varepsilon \) is given by a density function \(f(\varepsilon) \). Then the value of equity as a function of expected cash flow \(\theta \) is \(X(\theta) = \int_{D-\theta}^{D} (\theta + \varepsilon - D) f(\varepsilon) d\varepsilon \). Differentiating, we obtain \(X''(\theta) = f(D - \theta) > 0 \).

\(^{15}\)In fact, thinking about the typical financial structure of banks, debt securities are usually convex for low fundamentals and concave for high fundamentals. Economically, the convex then concave shape arises because debt is junior to deposits but senior to equity claims. Hence, when the fundamentals are low, debt holders are likely to be the residual claimants, which leads to a convex shape, while for high fundamentals they are likely to be paid in full, which leads to a concave shape.

In the paper, we characterize equilibrium outcomes for either a convex (our main focus) or a concave (analyzed in Section 4) \(X(\cdot) \) function. Hence, for the case of debt, we essentially characterize results for situations where the relevant fundamentals (i.e., some range around \(\hat{\theta} \)) are either in the range where debt is concave or in the range where debt is convex. Most of our results hold for a convex-then-concave security. Details are available from us upon request.
3.2.1 The agent’s signal is precise: agent-preferred equilibrium

We start with the case in which the agent’s signal ϕ is relatively precise. Our first result is:

Proposition 2 For $\kappa < T \left(\hat{\theta} \right) / 2$, an equilibrium with agent-preferred intervention exists.

The intuition behind this result is as follows. Under the agent-preferred intervention rule, there are at most two fundamentals associated with each price. Suppose that θ_1 and θ_2, $\theta_1 < \hat{\theta} < \theta_2$, have the same price. Under the agent’s preferred intervention, these fundamentals are at a distance $T(\theta_1)$ from each other (see Figure 2). Since the agent’s signal is relatively precise, the agent can use the signal to perfectly infer the realization of the fundamental when the price is consistent with two different fundamentals at a distance $T(\theta_1)$ from each other. Thus, he can follow his preferred intervention rule. It is worth stressing that in this equilibrium both the price and the signal serve an important role: the price tells the agent that one of two different fundamentals may have been realized, while the signal enables the agent to differentiate between these two fundamentals. Thus, the agent uses both the price and the signal to infer the underlying fundamental.

Our next result shows that if the agent’s signal is sufficiently accurate, whenever two fundamentals have the same equilibrium price, the agent’s signal is sufficient to distinguish them. As such, the agent-preferred equilibrium is the only equilibrium. Although intuitive, the proof of this result is involved. The key difficulty is the need to rule out equilibria in which there are an infinite number of fundamentals associated with the same price.

Proposition 3 Suppose that the agent observes the price of a convex security and that $|T'(\theta)|$ is sufficiently small over $[\hat{\theta} - 2\kappa, \hat{\theta} + 2\kappa]$. Then, there exists $\bar{\kappa} > 0$ such that when $\kappa \leq \bar{\kappa}$ the agent-preferred equilibrium is the unique equilibrium.

3.2.2 The agent’s signal is moderately precise: other equilibria

As the agent’s information precision worsens, in the sense that κ increases beyond the point $\bar{\kappa}$ defined by Proposition 3 but remains below $T \left(\hat{\theta} \right) / 2$, the agent-preferred equilibrium remains an equilibrium. However, additional and less desirable equilibria emerge. In such
equilibria, the agent cannot perfectly infer the fundamental from market prices, and his preferred intervention is not obtained. In general, either too much or too little intervention can occur. As we will establish, whether the equilibrium has too little or too much intervention depends on whether the expected security payoff X is concave or convex. In the case of a convex security, which is our focus, equilibria feature too much intervention. Figure 3 depicts an example of such an over-intervention equilibrium.

In the equilibrium depicted in Figure 3, the agent intervenes according to his preferred rule at fundamentals associated with the left line and the right line of the pricing function, but intervenes too much at fundamentals associated with the middle line. These fundamentals are above $\hat{\theta}$, yet, in the equilibrium, the agent intervenes with positive probability when they are realized. This happens because every fundamental associated with the middle line has a price that is identical to that of a fundamental associated with the left line. Since the middle line and the left line are close, the agent cannot always tell apart fundamentals associated with these two lines even after observing his own information. Since fundamentals associated with the middle line are above $\hat{\theta}$ and fundamentals associated with the left line are below $\hat{\theta}$, the agent does not get clear-cut information as to whether he should intervene or not. Thus, sometimes when the fundamental falls in the middle line, the agent does not
have enough evidence to justify the lack of intervention, and chooses to intervene.

Let us illustrate mathematically what is needed for this equilibrium to hold. Take a pair of fundamentals associated with the left line and the middle line of Figure 3 that have the same price, and call them \(\theta_1 \) and \(\theta_2 \), respectively. The probability of intervention at \(\theta_1 \) is 1, and thus the price at \(\theta_1 \) is \(X(\theta_1 + T(\theta_1)) \). The probability of intervention at \(\theta_2 \) is the probability that the agent observes a signal that is consistent with \(\theta_1 \) conditional on the fundamental being \(\theta_2 \). Given the uniform distribution of noise that we assumed, this probability is equal to \(1 - \frac{\theta_2 - \theta_1}{2\kappa} \). Hence, the price at \(\theta_2 \) is \(\frac{\theta_2 - \theta_1}{2\kappa} X(\theta_2) + \left(1 - \frac{\theta_2 - \theta_1}{2\kappa}\right) X(\theta_2 + T(\theta_2)) \).

For the equilibrium to hold, the prices at \(\theta_1 \) and \(\theta_2 \) have to coincide, and the agent’s chosen action when he cannot distinguish between \(\theta_1 \) and \(\theta_2 \) has to be to intervene. Proposition 4 establishes the existence of equilibria of this kind and provides a full characterization of them. The reader can better understand the proposition by inspecting Figure 3 in parallel.

Proposition 4 Suppose that \(\kappa \left(< T\left(\hat{\theta}\right)/2\right) \) is sufficiently close to \(T\left(\hat{\theta}\right)/2 \), that the agent observes the price of a convex security, and that \(|T'(\theta)| \) is sufficiently small over \([\hat{\theta} - 2\kappa, \hat{\theta} + 2\kappa] \). Then, there exist equilibria with too much intervention. In these equilibria the agent intervenes with positive probability at some fundamentals above \(\hat{\theta} \), and intervenes according to his preferred rule at other fundamentals.

It is interesting to explore the source of multiplicity, i.e., why, when \(\kappa \) is in an intermediate range, both agent-preferred intervention (depicted in Figure 2) and over-intervention (depicted in Figure 3) form an equilibrium. Recall that the agent-preferred intervention case constitutes an equilibrium because when intervention is based on the agent’s preferred rule, fundamentals that have the same price are far enough from each other, and so the signal of the agent, having an intermediate level of precision, is precise enough to enable him to tell the fundamentals apart and intervene as he prefers. But, suppose that the agent intervenes with positive probability at some fundamentals that are slightly above \(\hat{\theta} \) (as in Figure 3). The higher intervention probability increases the price at these fundamentals, and creates a situation where fundamentals that are closer to each other have the same price. This then becomes self-enforcing and leads to an equilibrium: as the distance be-
tween fundamentals with the same price shrinks, the agent (with a signal of intermediate precision) cannot always tell these fundamentals apart, and thus intervenes with positive probability at some fundamentals above $\hat{\theta}$.

Another interesting question is whether equilibria with too little intervention exist in parallel to the equilibria with too much intervention identified in Proposition 4. The following proposition provides a negative answer to this question. When the agent learns from the price of a convex security, any equilibrium with an intervention rule that is different from the agent’s preferred intervention rule entails too much intervention in the following sense:

Proposition 5 Suppose that $\kappa < T(\hat{\theta})/2$ and that the agent observes the price of a convex security. Then, any equilibrium other than the agent-preferred equilibrium entails an intervention probability strictly greater than 0 at some fundamental $\theta > \hat{\theta}$.

At first, this result might seem surprising. Taking the logic for the presence of multiple equilibria described in the paragraph after Proposition 4, it seems straightforward to apply it in the other direction and generate an equilibrium with too little intervention. But, one has to remember that the presence of a force that pushes towards under- or over-intervention is not enough to guarantee that such an equilibrium will indeed exist. In fact, the equilibria that are not agent-preferred equilibria are quite subtle. For example, consider the following intuition for why under-intervention is inconsistent with a convex security and moderately informative agent signals. Analogous to the over-intervention case discussed above, in an equilibrium with no intervention above $\hat{\theta}$ and less than certain intervention below $\hat{\theta}$, the following equality has to hold for a continuum of pairs of fundamentals $\theta_1 < \hat{\theta}$ and $\theta_2 > \hat{\theta}$:

$$X(\theta_2) = \left(1 - \frac{\theta_2 - \theta_1}{2\kappa}\right) X(\theta_1) + \frac{\theta_2 - \theta_1}{2\kappa} X(\theta_1 + T(\theta_1)).$$ \hspace{1cm} (5)

When X is convex, this implies that

$$\theta_2 > \left(1 - \frac{\theta_2 - \theta_1}{2\kappa}\right) \theta_1 + \frac{\theta_2 - \theta_1}{2\kappa} (\theta_1 + T(\theta_1)), $$

or equivalently, $T(\theta_1) < 2\kappa$, which cannot hold when $\kappa < T(\hat{\theta})/2$.

21
3.2.3 The agent’s signal is imprecise: no equilibrium

Finally, consider the case in which $\kappa > T\left(\hat{\theta}\right)/2$, that is, the agent’s signal is imprecise and the information gap between the market and the agent is large. The first thing to note is that when $\kappa > T\left(\hat{\theta}\right)/2$, agent-preferred intervention cannot occur in equilibrium. To see this, look again at Figure 2. As we can see in the figure, in an equilibrium with agent-preferred intervention there are fundamentals at a distance of $T\left(\hat{\theta}\right)$ from each other on both sides of $\hat{\theta}$ that have the same price. Since the agent’s signal is imprecise, i.e., since $2\kappa > T\left(\hat{\theta}\right)$, the signal does not enable the agent to always distinguish between two fundamentals that have the same price. Thus, given a price that is associated with two fundamentals, it is impossible for the agent to always intervene at one fundamental and never intervene at the other and therefore agent-preferred intervention cannot occur.

Our main result in this subsection is in fact much stronger. Proposition 6 shows that when $\kappa > T\left(\hat{\theta} - 2\kappa\right)/2$, not only is there no equilibrium with agent-preferred intervention, but there is also no other rational-expectations time-consistent equilibrium.

Proposition 6 Suppose that $\kappa > T\left(\hat{\theta} - 2\kappa\right)/2$ and that the agent observes the price of a convex security. Then, no equilibrium exists.

Although the proof of Proposition 6 is long and involved, in the limiting case in which the agent receives no information at all (i.e., $\kappa \to \infty$) it is possible to give the following straightforward and intuitive proof. First, we claim that the only candidate equilibrium in this case is one with fully revealing prices. To see this, suppose instead that there is an equilibrium in which two fundamentals θ_1 and $\theta_2 \neq \theta_1$ are associated with the same price. Since the agent has no information, his intervention policy must be the same at θ_1 and θ_2. But then the prices are not equal, giving a contradiction. (It is important to note that both Proposition 6 and this simple limit argument cover mixed strategies by the agent.) However, there is no fully revealing equilibrium either: given time-consistency, a fully revealing equilibrium features agent-preferred intervention, a possibility ruled out by the text preceding Proposition 6.

No-equilibrium results may seem difficult to interpret. After all, if taken literally, a no-
equilibrium result implies that the model cannot predict an outcome. Clearly, the fact that our model generates a no-equilibrium result is due to the rational-expectations equilibrium concept used in the paper. In a fully specified trading game, the no-equilibrium outcome can be translated into an equilibrium with a break-down of trade. This is an equilibrium where for some interval of fundamentals market makers abstain from making markets because they would lose money from doing so. In Appendix B, we formalize this interpretation by studying the equilibria of a very simple trading game.

