Dynamic Collateralized Finance

Adriano A. Rampini
Duke University, NBER, and CEPR

Summer School on Financial Intermediation and Contracting
Finance Theory Group

CFAR, Washington University in St. Louis
August 13, 2015
Aim: Tractable Dynamic Model of Collateralized Financing

- Key friction: limited enforcement
 - Enforcement of repayment by borrower limited to tangible assets
 - Implication: collateral constraints
 - Promises are not credible unless collateralized
 - Implementation: complete markets in one-period Arrow securities
 - Tractable!

- Key substantive implications

 (1) Capital structure
 - Determinant: fraction tangible assets required for production

 (2) Risk management
 - Involves state contingent promises and needs collateral
 - Opportunity cost: forgone investment
 - Severely constrained firms do not hedge

 (3) Leasing and rental markets
 - Leasing has repossession advantage and permits greater borrowing
 - Severely constrained firms lease

- Useful laboratory to study dynamics of financial constraints
Papers on Dynamic Collateralized Finance

- **Corporate capital structure, risk management, and leasing**

- **Financial intermediation**

- **Household insurance and other applications**
(1) Capital Structure

- **Collateral key determinant of capital structure**
 - Enforcement of repayment by borrower limited to tangible assets
 - Nature of assets required for production determines financing

- Key papers: Rampini/Viswanathan (2010, 2013)
(Frictionless) Neoclassical Theory of Investment

- **Environment**
 - Discrete time, infinite horizon, deterministic (for now)
 - Investor/owner

- **Preferences**
 - Investor is risk neutral and discounts at rate $R^{-1} < 1$

- **Endowments**
 - Investor net worth $w \gg 0$, i.e., deep pockets

- **Technology**
 - Capital k invested in current period
 - Payoff ("cash flow") next period $Af(k)$
 - Parameter $A > 0$ is “total factor productivity” (TFP)
 - Strict concavity $f_k(k) > 0$ and $f_{kk}(k) < 0$; also:
 - $\lim_{k \to 0} f_k(k) = +\infty$; $\lim_{k \to \infty} f_k(k) = 0$
 - Capital is durable and depreciates at rate $\delta \in (0, 1]$
 - Depreciated capital $k(1 - \delta)$ remains next period
Neoclassical Investment: Investor’s Problem

- **Investor’s objective**
 - Maximize “value” – present discounted value of dividends

- **Investor’s problem - recursive formulation**
 - Choose current dividend d and invest capital k to solve

$$\max_{\{d, w', k\}} \ d + R^{-1} v(w')$$

subject to budget constraints (but no limited liability constraints)

$$w \geq d + k$$

$$Af(k) + k(1 - \delta) \geq w'$$
Neoclassical Investment and User Cost of Capital

- First-order conditions (*FOC*s) (multipliers μ and $R^{-1}\mu'$)

\[
1 = \mu
\]
\[
R^{-1} = R^{-1}\mu'
\]
\[
\mu = R^{-1}\mu'[Af_k(k) + (1 - \delta)]
\]

- **Investment Euler Equation**
 - Optimal investment/capital k^* solves (combining *FOC*s)

\[
1 = R^{-1}[Af_k(k) + (1 - \delta)]
\]

 or letting $R \equiv 1 + r$ and rewriting

\[
\underbrace{r + \delta}_{\text{user cost of capital}} = \underbrace{Af_k(k)}_{\text{marginal product of capital}}
\]

- **Jorgenson's (1963) user cost of capital** (paid at end of period)

\[
u \equiv \underbrace{r}_{\text{interest rate}} + \underbrace{\delta}_{\text{depreciation rate}}
\]
Collateral Constraints as in Rampini/Viswanathan

- Environment with frictions (otherwise as before)

- Two types of agents
 - Owner/borrower
 - Investor/lender

- Owner/borrower ("firm," "entrepreneur")
 - Preferences: risk neutral, impatient $\beta < R^{-1}$, subject to limited liability
 - Endowment: borrower has limited funds $w > 0$

- Investor/lender has deep pockets (as before)

- Collateral constraints
 - Need to collateralize loan repayment with tangible assets
Collateral and Limited Enforcement

- Question: why does borrower need to collateralize loans?
 - Enforcement is limited and it has to be incentive compatible for borrower to repay

- Friction: limited enforcement without exclusion
 - Borrower can abscond with all cash flows and fraction $1 - \theta$ of (depreciated) capital
Limited Enforcement Implies Collateral Constraints

