Week 5: Collateral, Rental Markets, and Repo Markets

• Collateral key determinant of capital structure
 ◦ Enforcement of repayment by borrower limited to tangible assets
 ◦ Nature of assets required for production determine financing
 ◦ Readings: Rampini/Viswanathan (2013), Collateral and capital structure

(Frictionless) Neoclassical Theory of Investment

• Environment
 ◦ Time 0 and 1
 ◦ Investor/owner

• Preferences
 ◦ Investor is risk neutral and discounts time 1 payoffs at rate $R^{-1} < 1$

• Endowments
 ◦ Investor net worth $w \gg 0$, i.e., deep pockets (Holmström/Tirole’s (1997) called this A)

• Technology
 ◦ Capital k invested at time 0
 ◦ Payoff (“cash flow”) at time 1
 \[Af(k) \]
 where parameter A is “total factor productivity” (TFP)
 ◦ Strict concavity $f'(k) > 0$ and $f''(k) < 0$; also: $\lim_{k \to 0} f'(k) = +\infty$; $\lim_{k \to \infty} f'(k) = 0$
 ◦ Capital is durable and depreciates at rate δ; capital $(1 - \delta)k$ remains at time 1
Neoclassical Investment and User Cost of Capital

- Investor’s problem (objective: maximize “value” – present discounted value of dividends)
 - Choose dividends d_0 at time 0 and d_1 at time 1 and invest capital k to solve
 \[
 \max_{\{d_0,d_1,k\}} d_0 + R^{-1}d_1
 \]
 subject to budget constraints (but no limited liability constraints)
 \[
 w \geq d_0 + k \\
 Af(k) + k(1 - \delta) \geq d_1
 \]
 - First-order conditions (FOCs) (multipliers μ_0 and μ_1)
 \[
 1 = \mu_0 \\
 R^{-1} = \mu_1 \\
 \mu_0 = \mu_1 [Af'(k) + (1 - \delta)]
 \]

- Optimal investment/capital k^* solves (combining FOCs)
 \[
 1 = R^{-1} [Af'(k) + (1 - \delta)]
 \]
 or letting $R \equiv 1 + r$ and rewriting
 \[
 \underbrace{r + \delta}_{\text{user cost of capital}} = \underbrace{Af'(k)}_{\text{marginal product of capital}}
 \]

- Jorgenson’s (1963) user cost of capital
 \[
 u \equiv \underbrace{r}_{\text{interest rate}} + \underbrace{\delta}_{\text{depreciation rate}}
 \]

Collateral Constraints as in Rampini/Viswanathan (2013)

- Environment with frictions (otherwise as before)
 - Environment: Two types of agents, owner/borrower and investor/lender
 - Borrower is risk neutral, impatient $\beta < R^{-1}$, and subject to limited liability
 - Borrower has limited funds $w > 0$; lender has deep pockets
 - Collateral constraints: Need to collateralize loan repayment with tangible assets

- Financing problem with collateral constraints (where $\theta < 1$)
 \[
 \max_{\{d_0,d_1,k,b\}} d_0 + \beta d_1
 \]
 subject to budget constraints and collateral constraint
 \[
 w + b \geq d_0 + k \\
 Af(k) + k(1 - \delta) \geq d_1 + Rb \\
 \theta k(1 - \delta) \geq Rb
 \]
 and limited liability $d_0, d_1 \geq 0$

- First-order conditions (FOCs) (multipliers μ_0, μ_1, and λ)
 \[
 1 \leq \mu_0, \quad \beta = \mu_1 \\
 \mu_0 = \mu_1 [Af'(k) + (1 - \delta)] + \lambda \theta (1 - \delta), \quad \mu_0 = \mu_1 R + \lambda R
 \]

- Optimal investment/capital k solves (combining FOCs)
 \[
 [1 - R^{-1} \theta (1 - \delta)] \mu_0 = \beta [Af'(k) + (1 - \theta) (1 - \delta)]
 \]
Collateral Constraints: Tangible Assets and Capital Structure