4 Robustness and extensions

4.1 Shape of the security

In the previous section, we presented the equilibrium analysis in the case of a non-monotone price function under the assumptions that $X(\theta)$ and $X(\theta + T(\theta))$ are convex with respect to θ, and that $|T'(\theta)|$ is sufficiently small in the range between $\hat{\theta} - 2\kappa$ and $\hat{\theta} + 2\kappa$. The latter assumption was used in our proofs to imply that $U(\theta)$ is increasing in θ. We now briefly discuss the results under alternative assumptions. Full details are available upon request.

Maintaining the assumption of convexity, but assuming that $|T'(\theta)|$ is large, and hence $U(\theta)$ is decreasing, we can again establish the uniqueness of the equilibrium with agent-preferred intervention when κ is below some threshold, and the non-existence of equilibrium when κ is large. The only difference relative to the results presented in the previous section is that under this alternative assumption, we cannot find an equilibrium with an intervention rule that is different from agent-preferred intervention for an intermediate range of κ.

Moving to a concave security, which is most relevant for the application of bank supervision where regulators learn from the price of debt, we again find that the equilibrium with agent-preferred intervention is unique when κ is below some threshold, and that no equilibrium exists when κ is large. The difference now is in what kind of equilibria arise without agent-preferred intervention. While for a convex security, we establish that for an intermediate range of κ there exist equilibria with too much intervention, and there are no equilibria with too little intervention (see Propositions 4 and 5), the opposite holds for a
concave security. That is, if the security is concave with respect to the fundamental there exists an intermediate range of κ for which there are equilibria with too little intervention, but no equilibria with too much intervention.

To summarize, a general result for various assumptions about the parameters is that agent-preferred intervention is obtained as a unique equilibrium when the information gap between the market and the agent is small (i.e., when κ is small), while no equilibrium exists – or a market breakdown occurs – when it is large. Equilibria without agent-preferred intervention may exist when κ is in an intermediate range, depending on the curvature of the security and the sensitivity of the effect of intervention to the fundamental.

4.2 Information structure

Thus far we assumed that the agent has strictly less information than the market, since the market observes a state variable θ while the agent observes only a noisy signal of θ: $\phi = \theta + \xi$. This information structure is restrictive because in the applications we consider, agents – e.g., directors, activists, regulators, and managers – may have access to some information that is not available to the market.

To explore the robustness of our analysis to our information assumption, we consider the following set of alternative assumptions, which allow for the possibility that the agent’s information is superior to the information observed by market participants. Suppose that the agent would like to intervene if and only if an underlying state variable, ψ, is below some critical level, $\hat{\psi}$. The market observes a signal θ, which is an unbiased forecast of ψ ($\theta = \psi + \epsilon$). The agent sometimes has better information than the market and sometimes has worse information than the market. In particular, suppose that with probability μ the agent observes ψ, while with probability $1 - \mu$ he observes $\phi = \theta + \xi$ (as in our model). The agent knows whether he observed ψ or ϕ, but the market does not know this. For μ sufficiently small, the analysis in our model goes through completely under this richer set of assumptions, as follows.

In the extended model, if the agent observes ψ (with probability μ), he ignores the market price and chooses to intervene if and only if ψ is below $\hat{\psi}$. If he observes ϕ (with
probability \(1 - \mu\), he acts as in our basic model and chooses to intervene if and only if \(E[\theta|P, \phi]\) is below some \(\hat{\theta}\). The market takes these different scenarios into account when pricing the firm’s security. Specifically, let \(X^*(\theta)\) denote the expected value of the security given market signal \(\theta\) and given that the agent sees \(\psi\) and intervenes according to his preferred rule. Then, carrying the logic in (2) to the extended model, the price of the security in the market is:

\[
P(\theta) = \mu X^*(\theta) + (1 - \mu) [X(\theta) + E_{\phi}[I(P(\theta), \phi)|\theta]U(\theta)],
\]

where \(I(P, \phi)\) denotes the agent’s intervention decision when he does not observe \(\psi\), but instead sees just the security price \(P\) and his noisy signal, \(\phi\). Defining \(\tilde{X}\) and \(\tilde{U}\) by

\[
\tilde{X}(\theta) = \mu X^*(\theta) + (1 - \mu) X(\theta)
\]
\[
\tilde{U}(\theta) = \mu X^*(\theta) + (1 - \mu) X(\theta + T(\theta)) - \tilde{X}(\theta) = (1 - \mu) U(\theta),
\]

the pricing equation can be rewritten in a way that makes it analogous to equation (2) in our basic model:

\[
P(\theta) = \tilde{X}(\theta) + E_{\phi}[I(P(\theta), \phi)|\theta]\tilde{U}(\theta).
\]

The extended model is thus analogous to our basic model with the functions \(\tilde{X}(\theta)\) and \(\tilde{U}(\theta)\) replacing \(X(\theta)\) and \(U(\theta)\), respectively; and with \(T\) replaced by \(\tilde{T}\) defined by

\[
\tilde{X}(\theta + \tilde{T}(\theta)) = \mu X^*(\theta) + (1 - \mu) X(\theta + T(\theta)).
\]

Our analysis of the basic model uses the following key properties: \(X\) and \(X(\cdot + T(\cdot))\) are increasing; \(X\) and \(X(\cdot + T(\cdot))\) are either convex or concave; and \(T\) is decreasing. All these properties are inherited by \(\tilde{X}\), \(\tilde{X}(\cdot + \tilde{T}(\cdot))\), and \(\tilde{T}\) when \(\mu\) is sufficiently small. Moreover, \(\tilde{T}(\tilde{\theta}) > 0\) whenever \(T(\tilde{\theta}) > 0\) and \(\mu\) is sufficiently small. Then, the analysis of our model goes through completely under the richer set of assumptions.

In summary, the setting analyzed in this section serves to demonstrate that the assumptions of our main model are not that restrictive, and that the analysis we conducted in the paper can apply without changes to a setting where the agent sometimes has better information than the market. An alternative setting to consider would be one where the market
and the agent are treated more symmetrically. That is, suppose again that the agent cares about the state variable ψ, but that both the market and the agent observe noisy signals of ψ: the market observes $\theta = \psi + \varepsilon$ and the agent observes $\phi = \psi + \xi$. Unfortunately, this framework loses tractability very fast, and does not enable us to analytically conduct most of the analysis conducted in the paper. We are only able to confirm a pair of basic results with this alternative framework. First, if the agent has no signal, no equilibrium exists.\footnote{At this extreme, the model under discussion coincides with the main model of our paper.} Second, if both the market’s and agent’s signals are relatively precise, an equilibrium exists, and converges to an agent-preferred equilibrium as the market’s signal becomes infinitely precise. In this sense, the agent-preferred equilibrium of our basic model is robust. Details are available from us upon request.

4.3 State variables other than expected cash flow

In our basic model, the market observes expected cash flow θ, and intervention affects expected cash flow. However, security values also depend on higher moments of the distribution of cash flow, and it is possible that the agent wants to learn the value of some higher moment rather than the expected cash flow. For example, a bank regulator may care about the variance of bank cash flows, and intervention may be aimed at preventing excessive risk-taking.

Provided that the information asymmetry between the market and agent is unidimensional, our analysis extends to such settings, given parallel assumptions to those we make in our model. That is, for any underlying state variable θ (e.g., the inverse of the variance of cash flows) one can define $X(\theta)$ and $X_I(\theta)$ as the expected security values without and with intervention, and $T(\theta)$ by $X(\theta + T(\theta)) = X_I(\theta)$. Then provided T is weakly decreasing, and X and X_I are increasing and are either both convex or both concave, our analysis applies.
5 Making learning more efficient

Returning to our main model, we now investigate ways to overcome the problem involved in market-based corrective actions. First and foremost, it should be noted that a main insight of our model is the strong complementarity between the market’s information and the agent’s information. To be able to implement a successful market-based intervention policy, the agent still needs to produce a reasonably precise signal of his own. Thus, learning from the market cannot perfectly substitute for direct sources of information. This is perhaps the main normative implication of our model, and is obtained despite the fact that our model endows the market with perfect information about the fundamentals. The role of information in our model is to help the agent tell the extent to which the market price reflects information about the fundamental and the extent to which it reflects information about the expected agent’s action. In that sense, the private information in our model plays a somewhat unusual role.

We next study whether there are alternatives to the agent generating a precise signal for which market-based intervention will work. The first alternative we consider is for the agent to learn from the prices of multiple securities. The second alternative is to improve transparency by disclosing the agent’s signal to the market. The third alternative is to issue a security that directly predicts whether the agent is going to intervene. We show that each one of these measures ameliorates the agent’s inference problems — although as we describe below, non-trivial conditions must be met for each measure to be feasible in the first place. Finally, we consider the possibility that the agent can commit ex ante to an intervention rule based on the realized price. We show that this does not resolve the agent’s inference problems.

5.1 Multiple securities

Thus far we have restricted attention to the case in which the agent observes only one price, that of a convex security. We mentioned that parallel results hold for the case in which the agent observes the price of a concave security instead of that of a convex security. The
only difference between the two cases is that in the range of multiple equilibria, under-
intervention is possible with a concave security, while over-intervention is possible with a
convex security. A key question is whether it helps if both these securities trade publicly,
and the agent learns from the prices of both.

It turns out that observing the prices of both securities resolves the problem of multiple
equililibria when the agent’s signal is moderately precise, but does not solve the problem
of no rational-expectations equilibrium when the agent’s signal is imprecise. We start by
proving the first result.

Proposition 7 Suppose that \(\kappa < T \left(\hat{\theta} \right) / 2 \) and that the agent observes the price of both a
strictly concave and a strictly convex security. Then the agent-preferred equilibrium is the
unique equilibrium.

To gain intuition for this result, recall the results of the previous sections. There, we
showed that when the agent’s information is moderately precise, there may exist equilibria
with too much or too little intervention, in addition to the equilibrium with agent-preferred
intervention. We also showed that an equilibrium with too much intervention requires that
the security whose price the agent observes be convex, while an equilibrium with too little
intervention requires that the security be concave. Thus, in this range, observing both
the price of a concave security and the price of a convex security eliminates the equilibria
without agent-preferred intervention.

This result suggests that there is a significant benefit to learning from two different
securities. Thus, for example, bank regulators can be instructed to learn simultaneously
from the prices of bank debt and equity, instead of just from the price of bank debt. It is
important to note that this implication of the model requires that two distinct securities
trade in well-functioning markets. This condition is not always satisfied. In addition, even
if this condition is met, the agent still faces inference problems when his information is
imprecise. Specifically, even multiple security prices do not help the agent when \(\kappa >
T \left(\hat{\theta} - 2\kappa \right) / 2 \). The basic intuition utilizing the limiting case in which \(\kappa \to \infty \) is the same
as that provided for Proposition 6.
Proposition 8 Suppose that $\kappa > T \left(\hat{\theta} - 2\kappa \right) / 2$ and that the agent observes the price of both a concave and a convex security. Then no equilibrium exists.

5.2 Transparency / disclosure

We now return to the case of one traded convex security and assume that the agent makes public his own signal ϕ before the market price is formed. In most corporate contexts this would be termed “voluntary disclosure,” while in the bank regulation context one might speak of regulatory “transparency.” Our analysis implies that this form of transparency improves the agent’s ability to make use of market information. Specifically, transparency resolves the problem of multiple equilibria when the agent’s signal is moderately precise, but it does not solve the problem of no rational-expectations equilibrium when the agent’s signal is imprecise. The argument is as follows.