- **Enforcement constraint**
 - Ensure that borrower prefers to repay instead of absconding; heuristically,
 \[
 v(w') \geq v(Af(k) + (1 - \theta)k(1 - \delta))
 \]
 value when repaying \quad value when defaulting
 - and since \(v(\cdot) \) is strictly increasing
 \[
 w' \geq Af(k) + (1 - \theta)k(1 - \delta)
 \]
 - and using budget constraint to substitute for \(w' \) given borrowing \(b \)
 \[
 Af(k) + k(1 - \delta) - Rb = w' \geq Af(k) + (1 - \theta)k(1 - \delta)
 \]

- **Collateral constraint**
 - Canceling terms and rearranging enforcement constraint we obtain
 \[
 \theta k(1 - \delta) \geq Rb
 \]
Limited Enforcement – Collateral Constraints: Equivalence

- Proof (sketch) – see Rampini/Viswanathan (2013), Appendix B

- **Limited enforcement problem**
 - Start with limited enforcement problem in sequence formulation
 - [Step 1] Present value of remaining sequence of promises can never exceed current collateral value
 - Otherwise default and reissue same promises \(\Rightarrow\) borrower better off
 - [Step 2] Any sequence of promises satisfying this condition can be implement with one-period ahead state-contingent claims subject to collateral constraints
 - Results in collateral constraint problem in sequence formulation

- **Collateral constraint problem – recursive formulation**
 - Define state variable (net worth \(w\)) appropriately
Dynamic Financing Problem with Collateral Constraints

- **Firm’s problem**

\[v(w) \equiv \max_{\{d,k,b,w'\}} d + \beta v(w') \]

subject to budget constraints and collateral constraint

\[w + b \geq d + k \]
\[Af(k) + k(1 - \delta) \geq w' + Rb \]
\[\theta k(1 - \delta) \geq Rb \]

and limited liability \(d \geq 0 \)

- **Net worth next period** \(w' = Af(k) + k(1 - \delta) - Rb \)
First Order Conditions and Investment Euler Equation

- First-order conditions (multipliers μ, $\beta \mu'$, and $\beta \lambda'$)

 $1 \leq \mu, \quad v_w(w') = \mu' \quad \mu = \beta \mu' R + \beta \lambda' R$

 $\mu = \beta \mu'[A f_k(k) + (1 - \delta)] + \beta \lambda' \theta (1 - \delta), \quad \mu = \beta \mu' R + \beta \lambda' R$

- Also: envelope condition $v_w(w) = \mu$

- Investment Euler Equation

 $1 = \beta \frac{\mu' A f_k(k) + (1 - \theta)(1 - \delta)}{\mu \left(1 - R^{-1} \theta (1 - \delta)\right)}$
“Minimal down payment” (per unit of capital)

\[\phi \equiv 1 - R^{-1}\theta(1 - \delta) \]

PV of \(\theta \times \) resale value of capital

- **Capital structure**
 - In deterministic case, collateral constraints always bind
 - Debt per unit of capital
 \[R^{-1}\theta(1 - \delta) \]
 - Internal funds per unit of capital
 \[\phi = 1 - R^{-1}\theta(1 - \delta) \]
Investment Policy

- **Investment Euler Equation** for dividend paying firm

\[
1 = \beta \frac{Af_k(k)}{\theta} + (1 - \theta)(1 - \delta)
\]

- Dividend paying firm: capital \bar{k} solves equation above
 - Comparing FOC's can show $\bar{k} < k^*$ (underinvestment)

- Non-dividend paying firm: $k = \frac{1}{\phi}w$ (invest all net worth and lever as much as possible)
Dividend Policy

- Threshold policy

- Pay out dividends today \((d' > 0) \) if \(w \geq \bar{w} \)

- Can we show threshold is optimal?
 - Suppose pay dividends at \(w \) but not at \(w^+ > w \)
 - At \(w \), invest \(\bar{k} \)
 - If not paying dividends at \(w^+ \), must invest more; can IEE hold?
Value of Internal Funds

- **Value of internal funds** μ (remember the envelope condition?)
 - Premium on internal funds (unless firm pays dividends) since $\mu \geq 1$