- “Minimal downpayment” (per unit of capital)
 \[\varphi \equiv 1 - \frac{R^{-1}\theta(1 - \delta)}{PV\ of\ \theta\times\ resale\ value\ of\ capital} \]

- Capital structure
 - Collateral constraints bind: Using FOCs and noting \(\beta R < 1 \)
 \[\beta R + \lambda R = \mu_0 \geq 1 \quad \Rightarrow \quad \lambda > 0, \quad i.e., \quad Rb = \theta k(1 - \delta) \]
 - Debt per unit of capital
 \[R^{-1}\theta(1 - \delta) \]
 - Internal funds per unit of capital
 \[\varphi = 1 - R^{-1}\theta(1 - \delta) \]

- Collateralizability \(\theta \)
 - Structures more collateralizable than equipment (composition varies by industry)
 - Financial development may raise \(\theta \) and hence leverage

- Tangibility (includes mainly structures (incl. land) and equipment)
 - Suppose tangible assets are collateralizable (but not intangible assets)
 - Fraction tangible assets (\(\varphi \)) needed for production key: \(\varphi = 1 - R^{-1}\varphi\theta(1 - \delta) \)

Investment and Dividend Policy

- Investment policy
 - Investment FOC
 \[1 \leq \beta Af'(k) + (1 - \theta)(1 - \delta) \]
 with equality if \(d_0 > 0 \)
 - Dividend paying firm: Capital \(k \) solves equation above
 - Comparing FOCs can show \(k < k^* \) (underinvestment)
 - Non-dividend paying firm: \(k = \frac{1}{\mu}w \) (invest all net worth and lever as much as possible)

- Dividend policy (threshold policy)
 - Pay out dividends today \((d_0 > 0) \) if \(w \geq \bar{w} \)
 - Can we show threshold is optimal? Suppose pay dividends at \(w \) but not at \(w^+ > w \)
 - At \(w \), invest \(\bar{k} \); if not paying dividends at \(w^+ \), must invest more; can FOC hold?

- Value of internal funds \(\mu_0 \) (remember the envelope condition?)
 - Premium on internal funds (unless firm pays dividends) since \(\mu_0 \geq 1 \)

- User cost \(u(w) \)
 - User cost such that \(u(w) = R\beta \frac{1}{\mu_0}Af'(k) \) where
 \[u(w) \equiv r + \delta + R\frac{\lambda}{\mu_0}(1 - \theta)(1 - \delta) \quad \Rightarrow \quad u \]
Limited Enforcement Implies Collateral Constraints

- **Question**: Why does borrower need to collateralize loans?
 - Enforcement is limited and it has to be incentive compatible for borrower to repay

- **Friction**: Limited enforcement
 - Borrower can abscond with all cash flows and fraction $1 - \theta$ of (depreciated) capital

- **Limited enforcement implies collateral constraints**
 - **Enforcement constraint**
 - Ensure that borrower prefers to repay instead of absconding

 $Af(k) + k(1 - \delta) - Rb = d_1 \geq Af(k) + (1 - \theta)k(1 - \delta)$

 - **Collateral constraint**
 - Canceling terms and rearranging enforcement constraint we obtain

 $\theta k(1 - \delta) \geq Rb$

Dynamic Financing

- **Dynamics**
 - Suppose financing problem repeats itself at $t = 0, 1, 2, \ldots$ (infinite horizon)

- **Dynamic programming** (Bellman (1953))
 - Suppose function $v(w)$ summarizes value to borrower from having net worth w
 - Problem: Function $v(w)$ is unknown!
 - Richard Bellman’s key insight: $v(w)$ must solve a particular (functional) equation!
 - Financing problem with collateral constraints (Bellman equation)

 $v(w) \equiv \max_{\{d,k,b,w^\prime\}} d + \beta v(w^\prime)$

 subject to budget constraints and collateral constraint

 $w + b \geq d + k$

 $Af(k) + k(1 - \delta) \geq w^\prime + Rb$

 $\theta k(1 - \delta) \geq Rb$

 and limited liability $d \geq 0$
 - Net worth next period $w^\prime = Af(k) + k(1 - \delta) - Rb$
 - Note: Problem looks almost exactly as before!