Under the “transparency” regime in which the agent truthfully announces his signal ϕ, the equilibrium pricing function depends on both the fundamental θ and the agent’s signal ϕ. Consider a specific realization ϕ^* of the agent’s signal, along with any pair of fundamentals θ_1 and θ_2 such that ϕ^* is possible after both. The prices at (θ_1, ϕ^*) and (θ_2, ϕ^*) must differ. If, instead, the prices coincided, the intervention decisions would also coincide, but in this case the prices would not be equal after all. It follows that all fundamentals θ for which the agent’s signal ϕ^* is possible must have different prices given realization ϕ^*, that is, given ϕ^* prices are fully revealing. This argument together with time-consistency implies that the only candidate equilibrium features agent-preferred intervention. As such, transparency eliminates the equilibria of Proposition 4. The intuition is that these equilibria were based on the market not knowing the agent’s action, a problem that is solved once the agent discloses his signal truthfully.

Now, when $\kappa < T \left(\hat{\theta} \right) / 2$, agent-preferred intervention is indeed an equilibrium, with prices $P(\theta, \phi) = X(\theta) + U(\theta)$ for $\theta \leq \hat{\theta}$ and $P(\theta, \phi) = X(\theta)$ for $\theta > \hat{\theta}$. On the other hand, when $\kappa > T \left(\hat{\theta} \right) / 2$, agent-preferred intervention is not an equilibrium. To see this, if we suppose to the contrary that it were an equilibrium, then there exist fundamentals θ_1 and θ_2 and an agent’s signal realization $\phi \in [\theta_1 - \kappa, \theta_1 + \kappa] \cap [\theta_2 - \kappa, \theta_2 + \kappa]$ such that (θ_1, ϕ)
and \((\theta_2, \phi)\) have the same price, in contradiction to above. It follows that for \(\kappa > T\left(\hat{\theta}\right)/2\), there is no equilibrium.

Although a policy of transparency improves the agent’s ability to infer fundamentals from market prices, in practice there may be limits to its viability. For example, take the case of bank supervision: if a bank knows that the regulator will make its information public, it may be less inclined to grant easy access to the regulator in the first place. In this sense, it is possible that transparency would serve to increase \(\kappa\), potentially making the regulator’s inference problem worse instead of better.

5.3 Prediction markets

Neither of the measures discussed so far allows the agent to infer the fundamental when his own information is poor \((\kappa > T\left(\hat{\theta} - 2\kappa\right)/2)\). The next possibility we discuss is the creation of a “prediction market” in which market participants trade a security that pays 1 if the agent intervenes, and 0 otherwise. Clearly such a market is feasible only if the agent’s intervention is publicly observable and verifiable — a condition that is not required in any of our analysis to this point, and in practice may fail to hold (for example, verifying the actions of shareholders’ activists is quite difficult). However, if such a market could be created, its existence would render agent-preferred intervention as the unique equilibrium irrespective of the quality of the agent’s information.\(^{17}\)

More formally, suppose that in addition to a standard security market, a prediction market of the type described is feasible and exists. Let \(Q\) be the price of the security in the prediction market, with \(P\) being the price of the equity security as before. The agent’s intervention policy \(I\) can now depend on \(Q\) in addition to \(P\) and his own signal \(\phi\). The rational-expectations equilibrium pricing condition for the prediction-market security is \(Q(\theta) = E_\phi [I(P(\theta), Q(\theta), \phi) | \theta]\). Under these conditions we obtain:

Proposition 9 If the market trades both a standard equity security and the prediction-market security, then for all \(\kappa\) the unique equilibrium of the economy features agent-preferred intervention.\(^{17}\)

\(^{17}\)For monetary policy actions, the Fed Funds futures market serves as just such a market.
The intuition behind this result is the following: a regular equity security may have the same price for different fundamentals because the probability of intervention is different across these fundamentals. But, once the prediction-market security is traded, the probability of intervention can be inferred from its price, and thus the fundamental can be inferred from the combination of its price and the price of equity. This implies that the agent will intervene according to his preferred rule in equilibrium.

5.4 Commitment

Thus far in the paper we have assumed that the agent acts in an ex-post optimal way given the price and his signal. A natural question is whether the agent can achieve his preferred intervention by committing ex ante to an intervention rule as a function of the realized price. To answer this question, we assume that the agent can commit ex ante to an intervention policy that is a function of the price only. This last assumption is natural given that committing to an intervention rule that is based on the publicly observed price may be feasible, while committing to an intervention rule that is based on a privately observed signal is probably not. In view of the agent’s commitment, for this subsection only we drop the requirement that the time-consistency condition (3) must be satisfied in equilibrium.

The main thing to note about this case is that an equilibrium under commitment must entail fully revealing prices, i.e., in such an equilibrium every fundamental must be associated with a different price. This is because the agent’s intervention decision is now based only on the price. As a result, if two fundamentals had the same price, they would also have the same probability of intervention, and this would generate different prices. Thus, finding the optimal commitment policy for the agent boils down to finding the price function that maximizes the agent’s ex ante value function, subject to the constraint that the price function fully reveals the fundamentals.

The fact that the price function must be fully revealing implies that the agent cannot achieve his preferred intervention under commitment. This is because, as we saw in Figure 2, agent-preferred intervention generates a price function that is not fully revealing – it has different fundamentals associated with the same price. The following proposition establishes
a stronger result on the effectiveness of commitment. It says that, under commitment, the
agent will end up deviating from his preferred intervention policy over a set of fundamentals
that is at least of size $T(\theta)$.

Proposition 10 If the agent commits ex ante to an intervention policy based on the real-
ization of the price of one security, he will not be able to achieve his preferred intervention.
The set of fundamentals at which the agent deviates from his preferred intervention policy
is at least of size $T(\theta)$.

Proposition 10 says that commitment by the agent does not allow him to fully learn
from the price and then use that information as he would like. However, when the agent’s
information is poor (κ large), commitment does at least ensure that an equilibrium exists,
and so (in our interpretation) avoids the problems associated with market-breakdown. It is
important to note that the welfare losses associated with the alternatives of (I) commitment,
and (II) no-commitment but market-breakdown for an interval of fundamentals, are hard to
compare. The reason is that in both cases the agent’s action partially reflects the market’s
information θ, but the distance between the agent’s equilibrium and preferred actions differs
across the two cases. Moreover, the cost of the agent deviating from his preferred action
is in turn hard to compare with the direct welfare cost of a breakdown of trade in some
fundamentals.

6 Conclusion

We study a rational expectations model of market-based corrective actions. A key issue is
that prices reflect both firm fundamentals and expectations of corrective actions. In a wide
range of cases, this generates non-monotonicity of the price with respect to fundamentals.
When this happens, the agent taking the decision on the corrective action cannot easily
extract information from the price to make an efficient intervention decision. We provide
a complete characterization of the equilibrium outcomes of our model, and show that the
ability of the agent to extract information from the market depends on the gap between his
and the market’s information quality. We also relate equilibrium outcomes to the type of
security whose price the agent observes. Convex securities lead to too much intervention, while concave securities lead to too little.

A key normative implication of our analysis is that market data and private information should be treated as complements, in the sense that the agent’s own information is crucial for him in understanding whether shifts in market prices are due to changes in fundamentals or to changes in expectations regarding his own actions. We also provide implications for the potential efficacy of a number of measures intended to improve learning from prices. Finally, we derive positive empirical implications on the relation between market prices and corrective actions that are based on them.

The general insights from our analysis can be applied to many settings in which individuals use information from market prices to take actions that have a corrective effect on the value of the security. Examples include the decision of the board of directors on whether to replace a CEO, the decision of shareholder activists on whether to take actions to intervene in the operations of the firm, the decision of bank supervisors on whether to take actions to improve the health of a financial institution, and the decision of a firm manager on whether to cancel a previously announced acquisition.

These applications have been the subject of many empirical papers. Our model has strong implications on how to conduct empirical analysis in these and other related settings. In particular, two key features of the model have to be taken into account. First, if agents (i.e., regulators, directors, activists) use the market price in their intervention decision, there will be dual causality between market prices and the intervention decision: market prices will reflect the agent’s action and affect it at the same time. In the context of shareholder activism in closed-end funds, Bradley, Brav, Goldstein, and Jiang (2008) conduct empirical analysis that indeed takes into account this dual causality. Second, when the information that agents have outside the financial market is not precise enough, our model generates equilibrium indeterminacy, which might make the relation between market prices and intervention more difficult to detect.
References

Appendix A: Proofs

We start with a couple of preliminaries. First, even though each combination of a fundamental and agent signal has measure zero, to ease the exposition, we routinely evaluate the conditional probability \(\Pr(\theta|\theta \in \{\theta_1, \theta_2\}) \) as \(1/2 \) if \(\theta \in \{\theta_1, \theta_2\} \) (recall that the fundamental \(\theta \) is distributed uniformly). Likewise, we evaluate \(\Pr(\theta|\theta \in \Theta) = 0 \) if \(\theta / \in \Theta \). We use parallel calculations for conditional expectations. The only proof in which it is important for us to proceed more formally in taking conditional probabilities and expectations is that of Proposition 3 (see the proof for the relevant details).

Second, it is convenient to state the following straightforward result separately.

Lemma 1 Suppose that \(T(\hat{\theta}) > 0 \), and define \(\tilde{\theta} < \hat{\theta} \) by \(\tilde{\theta} + T(\hat{\theta}) = \hat{\theta} \). In any equilibrium,

\[
\Pr(I|\theta) = \begin{cases}
1 & \text{if } \theta < \max\{\hat{\theta} - 2\kappa, \hat{\theta} - T(\hat{\theta})\} \\
0 & \text{if } \theta > \min\{\hat{\theta} + 2\kappa, \hat{\theta} + T(\hat{\theta})\}
\end{cases}
\]

Proof of Lemma 1: Consider a fundamental \(\theta < \hat{\theta} - 2\kappa \). At this fundamental, the agent observes only signals below \(\hat{\theta} - \kappa \). Such signals are never observed after any fundamental
\[\tilde{\theta} \geq \hat{\theta}. \] As such, when the fundamental is \(\theta \) the agent knows that the fundamental lies to the left of \(\hat{\theta} \). By time-consistency, he intervenes with probability 1. By a similar argument the agent never intervenes if \(\theta > \hat{\theta} + 2\kappa \).

Next, consider a fundamental \(\theta < \hat{\theta} - T(\theta) = \tilde{\theta} \). In any equilibrium the price at \(\theta \) is bounded above by \(X(\theta) + U(\theta) = X(\theta + T(\theta)) < X(\hat{\theta} + T(\hat{\theta})) = X(\hat{\theta}) \). Moreover, any fundamental \(\tilde{\theta} \geq \hat{\theta} \) has a price that satisfies \(P(\tilde{\theta}) \geq X(\tilde{\theta}) \geq X(\hat{\theta}) \). Thus, in any equilibrium, if \(\theta < \hat{\theta} - T(\theta) \) then \(\theta \) cannot share a price with any fundamental above \(\hat{\theta} \). Again, by time-consistency the agent intervenes with probability 1.

