Risk Management in Financial Institutions

Adriano A. Rampini
Duke University,
NBER, and CEPR

S. Viswanathan
Duke University
and NBER

Guillaume Vuillemeey
HEC Paris

NBER Insurance and Corporate Finance Joint Meeting
Chicago, IL
April 7, 2016
Determinants of Risk Management in Financial Institutions

- **Risk management in financial institutions**
 - Since financial crisis, much debate of risk management failures
 - Yet basic patterns and determinants are not known
 - Essential for monetary and macro-prudential policy
Determinants of Risk Management in Financial Institutions

- **Risk management in financial institutions**
 - Since financial crisis, much debate of risk management failures
 - Yet basic patterns and determinants are not known
 - Essential for monetary and macro-prudential policy

- **Empirical work guided by risk management theory**
 - Theory: net worth of financial institutions key determinant
 - Evidence from between and within institution variation
Determinants of Risk Management in Financial Institutions

- **Risk management in financial institutions**
 - Since financial crisis, much debate of risk management failures
 - Yet basic patterns and determinants are not known
 - Essential for monetary and macro-prudential policy

- **Empirical work guided by risk management theory**
 - Theory: net worth of financial institutions key determinant
 - Evidence from between and within institution variation

- **Interest rate risk: largest market for derivatives**
 - Banks largest users of tradable securities for hedging purposes
Determinants of Risk Management in Financial Institutions

- **Risk management in financial institutions**
 - Since financial crisis, much debate of risk management failures
 - Yet basic patterns and determinants are not known
 - Essential for monetary and macro-prudential policy

- **Empirical work guided by risk management theory**
 - Theory: net worth of financial institutions key determinant
 - Evidence from between and within institution variation

- **Interest rate risk: largest market for derivatives**
 - Banks largest users of tradable securities for hedging purposes

- **Identification**
 - Drop in net income due to loan losses and local house price drops
 - IV and difference-in-difference estimation
Theory: Risk Management Subject to Financial Constraints

- Froot/Scharfstein/Stein (1993)
 - Financial constraints imply effective risk aversion
 - Counterfactual prediction: more constrained firms hedge more

- Rampini/Viswanathan (2010, 2013)
 - Risk management requires net worth
 - Financial constraints link financing and risk management
 - Basic prediction: financing and risk management trade-off
 - Constrained firms hedge less as financing dominates hedging concerns

- Vuillemey (2015)
 - Financial institutions optimally do not fully hedge interest rate risk
 - Hedging demand varies in sign in cross section
Theory: Risk Management Subject to Financial Constraints

- **Froot/Scharfstein/Stein (1993)**
 - Financial constraints imply effective risk aversion
 - Counterfactual prediction: more constrained firms hedge more

 - Risk management requires net worth
 - Financial constraints link financing and risk management
 - Basic prediction: financing and risk management trade-off
 - Constrained firms hedge less as financing dominates hedging concerns
Theory: Risk Management Subject to Financial Constraints

- **Froot/Scharfstein/Stein (1993)**
 - Financial constraints imply effective risk aversion
 - Counterfactual prediction: more constrained firms hedge more

 - Risk management requires net worth
 - Financial constraints link financing and risk management
 - Basic prediction: financing and risk management trade-off
 - Constrained firms hedge less as financing dominates hedging concerns

- **Vuillemey (2015)**
 - Financial institutions optimally do not fully hedge interest rate risk
 - Hedging demand varies in sign in cross section
Hypothesis and Preview of Results

- **Hypothesis**: net worth key determinant of risk management
 - Prediction for hedging in cross section and time series
Hypothesis and Preview of Results

- **Hypothesis:** net worth key determinant of risk management
 - Prediction for hedging in cross section and time series

- **Empirical evidence on relation between hedging and net worth**
 - Positive and significant relation in cross section
 - ... and within institution over time
 - Financial institutions approaching distress cut hedging
 - Identification: *net worth drops lead to cut in risk management*
Hypothesis and Preview of Results

- **Hypothesis**: net worth key determinant of risk management
 - Prediction for hedging in cross section and time series

- **Empirical evidence on relation between hedging and net worth**
 - Positive and significant relation in cross section
 - ... and within institution over time
 - Financial institutions approaching distress cut hedging
 - Identification: net worth drops lead to cut in risk management

- **No evidence for alternative hypotheses**
Data and Measurement

Data sources

- Call reports and CRSP
- Time frame: 1995-2013; quarterly data; up to 76 quarters
Data and Measurement

- **Data sources**
 - Call reports and CRSP
 - Time frame: 1995-2013; quarterly data; up to 76 quarters

- **Unit of observation**
 - **Bank holding companies (BHCs):** 22,723 BHC-quarter obs.
 - Advantage: Match to market data from CRSP
 - **Banks:** 603,894 bank-quarter observations
 - Advantage: More detailed hedging data from Call reports

Excluding main dealers, results robust to their inclusion.