- **User cost** $u(w)$
 - User cost such that $u(w) = R\beta \frac{\mu}{\mu} A_f(k)$ where

\[u(w) \equiv r + \delta + R\beta \frac{\lambda}{\mu} (1 - \theta)(1 - \delta) > u \]

internal funds require premium
Net Worth Accumulation and Firm Growth

- **Dividend policy and net worth accumulation**
 - Dividend policy is threshold policy
 - For \(w \geq \bar{w} \), pay dividends \(d = w - \bar{w} \)
 - For \(w < \bar{w} \), pay no dividends and reinvest everything ("retain all earnings")

- **Investment policy and firm growth**
 - For \(w \geq \bar{w} \), keep capital constant at \(\bar{k} \) (no growth)
 - For \(w < \bar{w} \), invest everything \(k = \frac{1}{\sigma} w \) resulting in net worth \(w' > w \) next period

- **Firm age**
 - Young firms \((w < \bar{w}) \) do not pay dividends, reinvest everything, grow
 - Mature firms \((w \geq \bar{w}) \) pay dividends and do not grow
Dynamic Debt Capacity Management: Stochastic Case

- Environment as before but here with uncertainty
 - Uncertainty: Markov chain state $s' \in S$ next period – transition probability $\Pi(s, s')$
 - Two types of agents, owner/borrower and investor/lender

- Preferences
 - Borrower is risk neutral, impatient β, and subject to limited liability
 - Lender is risk neutral and discounts at $R^{-1} \in (\beta, 1)$

- Endowments
 - Borrower has limited funds $w > 0$
 - Lender has deep pockets
Dynamic Debt Capacity Management (Cont’d)

■ **Technology**

 ■ Capital k invested in current period yields stochastic payoff ("cash flow") in state s' next period

 $$A(s')f(k)$$

 where $A' \equiv A(s')$ is realized "total factor productivity" (TFP)

 ■ Strict concavity $f_k(k) > 0; f_{kk}(k) < 0$; also: $\lim_{k \to 0} f_k(k) = +\infty$; $\lim_{k \to \infty} f_k(k) = 0$

 ■ Capital is durable and depreciates at rate δ

 ■ Depreciated capital $k(1 - \delta)$ remains next period

■ **Collateral constraints**

 ■ Need to collateralize all promises to pay with tangible assets

 ■ Can pledge up to fraction $\theta < 1$ of value of depreciated capital
Firm’s Dynamic Debt Capacity Management Problem

- **State-contingent borrowing** \(b' \equiv b(s') \)
 - Collateral constraint for state-contingent borrowing \(b' \)
 \[\theta k (1 - \delta) \geq R b' \]

- Firm’s debt capacity use problem
 \[
 \max \{ d, w', k, b' \} \quad d + \beta \sum_{s' \in S} \Pi(s, s') v(w', s')
 \]
 subject to budget constraints and collateral constraints, \(\forall s' \in S, \)
 \[
 w + \sum_{s' \in S} \Pi(s, s') b' \geq d + k \\
 \underbrace{A' f(k) + k (1 - \delta)} \geq R b' + w' \\
 \theta k (1 - \delta) \geq R b'
 \]
 and limited liability \(d \geq 0 \)
Dynamic Debt Capacity Choice – Optimality Conditions

- First-order conditions (multipliers μ, $\Pi(s, s')\beta\mu(s')$, and $\Pi(s, s')\beta\lambda(s')$)

 $$1 \leq \mu, \quad v_w(w', s') = \mu'$$

 $$\phi \mu = \sum_{s' \in S} \Pi(s, s')\beta\mu'[A' f_k(k) + (1 - \theta)(1 - \delta)], \quad \mu = \beta\mu' R + \beta\lambda' R$$

- Investment Euler equation

 $$1 = \sum_{s' \in S} \Pi(s, s')\beta\frac{\mu'}{\mu} A' f_k(k) + (1 - \theta)(1 - \delta)$$

- Firms do not exhaust debt capacity against all states
 - Debt capacity use/leverage: $\theta(1 - \delta) \geq R \sum_{s' \in S} \Pi(s, s')b' / k$
 - Recall: equality in deterministic case
Stationary Distribution of Net Worth

- **Induced transition function** P
 - Optimal policy together with Markov process induce transition function P on (W, W)
 - Induced state space of net worth $W = [\varepsilon_w, w_{bnd}] \subset \mathbb{R}$
 - Operator on bounded, cont. functions $T : B(W, W) \to B(W, W)$
 - Operator on probability measures $T^* : P(W, W) \to P(W, W)$
 - Show that P satisfies properties such that \exists! stationary distribution

- **Stationary distribution allows computation of moments**
 - Computation of steady-state moments
 - Characterization of cross-sectional and time-series properties
 - Simulation and analysis using simulated data
Structural/Quantitative Work: Li/Whited/Wu (2015)

- Li, S., T.M. Whited, and Y. Wu, 2015, Collateral, taxes, and leverage, working paper.