Finally, consider a fundamental \(\theta > \hat{\theta} + T(\theta) \). In any equilibrium the price at \(\theta \) strictly exceeds \(X(\hat{\theta} + T(\theta)) \). Moreover, any fundamental \(\tilde{\theta} \leq \hat{\theta} \) has a price that satisfies \(P(\tilde{\theta}) \leq X(\tilde{\theta} + T(\tilde{\theta})) \leq X(\hat{\theta} + T(\hat{\theta})) \). Thus, in any equilibrium, if \(\theta > \hat{\theta} + T(\theta) \) then \(\theta \) cannot share a price with any fundamental below \(\hat{\theta} \). Again, by time-consistency the agent intervenes with probability 0. ■

Proof of Proposition 1: Existence is immediate. For uniqueness, suppose to the contrary that an equilibrium without agent-preferred intervention exists. Any such equilibrium must feature a price \(P \) shared by a set of fundamentals \(\Theta_P \), where \(\Theta_P \) has at least one element strictly less than \(\hat{\theta} \) and at least one element strictly greater than \(\hat{\theta} \). Fix any fundamental \(\theta_2 \in \Theta_P \) that strictly exceeds \(\hat{\theta} \). Let \(q(\theta) \) denote the intervention probability at fundamental \(\theta \). Since all fundamentals in \(\Theta_P \) share the same price, the following must hold for every \(\theta \in \Theta_P \)

\[
q(\theta_2) X(\theta_2 + T(\theta_2)) + (1 - q(\theta_2)) X(\theta_2) - q(\theta) X(\theta + T(\theta)) - (1 - q(\theta)) X(\theta) = 0. \tag{6}
\]

The left hand side of (6) can be rewritten as

\[
q(\theta_2) (X(\theta_2 + T(\theta_2)) - X(\theta + T(\theta)))
+ (1 - q(\theta_2)) X(\theta_2) - (q(\theta) - q(\theta_2)) X(\theta + T(\theta)) - (1 - q(\theta)) X(\theta). \tag{7}
\]

Note that for any \(\theta \in \Theta_P \cap [\underline{\theta}, \hat{\theta}] \) the facts that \(X(\theta + T(\theta)) \) is increasing and \(T(\hat{\theta}) \) is negative imply \(X(\theta_2) > X(\tilde{\theta}) \geq \max \{X(\theta + T(\theta)), X(\theta)\} \). If \(q(\theta_2) = 0 \) this delivers an immediate contradiction since \(q(\theta) - q(\theta_2) \geq 0 \) and so \((1 - q(\theta_2)) X(\theta_2) > (q(\theta) - q(\theta_2)) X(\theta + T(\theta)) + (1 - q(\theta)) X(\theta) \).

39
The remainder of the proof deals with the case in which \(q(\theta_2) > 0 \). Define \(\theta^* = \sup \Theta_P \cap [\underline{\theta}, \hat{\theta}] \) and observe that for any \(\theta \in \Theta_P \cap [\underline{\theta}, \hat{\theta}] \),

\[
q(\theta) - q(\theta_2) = \frac{1}{2\kappa} \left(\int_{\theta - \kappa}^{\theta + \kappa} I(P, \phi) \, d\phi - \int_{\theta_2 - \kappa}^{\theta_2 + \kappa} I(P, \phi) \, d\phi \right)
\]

where the final equality follows since the price \(P \) and a signal above \(\theta^* + \kappa \) together tell the agent that the fundamental definitely exceeds \(\hat{\theta} \). It follows that for any \(\varepsilon > 0 \) there exists some \(\theta \in \Theta_P \cap [\underline{\theta}, \hat{\theta}] \) such that

\[
q(\theta) - q(\theta_2) > -\varepsilon.
\]

Hence for any \(\varepsilon' > 0 \) there exists some \(\theta \in \Theta_P \cap [\underline{\theta}, \hat{\theta}] \) such that

\[
(1 - q(\theta_2)) X(\theta_2) - (q(\theta) - q(\theta_2)) X(\theta + T(\theta)) - (1 - q(\theta)) X(\theta) > -\varepsilon'.
\]

Finally, since \(q(\theta_2) (X(\theta_2 + T(\theta_2)) - X(\theta + T(\theta))) > 0 \) for \(\theta \leq \hat{\theta} \), it is possible to choose \(\theta \in \Theta_P \cap [\underline{\theta}, \hat{\theta}] \) such that (7) is strictly positive, contradicting (6) and completing the proof.

Proof of Proposition 2: In an agent-preferred equilibrium the agent only intervenes for \(\theta \leq \hat{\theta} \). What we need to check is that this policy is feasible. Under this intervention policy, \(P(\theta) = X(\theta) + U(\theta) = X(\theta + T(\theta)) \) for \(\theta \leq \hat{\theta} \), and \(P(\theta) = X(\theta) \) for \(\theta > \hat{\theta} \). As such, there are at most two fundamentals related to each price. For prices that are related to just one fundamental, the equilibrium price is trivially fully revealing. For prices that are related to two fundamentals, e.g., \(\theta_1 < \hat{\theta} < \theta_2 \) such that \(X(\theta_1 + T(\theta_1)) = X(\theta_2) \), the agent can distinguish between these two fundamentals with his own signal. This is because the distance between the two fundamentals is \(T(\theta_1) \geq T(\hat{\theta}) > 2\kappa \). Hence, the agent can follow his preferred intervention rule.

Proof of Proposition 3: The proof requires us to be more mathematically precise in our treatment of probabilities and expectations than is the case elsewhere in the paper. In particular, unlike elsewhere in the paper, we must assign conditional expectations and probabilities in cases where the conditioning set has infinitely many members yet is still null.
Formally, let \mathcal{B} denote the Borel algebra of $[\theta, \bar{\theta}]$, so that $([\theta, \bar{\theta}], \mathcal{B})$ is a measurable space. Let $\mu : \mathcal{B} \to [0, 1]$ be the probability measure associated with the uniform distribution on $[\theta, \bar{\theta}]$.

Let $\kappa > 0$ be such that $\frac{U(\theta)}{2\kappa} - (1 + T'(\theta))X'(\theta + T(\dot{\theta})) > 0$ for all $\theta \in [\hat{\theta}, \hat{\theta} + T(\dot{\theta})]$, and fix an arbitrary $\kappa \in [0, \bar{\kappa}]$. We will show that in any equilibrium agent-preferred intervention occurs almost surely. The proof is by contradiction: suppose to the contrary that there exists an equilibrium in which the agent intervenes not according to his preferred rule over a non-null set of fundamentals. Clearly, intervention that is not according to the agent’s preferred rule can only occur at non-revealing prices; and by Lemma 1, this can only be in the range $[\hat{\theta} - 2\kappa, \hat{\theta} + 2\kappa]$.

Throughout the proof we use the following definitions. Let \mathcal{P} be the set of non-revealing prices. For each non-revealing price $P \in \mathcal{P}$ let Θ_P be the set of fundamentals associated with that price. Let $\Theta = \bigcup_{P \in \mathcal{P}} \Theta_P$ be the set of all fundamentals with a non-revealing price. By hypothesis, Θ has strictly positive measure.

Claim A: In an equilibrium in which the agent intervenes not according to his preferred rule over a non-null set of fundamentals, $\Theta \cap [\hat{\theta}, \hat{\theta} + 2\kappa]$ has strictly positive measure.

Proof of Claim A: Consider the conditional probability $\Pr \left(\Theta \cap [\hat{\theta}, \hat{\theta} + 2\kappa] \mid \Theta_P \right)$. Clearly it equals $\Pr \left(\Theta \cap [\hat{\theta}, \hat{\theta} + 2\kappa] \mid \Theta_P \right)$. Moreover,

$$\int_{\theta \in \Theta} \Pr \left(\Theta \cap [\hat{\theta}, \hat{\theta} + 2\kappa] \mid \Theta_P(\theta) \right) \mu(d\theta) = \Pr \left(\Theta \cap [\hat{\theta}, \hat{\theta} + 2\kappa] \mid \Theta \right).$$

Suppose that contrary to the claim $\Theta \cap [\hat{\theta}, \hat{\theta} + 2\kappa]$ is null. In this case, $\Pr \left(\Theta \cap [\hat{\theta}, \hat{\theta} + 2\kappa] \mid \Theta_P(\theta) \right) = 0$ for almost all θ in Θ. But then the agent would intervene according to his preferred rule for almost all $\theta \in \Theta$: he would intervene with probability 1 at almost all $\theta \in \Theta$, since almost all members of Θ lie below $\hat{\theta}$. Since intervention that is not according to the agent’s preferred rule can potentially happen only at $\theta \in \Theta$, this contradicts an equilibrium in which the agent intervenes not according to his preferred rule over a non-null set of fundamentals, and completes the proof of Claim A. □

For any signal realization ϕ, the agent knows the true fundamental lies in the interval $[\phi - \kappa, \phi + \kappa]$. As such, for a price $P \in \mathcal{P}$ and signal ϕ the agent’s expected payoff (net of
costs) from intervention is

\[v(P, \phi) \equiv E_\theta [V(\theta) - C | \theta \in \Theta_P \cap [\phi - \kappa, \phi + \kappa]]. \]

(8)

The heart of the proof lies in establishing:

Claim B: In an equilibrium of the kind described above, for any \(P \in \mathcal{P} \):

(1) \(\sup \Theta_P \cap \left[\hat{\theta} - 2\kappa, \hat{\theta} \right] = \hat{\theta} \) and

(2) \(v(P, \phi = \theta + \kappa) \geq 0 \) for any \(\theta \in \Theta_P \cap \left[\hat{\theta} - 2\kappa, \hat{\theta} \right] \).

Proof of Claim B: Let \(\theta_1 \) and \(\theta_2 \in (\theta_1, \theta_1 + 2\kappa] \) be an arbitrary pair of members of \(\Theta_P \) such that \(\theta_1 \leq \hat{\theta} \) and \(\theta_2 \geq \hat{\theta} \) (clearly all members of \(\Theta_P \) cannot lie to the same side of \(\hat{\theta} \), and at least one such pair must lie within \(2\kappa \) of each other). Since \(\theta_1 \) and \(\theta_2 \) have the same price

\[X(\theta_1) + U(\theta_1) = X(\theta_2) + U(\theta_2), \]

when \(|T'(\theta)| \) is sufficiently small, \(U \) is increasing, and so \(U(\theta_2) > U(\theta_1) \). It follows that

\[X(\theta_1) + U(\theta_1) \leq X(\theta_2) + \frac{U(\theta_2)}{2\kappa} \left(\int_{\theta_1 - \kappa}^{\theta_2 + \kappa} I(P, \phi) d\phi + \int_{\theta_2 - \kappa}^{\theta_1 + \kappa} (1 - I(P, \phi)) d\phi \right). \]

Equivalently,

\[X(\theta_1 + T(\theta_1)) \leq X(\theta_2) + \frac{U(\theta_2)}{2\kappa} \left(\theta_1 - \theta_2 + 2\kappa + \int_{\theta_1 - \kappa}^{\theta_2 - \kappa} (1 - I(P, \phi)) d\phi + \int_{\theta_1 + \kappa}^{\theta_2 + \kappa} I(P, \phi) d\phi \right). \]

(9)

Define \(\theta_1^* = \sup \Theta_P \cap \left[\hat{\theta} - 2\kappa, \hat{\theta} \right] \) and \(\theta_2^* = \inf \Theta_P \cap \left[\hat{\theta}, \hat{\theta} + 2\kappa \right] \).

Suppose that either \(v(P, \phi = \theta_1 + \kappa) < 0 \) or \(\theta_1^* < \hat{\theta} \). In the former case, \(v(P, \phi) < 0 \) for any signal \(\phi \) above \(\theta_1 + \kappa \) (since if \(v(P, \phi) \) is strictly negative for some \(\phi \), the same is true for all higher \(\phi \)). In the latter case, any signal \(\phi \) above \(\theta_1^* + \kappa \) rules out that \(\theta \leq \hat{\theta} \). As such, by time-consistency \(I(P, \phi) = 0 \) for all \(\phi > \theta_1 + \kappa \) in the former case, and \(\phi > \theta_1^* + \kappa \) in the latter case. Since both sides of (9) are continuous in \(\theta_1 \) and \(\theta_2 \), it follows that

\[X(\theta + T(\theta)) \leq X(\theta_2^*) + \frac{U(\theta_2^*)}{2\kappa} \left(\theta - \theta_2^* + 2\kappa + \int_{\theta - \kappa}^{\theta_2 - \kappa} (1 - I(P, \phi)) d\phi \right) \]

for \(\theta = \theta_1 \) in the former case, and \(\theta = \theta_1^* \) in the latter case. Certainly \(I(P, \phi) = 1 \) for all \(\phi < \theta_2^* - \kappa \), since for these signal values the agent knows that the fundamental lies to the left of \(\hat{\theta} \). Thus the function \(Z \) defined by

\[Z(\theta, \theta_2) \equiv X(\theta_2) + \frac{U(\theta_2)}{2\kappa} (\theta - \theta_2 + 2\kappa) - X(\theta + T(\theta)) \]

42
is weakly positive at \((\theta, \theta_2) = (\theta_1, \theta_2^*)\) in the former case, and at \((\theta_1^*, \theta_2^*)\) in the latter case. However,

\[
Z(\theta_2^*, \theta_2^*) = X(\theta_2^*) + U(\theta_2^*) - X(\theta_2^* + T(\theta_2^*)) = 0
\]

\[
Z_1(\theta_2^*, \theta_2^*) = \frac{U(\theta_2^*)}{2\kappa} - (1 + T'(\theta_2^*)) X'(\theta_2^* + T(\theta_2^*)) > 0,
\]

where the strict inequality follows since \(\theta_2^* \leq \hat{\theta} + T(\hat{\theta})\) (see Lemma 1) and \(\kappa \leq \bar{\kappa}\). Since \(Z\) is concave in its first argument, it follows that \(Z(\theta, \theta_2) < 0\) for all \(\theta < \theta_2^*\), which contradicts \(Z(\theta_1, \theta_2^*) \geq 0\) in the former case, and \(Z(\theta_1^*, \theta_2^*) \geq 0\) in the latter case. This completes the proof of Claim B.