Adriano A. Rampini, S. Viswanathan, Guillaume Vuilleme.
Data and Measurement

- **Data sources**
 - Call reports and CRSP
 - Time frame: 1995-2013; quarterly data; up to 76 quarters

- **Unit of observation**
 - **Bank holding companies (BHCs):** 22,723 BHC-quarter obs.
 - Advantage: Match to market data from CRSP
 - **Banks:** 603,894 bank-quarter observations
 - Advantage: More detailed hedging data from Call reports

- **Sample**
 - Exclude main dealers, results robust to their inclusion
Data and Measurement: Gross Hedging

■ Definition: Gross hedging

\[\text{Gross hedging}_{it} = \frac{\text{Gross notional amount of interest rate derivatives for hedging of } i \text{ at } t}{\text{Total assets}_{it}} \]
Data and Measurement: Gross Hedging

- **Definition: Gross hedging**

 \[
 \text{Gross hedging}_{it} = \frac{\text{Gross notional amount of interest rate derivatives for hedging of } i \text{ at } t}{\text{Total assets}_{it}}
 \]

- **Measurement issues**
 - Includes all derivatives (swaps, options, forwards, etc.)
 - Excludes derivatives held for trading purposes
Data and Measurement: Gross Hedging

Definition: Gross hedging

\[
\text{Gross hedging}_{it} = \frac{\text{Gross notional amount of interest rate derivatives for hedging of } i \text{ at } t}{\text{Total assets}_{it}}
\]

Measurement issues

- Includes all derivatives (swaps, options, forwards, etc.)
- Excludes derivatives held for trading purposes

Distribution of gross hedging – BHC level

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Med.</th>
<th>75th</th>
<th>90th</th>
<th>95th</th>
<th>98th</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross hedging</td>
<td>0.038</td>
<td>0.006</td>
<td>0.036</td>
<td>0.103</td>
<td>0.194</td>
<td>0.354</td>
<td>0.571</td>
</tr>
<tr>
<td>Gross trading</td>
<td>0.071</td>
<td>0</td>
<td>0</td>
<td>0.017</td>
<td>0.075</td>
<td>0.589</td>
<td>8.801</td>
</tr>
</tbody>
</table>

- Large number of zeros
- Most BHCs use derivatives for hedging not trading
Definition: Net hedging

Net hedging ratio_{it} = \frac{\text{Pay-fixed swaps}_{it} - \text{Pay-float swaps}_{it}}{\text{Total assets}_{it}}
Data and Measurement: Net Hedging

■ Definition: Net hedging

\[
\text{Net hedging ratio}_{it} = \frac{\text{Pay-fixed swaps}_{it} - \text{Pay-float swaps}_{it}}{\text{Total assets}_{it}}
\]

■ Measurement issues
 ■ Includes only derivatives for hedging
 ■ Available at bank level only, for a subset of banks
Data and Measurement: Net Hedging

- **Definition**: Net hedging

 \[
 \text{Net hedging ratio}_{it} = \frac{\text{Pay-fixed swaps}_{it} - \text{Pay-float swaps}_{it}}{\text{Total assets}_{it}}
 \]

- **Measurement issues**
 - Includes only derivatives for hedging
 - Available at bank level only, for a subset of banks

- **Relation between gross hedging and net hedging**
 - Average ratio of (absolute) net hedging to gross hedging: 90.9%
Definition: Maturity gap

\[
\text{Maturity gap}_{it} = \frac{A_{it}^{IR} - L_{it}^{IR}}{\text{Total assets}_{it}}
\]

- \(A_{it}^{IR}\): Assets maturing or repricing within 1 year
- \(L_{it}^{IR}\): Liabilities maturing or repricing within 1 year
Definition: Maturity gap

\[
\text{Maturity gap}_{it} = \frac{A_{it}^{IR} - L_{it}^{IR}}{\text{Total assets}_{it}}
\]

- \(A_{it}^{IR} \): Assets maturing or repricing within 1 year
- \(L_{it}^{IR} \): Liabilities maturing or repricing within 1 year

Measurement issues

- Effectively "net floating-rate assets"
- \(\Delta \) cash flows \(\approx \) maturity gap \(\times \) \(\Delta \) short rate
Data and Measurement: Interest Rate Exposure