Structural estimation of Rampini/Viswanathan (2013)

- Simulated Method of Moments (SMM)
- Data: non-financial Compustat firms; 1965-2012
- Assumptions:
 - \(f(k) = k^\alpha; \beta \) calibrated; 12 steady-state moments matched
 - \(z \equiv \log(A) \) with \(z' = \rho_z z + \varepsilon' \); discrete-state approximation to AR(1)

Estimated parameter values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(\delta)</th>
<th>(\alpha)</th>
<th>(\rho_z)</th>
<th>(\sigma_z)</th>
<th>(R^{-1} - \beta)</th>
<th>(\hat{\theta})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate</td>
<td>0.081</td>
<td>0.782</td>
<td>0.631</td>
<td>0.418</td>
<td>0.032</td>
<td>0.365</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.034)</td>
<td>(0.027)</td>
<td>(0.019)</td>
<td>(0.016)</td>
<td>(0.007)</td>
</tr>
</tbody>
</table>

- Firms conserve some debt capacity, albeit limited amount
 - Simulated debt (incl. interest) is 0.304; roughly 90% of debt capacity

- Remarkable: adding taxes to model leaves capital structure largely unchanged
Collateralizability vs. Tangibility

Collateralizability θ
- Structures more collateralizable than equipment (composition varies by industry)
- Financial development may raise θ and hence leverage

Tangibility φ
- Includes mainly structures (incl. land) and equipment
- Suppose tangible assets are collateralizable (but not intangible assets)
- Fraction tangible assets (φ) needed for production key

\[
\varphi(\varphi) = 1 - R^{-1}\varphi\theta(1 - \delta)
\]

- Interpretation of $\hat{\theta}$ in Li/Whited/Wu (2015)
 - $\hat{\theta}$ should be interpreted as $\varphi\theta$
 - Substantial variation in estimated $\hat{\theta}$ across 24 industries
 - Correlation of estimated $\hat{\theta}$ with industry asset tangibility φ: 0.53
 - Slope in cross-industry regression: 0.99
Conclusions for Capital Structure

- **Tangible assets as collateral**
 - If debt needs to be collateralized, type of assets required determines capital structure

- **Dynamics of financing**
 - Accumulate net worth over time
 - Young firms grow and retain all earnings
 - Mature firms pay dividends and grow less
 - Firms conserve debt capacity to some extent
(2) Corporate Risk Management

- Financial constraints give rationale for corporate risk management
 - If firms’ net worth matters, then firms are as if risk averse
 - Collateral constraints link financing and risk management
 - More constrained firms hedge less and often not at all

- Key papers: Rampini/Viswanathan (2010, 2013)
 - Rampini/Sufi/Viswanathan (2014) consider input price risk management (see below)
Collateral and Corporate Risk Management

- Why should firms hedge?
 - Firms are risk neutral, why hedge?
 - Financial constraints make firms risk averse
 - Firms’ value function concave in net worth

- Financing vs. risk management trade-off
 - Limited enforcement: need to collateralize promises to financier and counterparties
 - Collateral constraints link financing and risk management
 - More constrained firms hedge less as financing needs dominate hedging concerns

- Relatedly for households: financing vs. insurance trade-off
 - “The poor can’t afford insurance”
 - Rampini/Viswanathan (2015b) (see (5) below)
Corporate Risk Management Problem

- **Equivalent risk management formulation**
 - Collateral constraint for state-contingent borrowing b'
 \[
 \theta k(1 - \delta) \geq Rb'
 \]
 - Equivalently, borrow as much as possible and hedge
 \[
 h' \equiv \theta k(1 - \delta) - Rb' \geq 0
 \]