We are now ready to complete the proof. By Claim B, for any \(\varepsilon > 0\) and any \(P \in P\) there exists \(\theta_{P,\varepsilon} \in \Theta_P \cap [\hat{\theta} - \varepsilon, \hat{\theta}]\) such that \(v(P, \phi = \theta_{P,\varepsilon} + \kappa) \geq 0\). As such, the integral

\[
\int_{\bigcup_{P \in P}(\Theta_P \cap [\theta_{P,\varepsilon}, \theta_{P,\varepsilon} + 2\kappa])} v(P(\theta), \phi = \theta_{P,\varepsilon} + \kappa) \mu(d\theta)
\]

is weakly positive. Since \(v\) is a conditional expectation (see its definition (8)), the integral is also equal to

\[
\int_{\bigcup_{P \in P}(\Theta_P \cap [\theta_{P,\varepsilon}, \theta_{P,\varepsilon} + 2\kappa])} (V(\theta) - C) \mu(d\theta).
\]

The domain of the integral (10) can be expanded as

\[
\left(\Theta \cap [\hat{\theta}, \hat{\theta} + 2\kappa - \varepsilon]\right) \cup \bigcup_{P \in P} \left(\Theta_P \cap [\theta_{P,\varepsilon}, \hat{\theta}]\right) \cup \bigcup_{P \in P} \left(\Theta_P \cap [\hat{\theta} + 2\kappa - \varepsilon, \theta_{P,\varepsilon} + 2\kappa]\right).
\]

The term \(V(\theta) - C\) is strictly negative over the first set above, with the single exception of at \(\hat{\theta}\). For all \(\varepsilon\) small enough and by Claim A, the first set has strictly positive measure, while the other two have measures that approach zero. As such, the integral in expression (10) is strictly negative for \(\varepsilon\) small enough. The contradiction completes the proof.

Proof of Proposition 4:

Let us start by characterizing the equilibria described in the proposition. There exist fundamentals \(\theta_{01} < \theta_{11} < \hat{\theta}\) and a function \(\theta_2^* : [\theta_{01}, \theta_{11}] \rightarrow [\hat{\theta}, \overline{\theta}]\) with \(\theta_2^*(\theta_{01}) = \hat{\theta}\), such that for any set \(Y_1 \subset [\theta_{01}, \theta_{11}]\) the following prices and intervention probabilities constitute an equilibrium:
1. [Agent-preferred intervention below $\hat{\theta}$] If $\theta \leq \hat{\theta}$, the agent intervenes with probability 1, and the price is $X(\theta) + U(\theta)$.

2. [Over-intervention for some $\theta > \hat{\theta}$] If $\theta \in \theta^*_2 (Y_1)$ the agent intervenes with probability $1 - \frac{\theta - \theta^*_2 (\theta)}{2\kappa} > 0$, and the price is $X(\theta) + \left(1 - \frac{\theta - \theta^*_2 (\theta)}{2\kappa}\right) U(\theta)$.

3. [Agent-preferred intervention for some $\theta > \hat{\theta}$] If $\theta > \hat{\theta}$ and $\theta \not\in \theta^*_2 (Y_1)$, the agent never intervenes, and the price is $X(\theta)$.

For use throughout the proof, define the function

$$Z(\theta_1, \theta_2) = X(\theta_2) + \left(1 - \frac{\theta_2 - \theta_1}{2\kappa}\right) U(\theta_2) - X(\theta_1) - U(\theta_1),$$

Intuitively, this is the difference between the price at a fundamental θ_1 given an intervention probability 1, and the price at fundamental $\theta_2 > \theta_1$ given an intervention probability $1 - \frac{\theta_2 - \theta_1}{2\kappa}$. Observe that Z has the following properties:

$$Z_{11}(\theta_1, \theta_2) < 0,$$

$$Z_{12}(\theta_1, \theta_2) = \frac{U'(\theta_2)}{2\kappa},$$

$$Z(\theta, \theta) = 0,$$

$$Z(\theta - 2\kappa, \theta) = X(\theta) - X(\theta - 2\kappa + T(\theta - 2\kappa)).$$

We start by establishing:

Lemma 2 For $\kappa < T(\hat{\theta})/2$ sufficiently close to $T(\hat{\theta})/2$ and $|T'(\hat{\theta})|$ sufficiently small, there exists a unique $\theta_{01} < \hat{\theta}$ such that

$$X(\hat{\theta}) + \left(1 - \frac{\hat{\theta} - \theta_{01}}{2\kappa}\right) U(\hat{\theta}) = X(\theta_{01}) + U(\theta_{01}).$$

Proof of Lemma 2: Since $2\kappa < T(\hat{\theta}) \leq T(\hat{\theta} - 2\kappa)$ we know that $Z(\hat{\theta} - 2\kappa, \hat{\theta}) < 0$ and
\(Z(\hat{\theta}, \hat{\theta}) = 0. \) Since \(Z_{11} < 0, \) the result follows provided \(Z_1(\hat{\theta}, \hat{\theta}) < 0. \) We know that

\[
Z_1(\hat{\theta}, \hat{\theta}) = \frac{U(\hat{\theta})}{2\kappa} - X'(\hat{\theta} + T(\hat{\theta})) \left(1 + T'(\hat{\theta}) \right)
\]

\[
= \frac{X(\hat{\theta} + T(\hat{\theta})) - X(\hat{\theta}) - X'(\hat{\theta} + T(\hat{\theta})) \left(1 + T'(\hat{\theta}) \right)}{2\kappa}
\]

\[
= \frac{1}{2\kappa} \int_{\theta}^{\hat{\theta} + T(\hat{\theta})} \left(X'(\theta) - \frac{2\kappa}{T(\hat{\theta})} X'(\hat{\theta} + T(\hat{\theta})) \left(1 + T'(\hat{\theta}) \right) \right) d\theta.
\]

Since \(X \) is a convex function, \(Z_1(\hat{\theta}, \hat{\theta}) < 0 \) for all \(2\kappa \) close enough to \(T(\hat{\theta}) \) and \(|T'(\hat{\theta})| \) sufficiently small. □

Observe first that since \(Z(\theta_1, \hat{\theta}) = Z(\hat{\theta}, \hat{\theta}) = 0, \) and \(Z_{11} < 0, \) then \(Z(\theta_1, \hat{\theta}) > 0 \) for any \(\theta_1 \in (\theta_0, \hat{\theta}). \) Moreover, \(Z(\hat{\theta}, \hat{\theta}) \) is single-peaked. Let \(\hat{\theta}_{11} \in (\theta_0, \hat{\theta}) \) be its maximum. Since for any \(\theta_1 \in (\theta_0, \hat{\theta}_{11}), \) \(Z(\theta_1, \hat{\theta}) > 0 \) and \(Z(\theta_1, \theta_2 + 2\kappa) < 0, \) by continuity there exists some \(\theta_2 > \hat{\theta}, \) for which \(Z(\theta_1, \theta_2) = 0. \) We define a function, \(\theta_2^* (\theta_1), \) where \(\theta_2^* \) is the smallest \(\theta_2, \) above \(\hat{\theta}, \) for which \(Z(\theta_1, \theta_2) = 0. \) Economically, \(\theta_2^* (\theta_1) \) is the fundamental which has the same market price as \(\theta_1. \) We know that \(\theta_2^* (\theta_0) = \hat{\theta}. \)

The function \(\theta_2^* (\theta_1) \) is strictly increasing over \([\theta_0, \hat{\theta}_{11}],[\theta_0, \hat{\theta}_{11}],\) as follows. Note that

\[
Z(\theta_1, \theta_2) = Z(\theta_1, \hat{\theta}) + \int_{\hat{\theta}}^{\theta_2} Z_2(\theta_1, y) dy.
\]

Since \(Z(\theta_1, \hat{\theta}) \) is increasing over \([\theta_0, \hat{\theta}_{11}],[\theta_0, \hat{\theta}_{11}],\) and \(Z_{12} > 0 \) (provided that \(|T'| \) is sufficiently small that \(U \) is increasing), it follows that for any \(\theta_2 \geq \hat{\theta}, \) \(Z(\theta_1, \theta_2) \) is increasing in \(\theta_1 \) over \([\theta_0, \hat{\theta}_{11}],[\theta_0, \hat{\theta}_{11}],\). Thus, the smallest \(\theta_2, \) at which \(Z(\theta_1, \theta_2) = 0, \) is strictly increasing in \(\theta_1, \) implying that \(\theta_2^* (\theta_1) \) is a strictly increasing function.

Since \(\theta_2^* (\theta_0) = \hat{\theta}, \) we know that \(\frac{V(\theta_1) + V(\theta_2^*(\theta_1)) - 2\kappa}{2} \) is strictly positive at \(\theta_1 = \theta_0. \) Define \(\theta_{11} \) as the minimum between \(\theta_{11} \) and the supremum value of \(\theta_1 \) such that \(\frac{V(\theta_1) + V(\theta_2^*(\theta_1)) - 2\kappa}{2} > 0. \) As such, \(\theta_2^* (\cdot) \) is increasing and \(\frac{V(\theta_1) + V(\theta_2^*(\theta_1)) - 2\kappa}{2} > 0 \) over \([\theta_0, \theta_{11}].\)

We have now defined the values \(\theta_0 \) and \(\theta_{11} \) that were used to characterize the equilibria in the beginning of the proof. It remains to show that there is an equilibrium of the type described. This requires showing that the prices are rational given the intervention probabilities, and that the intervention probabilities result from the agent’s behavior given
the information in the price and his own private signal. It is immediate to show that the prices specified above are rational given the corresponding intervention probabilities. Thus, we turn to show that the intervention probabilities result from the agent’s behavior. We will do this by analyzing different ranges of the fundamentals separately.

For a fundamental $\theta \leq \hat{\theta}$ and $\theta \notin Y_1$, the price is $X(\theta) + U(\theta) = X(\theta + T(\theta))$. The same price may be observed at the fundamental $\theta + T(\theta)$. Since $2\kappa < T(\hat{\theta}) \leq T(\theta)$, the agent’s private signal will indicate for sure that the fundamental is θ and not $\theta + T(\theta)$. Hence, the agent will choose to intervene, generating intervention probability of 1. Note that the same price cannot be observed at any fundamental below $\theta + T(\theta)$. Observing such a price at a fundamental below θ would imply that the fundamental belongs to the set $\theta^*_2(Y_1)$, but this contradicts the fact that $\theta \notin Y_1$.