- Institutions with lots of floating-rate liabilities pay fixed
 - Consistent with hedging

Net swap hedging

![Graph showing net swap hedging](image)

- Maturity gap < 25th pc.
- Maturity gap > 75th pc.
Data and Measurement: Financial Institutions’ Net Worth

- **Key state variable:** Net worth
 - Net worth determines tightness of financial constraints
Data and Measurement: Financial Institutions’ Net Worth

- **Key state variable:** Net worth
 - Net worth determines tightness of financial constraints

- **Measurement:** Net worth – financial constraints
 - Size (log Total book assets) (1)
 - Market value of equity (log)
 - Market value of equity / Market value of assets (2)
 - Net income / Total assets (3)
 - Cash dividends / Total assets (4)
 - Credit rating from S&P
 - Net worth index
 - First principal component of (1) through (4)
 - Weights: 0.149, 0.307, 0.272 and 0.272
Hedging and Net Worth: Cross-Section Evidence

- **Between variation and pooled sample: OLS** [More]
 - BHC-mean and pooled OLS regressions
 - Strong correlation between hedging and net worth in cross section
Hedging and Net Worth: Cross-Section Evidence

- **Between variation and pooled sample: OLS** [More]
 - BHC-mean and pooled OLS regressions
 - Strong correlation between hedging and net worth in cross section

- **Accounting for zeros** [More]
 - Tobit (BHC-mean and pooled)
 - Quantile regressions
 - Heckman selection model
Hedging and Net Worth: Cross-Section Evidence

- **Between variation and pooled sample: OLS** [More]
 - BHC-mean and pooled OLS regressions
 - Strong correlation between hedging and net worth in cross section

- **Accounting for zeros** [More]
 - Tobit (BHC-mean and pooled)
 - Quantile regressions
 - Heckman selection model

- **Within variation** – institution fixed effects [More]
 - Institutions hedge more when their net worth is higher
Hedging Before Distress

- **Definition: Distress**
 - Exit with market capitalization (or equity) to total assets below 4%

Adriano A. Rampini, S. Viswanathan, Guillaume Vuillemey

Risk Management in Financial Institutions
Hedging Before Distress

- **Definition: Distress**
 - Exit with market capitalization (or equity) to total assets below 4%

- **Both BHCs and banks cut hedging before distress** [More]
Instrumenting Net Worth with House Prices

- **Idea:** net worth drops due to loan losses caused by house price drop.
Instrumenting Net Worth with House Prices

- **Idea:** net worth drops due to loan losses caused by house price drop

- **Instrument for net income: lagged house price changes**
 - **Identifying assumption**
 - House prices affect hedging only through impact on net worth
 - Focus on 2005-2013
 - Focus on institutions with above-median loans secured by real estate
 - Construct deposit-weighted average house price change by institution

Adriano A. Rampini, S. Viswanathan, Guillaume Vuillemey

Risk Management in Financial Institutions
Instrumenting Net Worth with House Prices

- **Idea:** net worth drops due to loan losses caused by house price drop

- **Instrument for net income:** lagged house price changes
 - **Identifying assumption**
 - House prices affect hedging only through impact on net worth
 - Focus on 2005-2013
 - Focus on institutions with above-median loans secured by real estate
 - Construct deposit-weighted average house price change by institution

- **Validity of instrument**
 - Changes in provisions (not interest income) explain changes in net income [More]
 - Loan losses arise from loans backed by real estate [More]
 - Drop in house prices (not interest rates) key determinant of mortgage defaults (see Mayer/Pence/Sherlund (2009) and others)
Instrumenting Net Worth with House Prices

- **Construction of instrument**
 - Data – ZIP-code level: Zillow (house prices); FDIC (deposits)
 - Compute deposit-weighted avg. house price change over past 2 years
 - Assumption: loans proportional to deposits at ZIP-code level
Instrumenting Net Worth with House Prices

- **Construction of instrument**
 - Data – ZIP-code level: Zillow (house prices); FDIC (deposits)
 - Compute deposit-weighted avg. house price change over past 2 years
 - Assumption: loans proportional to deposits at ZIP-code level