- **Firm’s risk management problem**
 \[
 \max_{\{d, w', k, h'\}} d + \beta \sum_{s' \in S} \Pi(s, s') v(w', s')
 \]
 subject to budget constraints and short sale constraints, $\forall s' \in S$,
 \[
 w \geq d + \varphi k + R^{-1} \sum_{s' \in S} \Pi(s, s') h'
 \]
 cost of hedging portfolio

 \[
 A'f(k) + (1 - \theta)k(1 - \delta) + h' \geq w'
 \]

 and limited liability $d \geq 0$
Financing vs. Risk Management Trade-off

- **Investment Euler equation**

\[
1 = \sum_{s' \in S} \Pi(s, s') \beta \frac{\mu'}{\mu} A' f_k(k) + (1 - \theta)(1 - \delta) \frac{\varphi}{\varphi} \\
\geq \Pi(s, s') \beta \frac{\mu'}{\mu} A' f_k(k) + (1 - \theta)(1 - \delta) \frac{\varphi}{\varphi}
\]

- As \(w \to 0 \), capital \(k \to 0 \) and marginal product \(f_k(k) \to \infty \)
- Therefore, marginal value of net worth in state \(s' \) (relative to current period) \(\mu'/\mu \to 0 \)
- Using first order condition for hedging

\[
\lambda'/\mu = (\beta R)^{-1} - \mu'/\mu > 0
\]

so severely constrained firms do not hedge at all

- **Financing vs. risk management trade-off**

- Hedging uses up net worth which is better used to purchase additional capital/downsize less

- IID case: if firms hedge, they hedge states with low net worth due to low cash flows
Why Was This Not Previously Recognized?

 - 5 reasons provided (beyond “transactions costs”)
 - (i) market power; (ii) serial correlation of profits; (iii) aggregate risk; (iv) asymmetric information; (v) incentives
 - Fact that hedging uses up net worth is not listed
 - That said, Holmström/Tirole (2000) come close

- **No financing risk management trade-off in previous models**
 - Models consider risk management using frictionless markets
 - Without imposing same frictions on financing and hedging, no trade-off
 - Models have no financing in first period where firms hedge
 - Without investment which requires financing, no trade-off

- **Intuitive, but counterfactual, prediction: more constrained firms hedge more**
 - Froot/Scharfstein/Stein (1993)

- In practice, more constrained (and smaller) firms hedge less!
Input Price Risk Management

- **Profit functions are convex in prices** – basic microeconomics
 - In practice, many firms hedge input prices (e.g., airlines)
 - Say additional input x' needed for production with stochastic price p'
 - Induced within-period profit function (with $\hat{\alpha} > 0$, $\phi > 0$, $\hat{\alpha} + \phi < 1$)

 \[
 \pi(k) \equiv \max_{x'} \hat{A}'k^{\hat{\alpha}}x'^\phi - p'x' \equiv A'k^\alpha
 \]

 where $\alpha \equiv \frac{\hat{\alpha}}{1-\phi}$ and $A' \equiv \hat{A}'\frac{1}{1-\phi} (1-\phi)\phi^{\phi-1-\phi} p' - \frac{\phi}{1-\phi}$; convex in p'

- **But:** firms as if risk averse in net worth
 - Hedging does not change spot price p'; convexity irrelevant
 - Hedging shifts net worth across states; value function concave in w'

- **Ad-hoc approach to modeling risk management fails**
 - Ad-hoc model: hedging means buying input at expected price $E[p'|s]$
 - Fails given convexity of profit function!

- **Fuel price risk management** by airlines
- Why useful empirical laboratory? – Panel data on hedging intensity
 - Fraction of next year’s expected fuel expenses hedged
 - Most other studies
 - Dummies for derivatives use – extensive margin only
 - Single cross section – no within-firm variation
- Evidence in cross section and time series consistent with theory
 - More constrained airlines hedge less – across and within airlines
 - Hedging around distress – within-airline variation

![Graph showing the fraction of next year's fuel expenses hedged over time](image)
Ad-hoc Ex-ante Collateral Constraints

- **Ex-ante collateral constraints and limited enforcement**
 - Literature at times imposes ex-ante collateral constraints
 \[\hat{\theta}_k \geq \sum_{s' \in S} \Pi(s, s')b' \]
 instead of our state-by-state ex-post constraints, \(\forall s' \in S \),
 \[\theta_k(1 - \delta) \geq Rb' \]
 - Ex-ante limited enforcement: abscond ex ante with dividend and
 \(1 - \hat{\theta} \) of capital and borrow from other lender
 \[v(w) \geq v(d_0 + (1 - \hat{\theta})k) \]
 implies ex-ante collateral constraints using budget constraint

- **Equivalence in deterministic case or with non-contingent debt**
 - Setting \(\hat{\theta} \equiv R^{-1} \theta(1 - \delta) \) equivalent under these conditions