For a fundamental $\theta \leq \hat{\theta}$ and $\theta \in Y_1$, the price is again $X(\theta) + U(\theta)$. As before, the same price may be observed at the fundamental $\theta + T(\theta)$ without having an effect on the decision of the agent to intervene at θ, given that $2\kappa < T(\hat{\theta}) \leq T(\theta)$. Here, however, the same price will also be observed at the fundamental $\theta^*_2(\theta)$. This is because the fundamental $\theta^*_2(\theta) \in \theta^*_2(Y_1)$ generates a price of $X(\theta^*_2(\theta)) + \left(1 - \frac{\theta^*_2(\theta) - \theta}{2\kappa}\right) U(\theta^*_2(\theta))$, which by construction is equal to $X(\theta) + U(\theta)$. (Note that the same price will not be observed at any other fundamental in the set $\theta^*_2(Y_1)$, since $X(\theta) + U(\theta)$ and $\theta^*_2(\theta)$ are strictly increasing in θ.) Thus, at the fundamental θ, the agent observes a price that is consistent with both θ and $\theta^*_2(\theta)$, and may observe a private signal that is also consistent with both of them. If this happens, given the uniform distribution of noise in the agent’s signal, the agent will intervene as long as $\frac{V(\theta) + V(\theta^*_2(\theta)) - 2C}{2} \geq 0$. By construction, this is true for all $\theta \in Y_1$, and thus, at the fundamental θ, the agent will intervene with probability 1.

For a fundamental $\theta > \hat{\theta}$ and $\theta \notin \theta^*_2(Y_1)$, the price is $X(\theta)$. The same price may be observed at a fundamental $\theta' \leq \hat{\theta}$ such that $\theta' + T(\theta') = \theta$ and also at some $\theta'' > \hat{\theta}$ in $\theta^*_2(Y_1)$. Since $2\kappa < T(\hat{\theta}) \leq T(\theta')$, the agent’s private signal at the fundamental θ will indicate for sure that the fundamental is not θ'. Hence, the agent will know that the fundamental is above $\hat{\theta}$, and will choose not to intervene, generating intervention probability of 0, as is stated in the proposition.
Finally, for a fundamental \(\theta > \hat{\theta} \) and \(\theta \in \theta_2^* (Y_1) \), the price is \(X (\theta) + \left(1 - \frac{\theta - \theta_2^{-1}(\theta)}{2\kappa}\right) U (\theta) \). As follows from the arguments above, the same price will be observed at the fundamental \(\theta_2^{-1}(\theta) \), and also may be observed at some fundamental \(\theta'' > \hat{\theta} \) in \(\theta'' \notin \theta_2^* (Y_1) \). As argued before, two fundamentals in the set \(\theta_2^* (Y_1) \) cannot have the same price. As also follows from the arguments above, the agent will choose to intervene if and only if his signal is consistent with both \(\theta \) and \(\theta_2^{-1}(\theta) \) (the signal cannot be consistent with both \(\theta_2^{-1}(\theta) \) and \(\theta'' \)). Due to the uniform distribution of noise in the agent’s signal, this generates an intervention probability of \(1 - \frac{\theta - \theta_2^{-1}(\theta)}{2\kappa} \). \(\blacksquare \)

Proof of Proposition 5: Suppose to the contrary that there exists an equilibrium without agent-preferred intervention and in which the probability of intervention for all \(\theta > \hat{\theta} \) is 0. In this equilibrium there must exist some \(\theta_1 < \hat{\theta} \) such that \(E[I|\theta_1] < 1 \). Because \(\theta_1 < \hat{\theta} \), it follows that there must exist \(\theta_2 \in (\hat{\theta}, \theta_1 + 2\kappa) \) with the same price as \(\theta_1 \). Moreover, because \(E[I|\theta] = 0 \) for all \(\theta > \hat{\theta} \), the fundamental \(\theta_2 \) is the unique fundamental to the right of \(\hat{\theta} \) with the same price as \(\theta_1 \). So the intervention policy \(I \) in this equilibrium must satisfy

\[
I(I(\theta_1), \phi) = \begin{cases}
0 & \text{if } \phi \in (\theta_2 - \kappa, \theta_2 + \kappa) \\
1 & \text{if } \phi \in (\theta_1 - \kappa, \theta_1 + \kappa) \text{ and } \phi \notin (\theta_2 - \kappa, \theta_2 + \kappa)
\end{cases}
\]

As such, the expected intervention probability at \(\theta_1 \) is

\[
E[I|\theta_1] = \Pr((\theta_1 + \xi) \in (\theta_1 - \kappa, \theta_2 - \kappa)) = \frac{\theta_2 - \theta_1}{2\kappa}.
\]

Define a function

\[
Z(\theta) = X(\theta_1) + \left(\frac{\theta - \theta_1}{2\kappa}\right) U(\theta_1) - X(\theta).
\]

On the one hand, observe that \(Z(\theta_2) = X(\theta_1) + E[I|\theta_1]U(\theta_1) - X(\theta_2) = 0 \), since by hypothesis \(\theta_1 \) and \(\theta_2 \) have the same price. But on the other hand, \(Z(\theta_1) = 0 \), \(Z(\theta_1 + 2\kappa) = X(\theta_1 + T(\theta_1)) - X(\theta_1 + 2\kappa) > 0 \) since \(2\kappa < T(\hat{\theta}) \leq T(\theta_1) \), and \(Z \) is concave since \(X(\theta) \) is convex. As such, there is no value of \(\theta \in [\theta_1, \theta_1 + 2\kappa] \) for which \(Z(\theta) = 0 \). The resultant contradiction completes the proof. \(\blacksquare \)

Proof of Proposition 6: Suppose to the contrary that an equilibrium exists. Let \(P(\cdot) \) be the equilibrium price function. We know that there cannot be a fully-revealing
equilibrium (see the main text immediately prior to the proposition statement). Define Θ^* to be the non-empty set of fundamentals at which the price is not fully-revealing, i.e.,

$$\Theta^* = \{ \theta : \exists \theta' \neq \theta \text{ such that } P(\theta) = P(\theta') \}.$$

Given Θ^*, define $\theta^* = \inf \Theta^*$. We prove the following claims.

Claim 1: If $\theta < \min \{ \theta^*, \hat{\theta} \}$ then $P(\theta) = X(\theta) + U(\theta)$; and if $\theta \geq \min \{ \theta^*, \hat{\theta} \}$ then $P(\theta) \geq X(\min \{ \theta^*, \hat{\theta} \}) + U(\min \{ \theta^*, \hat{\theta} \})$.

Proof of Claim 1: By definition, if $\theta < \theta^*$ the price is fully-revealing. So if $\theta < \hat{\theta}$ also, the agent intervenes, and $P(\theta) = X(\theta) + U(\theta)$. So for any $\theta < \min \{ \theta^*, \hat{\theta} \}$, the price is $X(\theta) + U(\theta)$. Next, suppose that contrary to the claim $P(\theta') < X(\min \{ \theta^*, \hat{\theta} \}) + U(\min \{ \theta^*, \hat{\theta} \})$ for some $\theta' \geq \min \{ \theta^*, \hat{\theta} \}$. But then there exists $\theta < \min \{ \theta^*, \hat{\theta} \} \leq \theta^*$ such that $P(\theta) = P(\theta')$, contradicting the fact that $\theta^* = \inf \Theta^*$. This completes the proof of Claim 1.

Claim 2: $\theta^* < \hat{\theta}$, and so $T(\theta^*) > 0$.

Proof of Claim 2: Suppose to the contrary that $\theta^* \geq \hat{\theta}$, so that $\min \{ \theta^*, \hat{\theta} \} = \hat{\theta}$. By Claim 1, $P(\theta) = X(\theta) + U(\theta)$ if $\theta < \hat{\theta}$, and $P(\theta) \geq X(\hat{\theta}) + U(\hat{\theta})$ for $\theta \geq \hat{\theta}$. As such, whenever the true fundamental is strictly above $\hat{\theta}$ the agent knows either that the fundamental is strictly above $\hat{\theta}$; or that the fundamental is either strictly above $\hat{\theta}$ or equal to $\hat{\theta}$, with a positive probability of both. So the agent intervenes with probability 0 for any $\theta > \hat{\theta}$. But then the price is not above $X(\hat{\theta}) + U(\hat{\theta})$ for any θ close to $\hat{\theta}$. This contradiction completes the proof of the Claim 2.

Claim 3: $P(\theta^*) = X(\theta^*) + U(\theta^*)$, and so $E(I|\theta^*) = 1$.

Proof of Claim 3: From Claims 1 and 2, $P(\theta) \geq X(\theta^*) + U(\theta^*)$ for $\theta \geq \theta^*$. The claim follows since by Claim 2, $U(\theta^*) > 0$ and thus $P(\theta^*) \leq X(\theta^*) + U(\theta^*)$.

Claim 4: $\theta^* \geq \hat{\theta} - 2\kappa$.

Proof of Claim 4: Suppose otherwise, $\theta^* < \hat{\theta} - 2\kappa$. Observe that $X(\hat{\theta} - 2\kappa) + U(\hat{\theta} - 2\kappa) = X(\hat{\theta} - 2\kappa + T(\hat{\theta} - 2\kappa)) < X(\hat{\theta})$. So there exists $\theta_1 \in \Theta^*$ with a price P strictly below $X(\hat{\theta})$. But any fundamental $\theta_2 \geq \hat{\theta}$ has a price of at least $\min \{ X(\theta_2), X(\theta_2 + T(\theta_2)) \} \geq \min \{ X(\hat{\theta}), X(\hat{\theta} + T(\hat{\theta})) \} \geq X(\hat{\theta})$. So all fundamentals with price P lie below $\hat{\theta}$, implying that the agent intervenes with probability 1 at
all of them, and hence θ_1 is the unique fundamental associated with price P. But then $\theta_1 \notin \Theta^*$, giving a contradiction.

Claim 5: If fundamentals θ_1 and θ_2 share the same price then $T(\theta_1)$ and $T(\theta_2)$ have the same sign.

Proof of Claim 5: If $T(\theta)$ is everywhere positive then the claim is vacuously true. For the case in which $T(\theta)$ is negative for large enough fundamentals, define θ_{T_0} implicitly by $T(\theta_{T_0}) = 0$. So if $\theta > \theta_{T_0}$ we know $P(\theta) \geq X(\theta) + U(\theta) > X(\theta_{T_0}) + U(\theta_{T_0})$, while for fundamentals $\theta < \theta_{T_0}$ we know $P(\theta) \leq X(\theta) + U(\theta) < X(\theta_{T_0}) + U(\theta_{T_0})$. So it is impossible for a fundamental to the left of θ_{T_0} to share a price with a fundamental to the right of θ_{T_0}.

Now, consider first the case where $\theta^* \in \Theta^*$. There exists a fundamental $\theta' > \hat{\theta}$ such that:

$$P(\theta') = X(\theta') + E(\theta') U(\theta') = X(\theta^*) + U(\theta^*).$$

By Claim 2, $T(\theta^*) > 0$. By Claim 5, $T(\theta') > 0$. Note that $\theta^* > \theta' - 2\kappa$, since if $\theta' \geq \theta^* + 2\kappa$ the price at θ' is at least $X(\theta^* + 2\kappa)$, which since $2\kappa > T(\hat{\theta} - 2\kappa) \geq T(\theta^*)$ (by Claim 4) is more than $P(\theta^*) = X(\theta^* + T(\theta^*))$.

Since $E(\theta^*) = 1$, the agent always intervenes at signals below $\theta^* + \kappa$. Thus, $E(\theta') \geq \Pr(\theta' + \xi \leq \theta^* + \kappa) = 1 - \frac{\theta' - \theta^*}{2\kappa}$. Define the function $Z(\theta^*, \theta')$ as follows:

$$Z(\theta^*, \theta') \equiv X(\theta') + \left(1 - \frac{\theta' - \theta^*}{2\kappa}\right) U(\theta') - X(\theta^*) - U(\theta^*).$$

By the above arguments, in the proposed equilibrium, $Z(\theta^*, \theta') \leq 0$. We know that $Z(\theta', \theta') = 0$, and that $Z(\theta' - 2\kappa, \theta') = X(\theta') - X(\theta' - 2\kappa + T(\theta' - 2\kappa)) > 0$. Since the security is convex, $Z_{11} < 0$. Thus, there are no θ' and $\theta^* \in (\theta' - 2\kappa, \theta')$ for which $Z(\theta^*, \theta') \leq 0$. This is a contradiction to the proposed equilibrium.

