Hölmstrom-Milgrom (1987) view of Linear Contracts

Suppose the outcome is produced by a diffusion process described by the following stochastic differential equation:

$$dx_t = a_t \, dt + \sigma \, dW_t,$$

where W_t is Brownian motion, $t \in [0, 1]$ and the Agent controls trend a_t. The utilities of both the Agent and the Principal depend on the final outcome x_1. The Agent’s utility function is

$$u(x_1 - \int_0^1 a_t \, dt),$$

where u is CARA utility function $u(x) = -\exp\{-kx\}$. The Principal is risk-neutral. Hölmstrom-Milgrom (1987) show that the optimal contract is linear in x_1.

This result is intuitive. Recall that Binomial discrete-time process converges to Brownian motion. Assume that the outcome may increase or decrease by a fixed amount in each period and the Agent controls the probabilities of these changes. As CARA utility function exhibits no wealth effect, the optimal contract consists in repeating the contract that is optimal in each period. But these one-period contracts pay to the Agent a fixed wage and a bonus if the outcome has increased. Therefore, the optimal contract must give the Agent the bonus that is proportional to the number of periods for which the outcome has increased. The result of Hölmstrom-Milgrom (1987) is obtained by taking the continuous-time limit.
The Multitask Model (Hölmstrom-Milgrom 1991)

Assume that the Agent has two tasks to complete and controls two effort variables, a_1 and a_2. His utility function is

$$-\exp\{-r(w - C(a_1, a_2))\},$$

where r is a coefficient of the Agent’s absolute risk aversion and C is a convex function. The Principal is risk-neutral and observes the joint output,

$$\begin{cases} x_1 = a_1 + \epsilon_1 \\ x_2 = a_2 + \epsilon_2, \end{cases}$$

where

$$\begin{pmatrix} \epsilon_1 \\ \epsilon_2 \end{pmatrix} \sim N\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{pmatrix}\right).$$

Given the results of Hölmstrom-Milgrom (1987), we can limit our attention to linear wage contracts,

$$w(x_1, x_2) = \alpha'x + \beta = \alpha_1 x_1 + \alpha_2 x_2 + \beta.$$

Under this contract the Principal’s expected profit is

$$a_1 + a_2 - \alpha_1 a_1 - \alpha_2 a_2 - \beta,$$

while the Agent’s certain equivalent is

$$\alpha_1 a_1 + \alpha_2 a_2 + \beta - C(a_1, a_2) - \frac{r}{2}\alpha'\Sigma\alpha.$$

Observe that β does not affect the Agent’s optimal choice and is a pure transfer between the Principal and the Agent. The Principal is solving the following optimization problem:

$$\max_{a_1, a_2} a_1 + a_2 - C(a_1, a_2) - \frac{r}{2}\alpha'\Sigma\alpha,$$

where

$$(a_1, a_2) \in \arg\max_{a_1', a_2'} \alpha_1 a_1' + \alpha_2 a_2' - C(a_1, a_2).$$
Incentive constraint for the Agent gives

$$\alpha_i = C'_i(a_1, a_2),$$

for $i = 1, 2$. By differentiating (\ast) with respect to α_1, we get

$$\begin{cases} 1 = C''_{11} \frac{\partial a_1}{\partial \alpha_1} + C''_{12} \frac{\partial a_2}{\partial \alpha_1} \\ 0 = C''_{12} \frac{\partial a_1}{\partial \alpha_1} + C''_{22} \frac{\partial a_2}{\partial \alpha_1}, \end{cases}$$

or

$$\begin{cases} \frac{\partial a_1}{\partial \alpha_1} = \frac{C''_{22}}{D''} \\ \frac{\partial a_2}{\partial \alpha_1} = -\frac{C''_{12}}{D''}, \end{cases}$$

where

$$D'' = C''_{11} C''_{22} - (C''_{12})^2 > 0.$$

Similarly, we obtain

$$\begin{cases} \frac{\partial a_1}{\partial \alpha_2} = -\frac{C''_{12}}{D''} \\ \frac{\partial a_2}{\partial \alpha_2} = \frac{C''_{11}}{D''}. \end{cases}$$

Therefore, for $i \neq j$ we find

$$\frac{\partial a_i}{\partial \alpha_i} > 0,$$

and

$$\frac{\partial a_i}{\partial \alpha_j} = \begin{cases} < 0, & \text{if } C''_{12} > 0 \\ > 0, & \text{if } C''_{12} < 0. \end{cases}$$

Observe that $C''_{12} > 0$ and $C''_{12} < 0$ correspond to perfect substitutes and perfect complements cases, respectively.

Let us go back to the Principal’s maximization problem. By differentiating the objective function with respect to a_i, we get

$$1 - C'_i - r \alpha \sum \frac{\partial a}{\partial a_i} = 0,$$

for $i = 1, 2$. Differentiating (\ast) with respect to a_j gives

$$\frac{\partial \alpha_i}{\partial a_j} = C''_{ij},$$

for $i, j = 1, 2$. Plugging (\ast) and (\diamond) into (\ast) gives

$$\alpha = (I + r C'' \Sigma)^{-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix},$$

(\bullet)
Discussion

Let us study some consequences of the above formulas. First, assume that the tasks are independent (C'' is diagonal) and that the signals are independent ($\sigma_{12} = 0$). Then (\bullet) becomes

$$\alpha_i = \frac{1}{1 + rC''_{ii}\sigma_i^2},$$

for $i = 1, 2$. This is the same formula as when the Principal considers the two tasks separately.

Now suppose that C'' is not diagonal, $\sigma_{12} = 0$ and σ_2 goes to infinity. In other words, only the first task is observable. Formula (\bullet) becomes

$$\begin{cases}
\alpha_1 = \frac{1 - (C''_{11}/C_{22})}{1 + r\sigma_1^2[(C''_{11} - ((C''_{12})^2/C''_{22}))]} \\
\alpha_2 = 0.
\end{cases}$$

If the two tasks are complements ($C''_{12} < 0$: an increase in a_1 makes a_2 less costly), then α_1 will be higher when C''_{12} is more negative. If the two tasks are substitutes ($C''_{12} > 0$: an increase in a_1 makes a_2 more costly), then α_1 will be lower when C''_{12} is more positive.

Under the same assumption that σ_2 is infinite, assume that $C(a_1, a_2) = c(a_1 + a_2)$. In other words, only total effort is relevant for the Agent’s utility. Then $C''_{11} = C''_{12} = C''_{22}$, and ($\bullet$) becomes

$$\begin{cases}
\alpha_1 = 0 \\
\alpha_2 = 0.
\end{cases}$$

In this case inducing the Agent to perform in task 1 discourages him to perform in task 2. The Principal gives up on incentives.

Hölmstrom-Milgrom (1991) conclude that the multitask model may explain why real-world incentives are less powered than their theoretical counterparts.
References