- **But: no constraints on risk management**
 - Only one collateral constraint so \(\mu = \beta \mu' R + \beta \lambda R \); all \(\mu' \) equalized
 - Counterfactual implications – complete hedging!
Conclusions for Corporate Risk Management

- Rationale for **corporate risk management**
 - Financial constraints make firms as if risk averse

- Trade-off between financing and risk management
 - Promises to financiers and hedging counterparties need to be collateralized
 - Severely constrained firms hedge less or not at all
 - ... both in theory and in practice
 - Such firms may be more susceptible to downturns
Leasing has repossession advantage and permits greater borrowing.

Severely constrained firms (and households) lease.

Key papers: Rampini/Viswanathan (2013, 2015b); Eisfeldt/Rampini (2009)
Financing Subject to Collateral Constraints

- Environment with collateral constraints but firms can lease
 - Three types of agents, owner/borrower, investor/lender, and lessor
 - Borrower is risk neutral, impatient $\beta < R^{-1}$, and subject to limited liability
 - Borrower has limited funds $w > 0$
 - Lender and lessor have deep pockets, discount at R^{-1}
 - For simplicity, deterministic case here

Borrowing subject to collateral constraints

- Need to collateralize promises to pay with tangible assets (due to limited enforcement)
- Promised repayment $\leq \theta \times$ resale value of tangible assets
Leasing as in Eisfeldt/Rampini and Rampini/Viswanathan

- **Leasing**: borrower can rent capital

- **Repossession advantage**
 - Borrower cannot abscond with leased capital
 - In practice, repossession of rented capital easier than foreclosure on secured loan
 - Leasing allows borrower to borrow full resale value, not just fraction θ

- **Monitoring cost** m (per unit of capital)
 - Lessor needs to monitor to prevent abuse
 - Why? – Leasing separates ownership and control

- **User cost of leased capital**

$$u_l \equiv r + \delta + m$$

needs to be paid in advance (i.e., at beginning of period)
Firm’s Problem with Leasing and Secured Lending

- **Firm’s problem with leasing** \((k_o\text{ owned capital}; k_l\text{ leased capital}) \)

\[
\max_{\{d,w',k_o,k_l,b\}} \quad d + \beta v(w')
\]

subject to budget constraints and collateral constraint

\[
\begin{align*}
w + b & \geq d + k_o + R^{-1}u_l k_l \\
Af(k_o + k_l) + k_o(1 - \delta) & \geq Rb + w' \\
\theta k_o(1 - \delta) & \geq Rb
\end{align*}
\]

non-negativity constraints \(k_o, k_l \geq 0 \), and limited liability \(d \geq 0 \)
First-order conditions (multipliers \(\mu, \beta \mu', \) and \(\beta \lambda; \) let \(k \equiv k_o + k_l \))

As before,

\[
1 \leq \mu, \quad v_w(w') = \mu', \quad \mu = \beta \mu' R + \beta \lambda R
\]

and almost as before (except inequality as borrower might not own any assets)

\[
\mu \geq \beta \mu'[Af_k(k) + (1-\delta)] + \beta \lambda \theta (1-\delta) \quad \Leftrightarrow \quad u(w) \geq R \beta \frac{\mu'}{\mu} Af_k(k)
\]

and finally new

\[
R^{-1} u_l \mu \geq \beta \mu' Af_k(k) \quad \Leftrightarrow \quad u_l \geq R \beta \frac{\mu'}{\mu} Af_k(k)
\]
Lease or Buy?

- Lease if $u_l < u(w)$ and buy otherwise ("choose capital with lower user cost")

- Recall

\[u_l = r + \delta + m \]

monitoring cost

and

\[u(w) = r + \delta + \beta R \lambda / \mu (1 - \theta)(1 - \delta) \]

premium on internal funds required
Leasing as Costly, Highly Collateralized Financing

- **Incremental cash flows of buying vs. leasing**

<table>
<thead>
<tr>
<th>Time</th>
<th>Buying (secured loan)</th>
<th>Leasing</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$1 - R^{-1} \theta(1 - \delta)$</td>
<td>$R^{-1} u_l$</td>
</tr>
<tr>
<td>1</td>
<td>$(1 - \theta)(1 - \delta)$</td>
<td>$(1 - \theta)(1 - \delta)$</td>
</tr>
</tbody>
</table>