Suppose now that $\theta^* \notin \Theta^*$. There exists some sequence $(\theta_i)_{i=0}^{\infty} \subset \Theta^*$ that converges to θ^*. Moreover, by Claim 3, $E(I|\theta_i) \to 1$ as $i \to \infty$: for if this is not true, there is a $\theta_i \geq \theta^*$ at which the price is below $X(\theta^*) + U(\theta^*)$, contradicting Claim 1. For each θ_i in this sequence there exists at least one fundamental, θ_i', at which the price is the same and which lies to the right of $\hat{\theta}$. Hence, $X(\theta_i') + E(I|\theta_i') U(\theta') = X(\theta_i) + E(I|\theta_i) U(\theta_i)$. Note
that \(\theta_i' - \theta_i \) is bounded away from 0 as \(i \to \infty \) since \(\theta_i \to \theta^* < \hat{\theta} \). We know that

\[
E \left(I|\theta_i' \right) = \int_{\theta_i'-\kappa}^{\theta_i'+\kappa} I(\theta_i', \phi) \frac{1}{2\kappa} \, d\phi \\
\geq \int_{\theta_i'-\kappa}^{\theta_i'+\kappa} I(\theta_i, \phi) \frac{1}{2\kappa} \, d\phi \\
\geq \left(1 - \frac{\theta_i' - \theta_i}{2\kappa} \right) - (1 - E(I|\theta_i')).
\]

Define

\[
\varepsilon_i \equiv (1 - E(I|\theta_i)) \left(U(\theta_i') - U(\theta_i) \right) \\
\hat{Z}(\theta_i, \theta_i') \equiv X(\theta_i') + \left(1 - \frac{\theta_i' - \theta_i}{2\kappa} \right) U(\theta_i') - X(\theta_i) - U(\theta_i) \\
Z(\theta_i, \theta_i') \equiv \hat{Z}(\theta_i, \theta_i') - \varepsilon_i.
\]

By the above arguments, in the proposed equilibrium, \(Z(\theta_i, \theta_i') \leq 0 \). We know that \(\varepsilon_i \) approaches 0 (the value of intervention, \(U(\theta) \), is bounded above by the maximum value of \(T \)). We know that \(\hat{Z}(\theta_i', \theta_i') = 0 \), and that \(\hat{Z}(\theta_i' - 2\kappa, \theta_i') = X(\theta_i') - X(\theta_i' - 2\kappa + T(\theta_i' - 2\kappa)) > 0 \). Since the security is convex, \(\hat{Z}_{11} < 0 \). Thus, for any \(\theta_i \) between \(\theta_i' - 2\kappa \) and \(\theta_i' \), \(Z(\theta_i, \theta_i') \geq -\varepsilon_i + \frac{(\theta_i' - \theta_i)(X(\theta_i') - X(\theta_i' - 2\kappa + T(\theta_i' - 2\kappa)))}{2\kappa} \). This implies that \(Z(\theta_i, \theta_i') \leq 0 \) can hold only if \(\theta_i' - \frac{\theta_i - \theta_i' + X(\theta_i') - X(\theta_i' - 2\kappa + T(\theta_i' - 2\kappa))}{2\kappa} \leq \theta_i \leq \theta_i' \). Then, since \(\varepsilon_i \) approaches 0, there are no \(\theta_i' \) and \(\theta_i \) that are bounded away from each other for which \(Z(\theta_i, \theta_i') \leq 0 \). This is a contradiction to the proposed equilibrium. ■

Proof of Proposition 7: Suppose the agent observes the price of securities \(A \) and \(B \), where security \(A \) is strictly convex and security \(B \) is strictly concave. The heart of the proof is the following straightforward claim:

Claim: For any pair of fundamentals \(\theta_1 \) and \(\theta_2 \neq \theta_1 \) there is no probability \(q \in (0, 1) \) such that

\[
X_s(\theta_1) + qU_s(\theta_1) = X_s(\theta_2) \quad \text{for securities } s = A, B \tag{11}
\]

or

\[
X_s(\theta_1) + qU_s(\theta_1) = X_s(\theta_2 + T(\theta_2)) \quad \text{for securities } s = A, B. \tag{12}
\]
Proof of Claim: Observe that

\[X_s(\theta_1) + qU_s(\theta_1) = (1 - q)X_s(\theta_1) + qX_s(\theta_1 + T(\theta_1)) \begin{cases} > \quad \text{if security } s \text{ is convex} \\ < \quad \text{if security } s \text{ is concave} \end{cases} \]

Since \(X_s \) is strictly increasing for both securities, it is immediate that neither (11) nor (12) can hold. \(\blacksquare \)

The proof of the main result applies this Claim. Consider any equilibrium, and let \(\Theta \) be the set of fundamentals that share the same price vector as a fundamental at which intervention is not according to the agent’s preferred rule. Suppose that (contrary to the claimed result) the set \(\Theta \) is non-empty. Let \(\theta^* \) be its supremum. Clearly if \(\theta^* \leq \hat{\theta} \) then for all equilibrium prices associated with fundamentals \(\Theta \) the agent would know the true fundamental lies below \(\hat{\theta} \), and would choose to intervene. So \(\theta^* > \hat{\theta} \). Moreover, by Lemma 1, \(\theta^* \leq \hat{\theta} + 2\kappa < \hat{\theta} + T(\hat{\theta}) \). For use below, let \(\theta^{**} \) be such that \(\theta^{**} + T(\theta^{**}) = \theta^* \). Note that \(\theta^{**} \leq \hat{\theta} \), since otherwise \(\theta^* \) cannot be the supremum of \(\Theta \). So \(T(\theta^{**}) \geq T(\hat{\theta}) \).

By construction, for fundamentals \(\theta > \theta^* \) the agent chooses not to intervene, so \(P(\theta) = X(\theta) \). Therefore, for all fundamentals \(\theta \in \Theta \) the equilibrium price vector satisfies \(P(\theta) \leq X(\theta^*) \). Consider an arbitrary sequence \(\{\theta_i\} \subset \Theta \) such that \(\theta_i \to \theta^* \). The intervention probabilities converge to zero along this sequence, \(E[I|\theta_i] \to 0 \) (otherwise, the equilibrium price would strictly exceed \(X(\theta^*) \) for some \(\theta_i \)). There are two cases to consider:

Case A: On the one hand, suppose there exists some \(\varepsilon > 0 \) and some infinite subsequence \(\{\theta_j\} \subset \{\theta_i\} \) such that for each \(\theta_j \) there is a fundamental \(\theta'_j \neq \theta_j \) with the same price, and \(E[I|\theta'_j] \in [\varepsilon, 1 - \varepsilon] \). It follows that there is a subsequence \(\{\theta_k\} \subset \{\theta_j\} \) such that for each \(\theta_k \) there is a fundamental \(\theta'_k \neq \theta_k \) with the same price, and \(E[I|\theta'_k] \) converges to \(\varepsilon \in [\varepsilon, 1 - \varepsilon] \) as \(k \to \infty \). Since for all \(k \)

\[X_s(\theta_k) + E[I|\theta_k]U_s(\theta_k) = X_s(\theta'_k) + E[I|\theta'_k]U_s(\theta'_k) \]

for securities \(s = A, B \), and the left-hand side converges to \(X_s(\theta^*) \), it follows that \(\{\theta'_k\} \) must converge also, to \(\theta' \) say. Thus \(X_s(\theta^*) = X_s(\theta') + qU_s(\theta') \) for securities \(s = A, B \), directly contradicting the above Claim.

Case B: On the other hand, suppose that Case A does not hold. So there exists an infinite subsequence \(\{\theta_j\} \subset \{\theta_i\} \) such that for each fundamental \(\theta'_j \) possessing the same price
as \(\theta_j \) the intervention probability \(E[I|\theta_j'] \) is either less than \(1/j \) or greater than \(1 - 1/j \).

It follows that for \(j \) large, all fundamentals with the same price vector as \(\theta_j \) are close to either \(\theta^* \) (if the intervention probability is close to 0) or \(\theta^* - T(\theta^{**}) \) (if the intervention probability is close to 1): formally, there exists some sequence \(\varepsilon_j \) such that \(\varepsilon_j \to 0 \) and such that \(\theta_j' \in [\theta^* - T(\theta^{**}) - \varepsilon_j, \theta^* - T(\theta^{**}) + \varepsilon_j] \cup [\theta^* - \varepsilon_j, \theta^*] \). But for \(j \) large enough, \(\theta^* - \varepsilon_j > \hat{\theta} \), \(\theta^* - T(\theta^{**}) + \varepsilon_j < \hat{\theta} \), and \((\theta^* - \varepsilon_j) - (\theta^* - T(\theta^{**}) + \varepsilon_j) = T(\theta^{**}) - 2\varepsilon_j > 2\kappa \). That is, for \(j \) large, if the agent observes price vector \(P(\theta_j) \) and his own signal, he knows with certainty which side of \(\hat{\theta} \) the fundamental lies. As such, he follows his preferred intervention rule, giving a contradiction.

Proof of Proposition 8: Exactly as in Proposition 6 a fully-revealing equilibrium cannot exist. Suppose a non-fully revealing equilibrium exists. So at some set of fundamentals \(\Theta^* \) the prices of both the concave and convex securities must be the same for at least two distinct fundamentals. That is, the set

\[
\Theta^* \equiv \{ \theta : \exists \theta' \neq \theta \text{ such that } P_i(\theta) = P_i(\theta') \text{ for all securities } i \}
\]

is non-empty. The proof of Proposition 6 applies, and gives a contradiction.

Proof of Proposition 9: First, in any equilibrium where there exist \(\theta_1 < \theta_2 \) with the same equity price, the expected intervention probabilities \(E[\theta_1 | I] \) and \(E[\theta_2 | I] \) must differ (otherwise prices would not be identical). Given that the probability of intervention can be directly inferred from \(Q(\theta) \), then the agent can always infer \(\theta \) based on \(P(\theta) \) and \(Q(\theta) \). Then, the agent will choose to intervene when \(\theta \leq \hat{\theta} \), and not intervene otherwise. The same is true if the equilibrium prices of the equity security are fully revealing. Thus, if there is an equilibrium, it must feature agent-preferred intervention.

Second, we show that agent-preferred intervention is indeed an equilibrium. In such an equilibrium, the price of the equity is \(X(\theta + T(\theta)) \) for \(\theta < \hat{\theta} \) and \(X(\theta) \) for \(\theta > \hat{\theta} \). The prediction-market security has a price of 1 for \(\theta < \hat{\theta} \) and 0 for \(\theta > \hat{\theta} \). Then, independent of the agent’s signal, the agent chooses to intervene below \(\hat{\theta} \) and not intervene above \(\hat{\theta} \). This is indeed consistent with the prices, so agent-preferred intervention is an equilibrium.

Proof of Proposition 10: Denote the size of the set of parameters in \([\hat{\theta} - T(\hat{\theta}), \hat{\theta}] \)
over which the agent follows his preferred intervention rule as λ^- (where $\bar{\theta}$ is as defined in Lemma 1), and the size of the set of parameters in $[\bar{\theta}, \bar{\theta} + T(\bar{\theta})]$ over which the agent follows his preferred intervention rule as λ^+.