- Dynamic programming is a remarkably powerful tool to solve dynamic problems
Net Worth Accumulation and Firm Growth

- First-order conditions (FOCs) for dynamic problem (multipliers μ, μ', and λ)

\[
1 \leq \mu, \quad \beta v'(w') = \mu', \quad \mu = \mu'[Af'(k) + (1 - \delta)] + \lambda \theta (1 - \delta), \quad \mu = \mu' R + \lambda R
\]

- Note: FOCs look almost exactly as before!
- Also: Envelope condition $v'(w) = \mu$

- Dividend policy and net worth accumulation
 - Dividend policy is threshold policy
 - For $w \geq \bar{w}$, pay dividends $d = w - \bar{w}$
 - For $w < \bar{w}$, pay no dividends and reinvest everything ("retain all earnings")

- Investment policy and firm growth
 - For $w \geq \bar{w}$, keep capital constant at \bar{k} (no growth)
 - For $w < \bar{w}$, invest everything $k = 1/p w$ resulting in net worth $w' > w$ next period

- Firm age
 - Young firms ($w < \bar{w}$) do not pay dividends, reinvest everything, and grow
 - Mature firms ($w \geq \bar{w}$) pay dividends and do not grow

Conclusions

- Tangible assets as collateral
 - If debt needs to be collateralized, type of assets required determines capital structure

- Dynamics of financing
 - Accumulate net worth over time
 - Young firms grow and retain all earnings
 - Mature firms pay dividends and grow less
Week 5: Collateral, Rental Markets, and Repo Markets
(Cont’d)

• Rental markets
 ◦ Leasing has repossession advantage and permits greater borrowing
 ◦ Severely constrained firms (and households) lease
 ◦ Readings: Rampini/Viswanathan (2013), Collateral and capital structure

• Repurchase (Repo) agreements
 ◦ Collateralized loans in which lender (temporarily) owns collateral
 ◦ Key aspect of financial crisis?
 ◦ Readings: Gorton/Metrick (2012), Securitized banking and the run on repo

Leasing as in Rampini/Viswanathan (2013)

• Environment with collateral constraints (as in last class) but firms can lease
 ◦ Environment: Two types of agents, owner/borrower, investor/lender, and lessor
 ◦ Borrower is risk neutral, impatient \(\beta < R^{-1} \), and subject to limited liability
 ◦ Borrower has limited funds \(w > 0 \); lender and lessor have deep pockets

• Borrowing subject to collateral constraints
 ◦ Need to collateralize promises to pay with tangible assets (due to limited enforcement)
 ◦ Promised repayment \(\leq \theta \times \) resale value of tangible assets

• Leasing: Borrower can rent capital
 ◦ Repossession advantage: Borrower cannot abscond with leased capital
 • In practice, repossession of rented capital easier than foreclosure on secured loan
 • Leasing allows borrower to borrow full resale value, not just fraction \(\theta \)
 ◦ Monitoring cost \(m \) (per unit of capital): Lessor needs to monitor to prevent abuse
 • Why? – Leasing separates ownership and control
 ◦ User cost of leased capital (assuming lessors, like lenders, discount at \(R^{-1} \))
 \[
 u_t = r + \delta + m
 \]
 needs to be paid in advance, i.e., at time 0
Lease or Buy?

- **Firm’s problem with leasing** \((k_o \text{ owned capital}; k_l \text{ leased capital})\)

\[
\max_{(d_0, d_1, k_o, k_l)} \ d_0 + \beta d_1
\]

subject to budget constraints and collateral constraint

\[
w + b \geq d_0 + k_o + R^{-1} u_l k_l \]

\[
Af(k_o + k_l) + k_o(1 - \delta) \geq d_1 + Rb
\]

\[
\theta k_o(1 - \delta) \geq Rb
\]

and non-negativity constraints \(k_o, k_l \geq 0\), as well as limited liability \(d_0, d_1 \geq 0\)