 Diff buying - leasing

 $$\text{extra funds required up front} = \frac{1}{\phi - R^{-1} u_l}$$

 extra amount recovered

- **Implicit interest rate on additional amount borrowed by leasing**

 $$R_l \equiv \frac{(1 - \theta)(1 - \delta)}{\phi - R^{-1} u_l} = R \frac{1}{1 - \frac{m}{(1-\theta)(1-\delta)}} > R$$

- Leasing is costly financing since $R_l > R$
Financially Constrained Firms Lease

Implicit “down payment” when leasing

\[
R^{-1} u_l = 1 - R^{-1} \theta (1 - \delta) - R_l^{-1} (1 - \theta) (1 - \delta)
\]

Where

Which leases?

- Severely constrained firms do!
- As \(w \to 0, k \to 0 \) and \(f_k(k) \to +\infty \); using FOCs, \(\mu'/\mu \to 0 \) and

\[
\beta R \lambda/\mu = 1 - \beta R \mu'/\mu \to 1 \quad \Rightarrow \quad u(w) \to r + \delta + (1 - \theta)(1 - \delta)
\]

- Assuming \((1 - \theta)(1 - \delta) > m \), borrowers with sufficiently low \(w \) lease all their capital!
Conclusions for Leasing and Rental Markets

- Renting capital facilitates repossession

- Lessor is financier but retains ownership

- **Leasing permits greater leverage – beneficial for severely constrained firms**

- Despite quantitative importance, rental markets largely ignored in theoretical and empirical economics (finance, macro, development)
(4) Financial Intermediation

- Rampini/Viswanathan (2015a)

- **Economy with limited enforcement and limited participation**
 - Two sub periods
 - Morning: cash flows realized; more θ_i capital collateralizable
 - Afternoon: investment/financing; only fraction $\theta < \theta_i$ collateralizable
 - Limited participation with two types of lenders
 - Households present only in afternoons; intermediaries always
 - Optimal contract implemented with two sets of one-period Arrow securities (for morning and afternoon)

- **Financial intermediaries as collateralization specialists**
 - Intermediaries need to enforce morning claims
 - Intermediaries need to finance morning claims out of own net worth
 - Intermediated finance is short term

- **Role for intermediary capital**
 - Economy with two state variables: firm and intermediary net worth
(5) Dynamic Household Insurance

- Rampini/Viswanathan (2015b)

- **Risk-averse household with stochastic income** y'

$$
\max_{\{c, w', h'\}} u(c) + \beta \sum_{s' \in S} \Pi(s, s') v(w', s')
$$

subject to budget constraints and **short sale constraints**, $\forall s' \in S$,

$$
w \geq c + R^{-1} \sum_{s' \in S} \Pi(s, s') h'
$$

$$
y' + h' \geq w'
$$

$$
h' \geq 0
$$

- Under stationary distribution, **household risk management is ...**
 - **incomplete** with probability 1; **absent** with positive probability
 - **globally increasing** in net worth and income
 - **precautionary** (increases when income gets riskier)

- **Insurance is state-contingent savings**
 - Insurance premia paid up front; intertemporal aspect to insurance
Durability facilitates financing – Hart/Moore (1994)

- Define higher durability as lower depreciation rate δ

 $$\frac{\partial \phi}{\partial \delta} = \frac{\partial}{\partial \delta} \left\{ 1 - R^{-1} \theta (1 - \delta) \right\} = R^{-1} \theta > 0$$

- Durable assets easier to finance due to higher collateral value

To the contrary: durability impedes financing

- Keep frictionless user cost $u = r + \delta$ constant not price; so $q = \frac{u}{r+\delta}$

 $$\frac{\partial \phi}{\partial \delta} = \frac{\partial}{\partial \delta} \left\{ \frac{u}{r+\delta} (1 - R^{-1} \theta (1 - \delta)) \right\} = -q \frac{1 - \theta}{r+\delta} < 0$$

- Durable assets cost more and require larger down-payments

Implications for technology adoption, incidence of financial constraints, choice of capital vintage
Models of Dynamic Collateralized Financing – Conclusion

- Useful laboratory to study dynamic financing problems
 - Tractability allows explicit theoretical analysis of dynamics
 - Insights yielded so far
 - Capital structure/debt capacity
 - Risk management/insurance
 - Leasing
 - Intermediation
 - Durability
 - Dynamic models facilitate quantitative work/structural estimation

- Empirically/quantitatively plausible class of models