By the shape of the price function under agent-preferred intervention (see Figure 2), every fundamental $\theta \in [\bar{\theta} - T(\bar{\theta}), \bar{\theta}]$ that exhibits agent-preferred intervention implies that the intervention decision at $\theta + T(\theta) \in [\bar{\theta}, \bar{\theta} + T(\bar{\theta})]$ is not agent-preferred. This is because agent-preferred intervention at both θ and $\theta + T(\theta)$ implies that the two fundamentals have the same price, but this is impossible in a commitment equilibrium. Thus, the set of fundamentals with agent-preferred intervention in $[\bar{\theta} - T(\bar{\theta}), \bar{\theta}]$ cannot be greater than the set of fundamentals without agent-preferred intervention in $[\bar{\theta}, \bar{\theta} + T(\bar{\theta})]$. That is, $\lambda^- \leq T(\bar{\theta}) - \lambda^+$, which implies that $\lambda^- + \lambda^+ \leq T(\bar{\theta})$. This completes the proof. ■

Appendix B: Interpreting the no-equilibrium result

We present a very simple trading game that formalizes the intuition that the no-equilibrium result in our rational-expectations model can be translated into a market-breakdown result in an explicit trading game.

The trading game is as follows. There is a single market maker and multiple speculators. All trade must take place via the market maker. Both the speculators and the market maker observe the fundamental θ. As before, the agent observes only $\theta + \xi$. After observing the realization of θ, the market maker sets a price, at which he is willing to buy or sell any quantity desired by speculators. The market maker can also abstain from posting a price, in which case no trade takes place. If the market maker posts a price, speculators then submit buy and sell orders. The agent observes the price set by the market maker and makes an intervention decision just as before.18

Clearly this trading game is highly stylized. Its virtue, however, is that it both replicates a rational-expectations equilibrium when one exists, and formalizes the notion that when the agent’s information is poor the market maker abstains from posting a price and trade.

18If the market maker does not set a price this too is observed by the agent.
breaks down. Formally:

Proposition 11 (A) Let \((P(\theta), I(P(\theta), \phi))\) be a REE. Then there is an equilibrium of the trading game in which for all fundamentals \(\theta\) and all agent signal realizations \(\phi\), the market maker posts price \(P(\theta)\) and intervention takes place with probability \(I(P(\theta), \phi)\). Conversely, any equilibrium of the trading game with prices posted in all fundamentals corresponds to a REE.

(B) When \(\kappa > T(\hat{\theta} - 2\kappa)/2\), there exists \(\theta^* \in (\hat{\theta}, \tilde{\theta})\) such that for any \(\tilde{\theta} \in [\hat{\theta}, \theta^*]\) there is an equilibrium of the trading game in which: the market maker posts the price \(X(\theta + T)\) and the agent intervenes when \(\theta \leq \tilde{\theta}\); the market maker does not post a price when \(\theta \in (\hat{\theta}, \tilde{\theta} + T(\tilde{\theta})]\); the market maker posts the price \(X(\theta)\) and the agent does not intervene when \(\theta > \tilde{\theta} + T(\tilde{\theta})\). The equilibria do not exhibit agent-preferred intervention policy (except for when \(\tilde{\theta} = \hat{\theta}\) or \(\hat{\theta}\)).

Part (A) of Proposition 11 follows almost immediately from definitions. Part (B) is most easily illustrated when the agent has no information, i.e., \(\kappa = \infty\), since this avoids the need to consider off-equilibrium-path beliefs (which are dealt with in the proof). In this case, for any \(\tilde{\theta}\) such that \(\tilde{\theta} \in [\hat{\theta}, \tilde{\theta} + T(\tilde{\theta})]\) there is an equilibrium in which the market maker posts no price when the fundamental lies in this range, and posts a fully revealing price otherwise.

The key property of this equilibrium is that for fundamentals \(\theta\) in the no-price interval, any price that the market maker could conceivably quote would lead to losses. Specifically, in equilibrium, prices above (respectively, below) \(X(\tilde{\theta} + T(\tilde{\theta}))\) reveal that the fundamental is above (respectively, below) \(\hat{\theta}\) and lead to no intervention (respectively, intervention). So if at fundamental \(\theta \in (\hat{\theta}, \tilde{\theta} + T(\tilde{\theta})]\) the marker maker posts a high price, the agent will respond by not intervening, implying that the quoted price exceeds the fundamental value of the security. In this case speculators short the security and the market maker suffers losses. Likewise, quoting a low price leaves speculators with a profitable buying opportunity.

Several features of this equilibrium are worth commenting upon. First, the equilibrium captures the idea the agent’s action is hard to predict. That is, when the fundamental is

\(^{19}\)Recall that \(\hat{\theta}\) is defined by \(\hat{\theta} + T(\tilde{\theta}) = \tilde{\theta}\).
in the neighborhood of \(\hat{\theta}\), market participants are reluctant to trade at any price, because they do not know how the agent will react.

Second, unless \(\hat{\theta} = \tilde{\theta}\) or \(\tilde{\theta} + T \tilde{\theta}\), the equilibrium does not exhibit agent-preferred intervention. To see this, simply note that since the agent has no information in the above example, he must make the same intervention decision for all fundamentals in the no price range. Since the no price range straddles \(\tilde{\theta}\), intervention is consistent with the agent’s preferred rule at some fundamentals in this range but not others. So whatever decision the agent makes upon seeing no price, it is not according to his preferred intervention rule in some cases.

Third, although the fundamental is not fully revealed in equilibrium, the agent does learn something from the drop in volume that occurs when \(\theta \in (\tilde{\theta}, \tilde{\theta} + T \tilde{\theta})\) — specifically, that the fundamental is in this interval. Indeed, in the extreme equilibria in which \(\hat{\theta} = \tilde{\theta}\) or \(\tilde{\theta} + T \tilde{\theta}\) this information is enough to allow the agent to intervene according to his preferred rule.

Proof of Proposition 11: Part (A). The first half is immediate. For the second half, it suffices to show that in any equilibrium of the trading game with prices posted in all states the mapping from fundamentals to prices satisfies the rational expectations equilibrium condition (2). To see this, note that since speculators have the same information as the market maker, if the posted price is not equal to the security’s expected payoff then speculators could buy (or sell) the security to make positive profits. In this case, the market maker would make negative profits.

Part (B). To complete the description of the equilibrium, let the agent’s off-equilibrium-path beliefs be such that if he observes a signal \(\phi\) and a price corresponding in equilibrium to fundamental \(\theta < \phi - \kappa\) (respectively, \(\theta > \phi + \kappa\)), then he believes the fundamental is \(\phi - \kappa\) (respectively, \(\phi + \kappa\)). Moreover, the agent’s intervention decision at fundamental \(\theta \in (\tilde{\theta}, \tilde{\theta} + T \tilde{\theta})\) and signal \(\phi\) is determined by the sign of

\[
E \left[V (\theta') | \theta' \in (\tilde{\theta}, \tilde{\theta} + T \tilde{\theta}) \cap [\phi - \kappa, \phi + \kappa] \right].
\]

In the conjectured equilibrium, whenever a price is posted it perfectly reveals the fundamental. So by construction, the agent’s intervention decision is a best response. It remains
only to check that the market maker has no profitable deviation.

For use below, note that by construction \(\tilde{\theta} \leq \hat{\theta} \leq \tilde{\theta} + T(\tilde{\theta}) \); and by assumption \(\hat{\theta} - 2\kappa + T(\hat{\theta} - 2\kappa) < \hat{\theta} = \hat{\theta} + T(\tilde{\theta}) \), implying \(\hat{\theta} - 2\kappa < \hat{\theta} \) and hence \(2\kappa > T(\hat{\theta} - 2\kappa) \geq T(\theta) \) for all \(\theta \geq \hat{\theta} \).

Consider a realization of the fundamental \(\theta \leq \tilde{\theta} \). For these fundamentals the market maker posts a price and makes zero profits. He cannot profit by not posting a price. If he posts a higher price \(p > X(\theta + T(\theta)) \) then regardless of the agent’s response the value of the security is less than \(p \), and so speculators will short the security and the market maker will lose money. If he posts a lower price \(p < X(\theta + T(\theta)) \) then (given the beliefs specified) the agent will intervene, implying that the value of the security exceeds \(p \) and the market maker will lose money. By a similar argument, the market maker does not have a profitable deviation if \(\theta > \tilde{\theta} + T(\tilde{\theta}) \).

Next, suppose \(\theta \in (\tilde{\theta}, \hat{\theta} + T(\tilde{\theta})) \), the no price region. First, consider a deviation by the market maker in which he posts a price \(p > X(\hat{\theta} + T(\tilde{\theta})) \). Let \(\theta' > \hat{\theta} + T(\tilde{\theta}) \geq \theta \) be such that \(X(\theta') = p \). Whenever the agent observes \(\phi \in [\theta' - \kappa, \theta + \kappa] \) he believes the fundamental is \(\theta' \) and does not intervene. So the intervention probability is bounded above by \(\frac{\theta' - \theta}{2\kappa} \), and so the security value is bounded above by

\[
\frac{\theta' - \theta}{2\kappa} X(\theta + T(\theta)) + \left(1 - \frac{\theta' - \theta}{2\kappa} \right) X(\theta).
\]

This is strictly less than the quoted price \(X(\theta') \) for all \(\theta' \in (\theta, \theta + 2\kappa] \), since \(X \) is concave and \(2\kappa > T(\theta) \). Likewise, if \(\theta' > \theta + 2\kappa \) then \(X(\theta') > X(\theta + 2\kappa) \geq X(\theta + T(\theta)) \), and so again the quoted price must exceed the value of security. So the agent loses money from a deviation of this form.

Second, consider a deviation by the market maker in which he posts a price \(p \leq X(\hat{\theta} + T(\tilde{\theta})) \). Let \(\theta' \leq \tilde{\theta} \) be such that \(X(\theta' + T(\theta')) = p \). So the agent believes the fundamental is \(\theta' \) if \(\phi \in [\theta - \kappa, \theta' + \kappa] \), and \(\phi - \kappa \) if \(\phi \in (\theta' + \kappa, \theta + \kappa] \). Since \(\theta' \leq \tilde{\theta} \leq \hat{\theta} \), it follows that the agent intervenes with probability 1 if \(\theta < \hat{\theta} \), and with probability \(\frac{\theta + \kappa - (\theta - \kappa)}{2\kappa} = 1 - \frac{\theta - \tilde{\theta}}{2\kappa} \) if \(\theta \geq \hat{\theta} \). The value of the security under this deviation is thus
\[X(\theta + T(\theta)) \text{ if } \theta < \hat{\theta}, \text{ and} \]
\[\left(1 - \frac{\theta - \hat{\theta}}{2\kappa}\right) X(\theta + T(\theta)) + \frac{\theta - \hat{\theta}}{2\kappa} X(\theta) \]

if \(\theta \geq \hat{\theta} \). In the former case the value of the security certainly lies strictly above the quoted price of \(X(\theta' + T(\theta')) \), causing the market maker to lose money from this deviation. The same is true for the latter case for \(\theta \leq \tilde{\theta} + T(\tilde{\theta}) = \hat{\theta} \) and \(\theta' \leq \hat{\theta} \). Finally, by continuity, this is also the case for \(\theta \leq \tilde{\theta} + T(\tilde{\theta}) \) and \(\theta' \leq \hat{\theta} \) for all \(\tilde{\theta} \) sufficiently close to \(\hat{\theta} \).

Finally, note that (except for when \(\tilde{\theta} = \hat{\theta} \) or \(\hat{\theta} \)) the equilibrium does not exhibit agent-preferred intervention. To see this, fix an equilibrium, and consider the agent’s action when he sees a signal \(\phi = \hat{\theta} \) and no price. If he intervenes, this implies that with positive probability he intervenes too much for some \(\theta \in (\tilde{\theta}, \tilde{\theta} + T(\tilde{\theta})) \) to the right of \(\hat{\theta} \). Likewise, if the agent does not intervene, then this implies that with positive probability he intervenes too little for some \(\theta \in (\tilde{\theta}, \tilde{\theta} + T(\tilde{\theta})) \) to the left of \(\hat{\theta} \). ■