- First-order conditions \((FOCs)\) (multipliers \(\mu_0, \mu_1\), and \(\lambda\); let \(k \equiv k_o + k_l\)): As before,

\[
1 \leq \mu_0, \quad \beta = \mu_1, \quad \mu_0 = \mu_1 R + \lambda R
\]

and almost as before (except inequality as borrower might not own any assets)

\[
\mu_0 \geq \mu_1[Af'(k) + (1 - \delta)] + \lambda \theta(1 - \delta) \iff u(w) \geq R\beta \mu_0^{-1} Af'(k)
\]

and finally new

\[
R^{-1} u_l \mu_0 \geq \mu_1 Af'(k) \iff u_l \geq R\beta \mu_0^{-1} Af'(k)
\]

- **Leasing policy**

 - Lease if \(u_l < u(w)\) and buy otherwise (“choose capital with lower user cost”)

 - Recall: \(u_l = r + \delta + \frac{m}{\text{monitoring cost}}\) and \(u(w) = r + \delta + \frac{R\lambda}{\mu_0(1 - \theta)(1 - \delta)}\) premium on internal funds required

Leasing as Costly Way to Borrow More

- **Incremental cash flows of buying vs. leasing**

<table>
<thead>
<tr>
<th>Time</th>
<th>Buying (with secured loan)</th>
<th>Leasing</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 - (R^{-1} \theta(1 - \delta))</td>
<td>(R^{-1} u_l)</td>
</tr>
<tr>
<td>1</td>
<td>((1 - \theta)(1 - \delta))</td>
<td>((1 - \theta)(1 - \delta))</td>
</tr>
</tbody>
</table>

- **Implicit interest rate on additional amount borrowed when leasing**

\[
R_l \equiv \frac{(1 - \theta)(1 - \delta)}{\varphi - R^{-1} u_l} = R \frac{1 - \frac{m}{(1 - \theta)(1 - \delta)}}{1 - \frac{1}{(1 - \theta)(1 - \delta)}} > R
\]

 - Leasing is costly financing since \(R_l > R\)

- **Implicit “down payment” when leasing**

\[
R^{-1} u_l = 1 - \frac{R^{-1} \theta(1 - \delta)}{\text{financed at } R} - \frac{R^{-1} \theta(1 - \theta)(1 - \delta)}{\text{financed at } R_l}
\]

- **Who leases?**

 - Severely constrained firms do!

 - As \(w \to 0, k \to 0\) and \(f'(k) \to +\infty\); hence, using \(FOCs\), \(\mu_0 \to +\infty\) and

\[
R\lambda/\mu_0 = 1 - \frac{\beta}{\mu_0 R} \to 1 \Rightarrow u(w) \to r + \delta + (1 - \theta)(1 - \delta)
\]

 - Assuming \((1 - \theta)(1 - \delta) > m\), borrowers with sufficiently low \(w\) lease all their capital!
Repo Markets as discussed in Gorton/Metrick (2012)

- **Collateralized financing**
 - Securitization
 - Pooling of assets, sold to separate legal entities (special purpose vehicles (SPVs))
 - SPVs are financed with (mostly) debt of different seniority (tranching)
 - **Repo (“repurchase agreements”)**
 - Agreement to sell and repurchase security; form of (super-)collateralized financing

- **Cost of financing during crisis**
 - Spreads (on asset backed securities) and repo rates (interest rate on repos) “blow out”

- **Facts**
 - Spreads on various asset classes correlated with
 - ... LIBOR-OIS spread but not ABX (Asset-Backed subprime RMBS Index)
 - **Haircuts** (essentially “down-payment requirements”) on repos are correlated with
 - ... volatility but not LIBOR-OIS spread or ABX

- **Questions**
 - What type of collateralized financing are repos arguably (and remarkably) similar too?
 - Repos are collateralized – why would there be a run?
 - Is there a “run on repo” during the financial crisis and, if so, in what sense?

Conclusions

- **Rental markets**
 - Renting capital facilitates repossession
 - Lessor is financier but retains ownership
 - Leasing permits greater leverage which is beneficial for severely constrained firms

- **Repo markets**
 - Collateralized loans in which lender owns collateral
 - Haircuts vary with volatility - but why?