- **IV estimation**

<table>
<thead>
<tr>
<th></th>
<th>BHC level</th>
<th></th>
<th>Bank level</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS</td>
<td>IV</td>
<td>OLS</td>
<td>IV</td>
</tr>
<tr>
<td>First stage</td>
<td>0.251***</td>
<td></td>
<td>0.113***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td></td>
<td>(0.001)</td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.096</td>
<td></td>
<td>0.053</td>
<td></td>
</tr>
<tr>
<td>Net income</td>
<td>0.185**</td>
<td>0.254***</td>
<td>0.049**</td>
<td>0.086***</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.003)</td>
<td>(0.031)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.008</td>
<td>0.003</td>
<td>0.003</td>
<td>0.001</td>
</tr>
</tbody>
</table>
Distribution of Net Income over Sample Period

- Large losses mostly concentrated in 2009
- 50% BHCs with negative net income in 2009Q4
Identification: Losses on Loans Secured by Real Estate

- **Difference-in-difference (DD) specification**
 - Large changes in net income occur mostly in 2009
 - Exploit heterogeneity across institutions for treatment and control
 - Focus on institutions with above-median loans secured by real estate
Identification: Losses on Loans Secured by Real Estate

- **Difference-in-difference (DD) specification**
 - Large changes in net income occur mostly in 2009
 - Exploit heterogeneity across institutions for treatment and control
 - Focus on institutions with above-median loans secured by real estate

- **Treatment and control group**
 - **Treatment:** bottom 30% in net income in 2009
 - **Control:** top 30% in net income in 2009

- Focus on 2005-2013; treatment year plus/minus 4 years
Gross Hedging by BHCs – Treatment and Control Group

- Treated BHCs cut hedging relative to control group

Adriano A. Rampini, S. Viswanathan, Guillaume Vuillemey

Risk Management in Financial Institutions
Gross Hedging by BHCs and Banks – DD Estimates

- **Treated BHCs and banks cut hedging significantly**
 - ... both with and without institution fixed effects

<table>
<thead>
<tr>
<th>Year</th>
<th>BHC level</th>
<th>Bank level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Post-event dummy</td>
<td>Year dummies</td>
</tr>
<tr>
<td>2009 and after</td>
<td>-0.029*** (0.003)</td>
<td>-0.015*** (0.009)</td>
</tr>
<tr>
<td>2009</td>
<td>-0.020 (0.136)</td>
<td>-0.019** (0.042)</td>
</tr>
<tr>
<td>2010</td>
<td>-0.039*** (0.004)</td>
<td>-0.010 (0.181)</td>
</tr>
<tr>
<td>2011</td>
<td>-0.038*** (0.005)</td>
<td>0.001 (0.910)</td>
</tr>
<tr>
<td>2012</td>
<td>-0.019 (0.153)</td>
<td>-0.021*** (0.008)</td>
</tr>
<tr>
<td>2013</td>
<td>-0.031** (0.024)</td>
<td>-0.028*** (0.000)</td>
</tr>
</tbody>
</table>

| BHC FE | No | No | Yes | No | No | Yes |
| Time FE | Yes | Yes | Yes | Yes | Yes | Yes |
Alternative Treatments

- **Alternative treatment I: house prices**
 - Exploit heterogeneity in local house price changes across institutions
 - Treatment: bottom 30% in house prices changes in 2007Q1-2008Q4
 - Control: top 30% in house prices changes in 2007Q1-2008Q4
Alternative Treatments

- **Alternative treatment I: house prices**
 - Exploit heterogeneity in local house price changes across institutions
 - Treatment: bottom 30% in house prices changes in 2007Q1-2008Q4
 - Control: top 30% in house prices changes in 2007Q1-2008Q4

- **Alternative treatment II: housing supply elasticity**
 - Use Saiz (2010)'s measure of housing supply elasticity at MSA level
 - Compute deposit-weighted avg. housing supply elasticity by institution
 - Treatment: bottom 30% in weighted-avg. housing supply elasticity
 - Control: top 30% in weighted-avg. housing supply elasticity
DD Estimates with Alternative Treatments

- **Alternative treatments yield rather similar results**

<table>
<thead>
<tr>
<th>Treatment</th>
<th>House price change</th>
<th>Housing supply elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Post-event dummy</td>
<td>Year dummies</td>
</tr>
<tr>
<td>2009 and after</td>
<td>-0.040**</td>
<td>-0.042***</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>2009</td>
<td>-0.020*</td>
<td>-0.022*</td>
</tr>
<tr>
<td></td>
<td>(0.099)</td>
<td>(0.079)</td>
</tr>
<tr>
<td>2010</td>
<td>-0.022*</td>
<td>-0.026*</td>
</tr>
<tr>
<td></td>
<td>(0.099)</td>
<td>(0.079)</td>
</tr>
<tr>
<td>2011</td>
<td>-0.044**</td>
<td>-0.051**</td>
</tr>
<tr>
<td></td>
<td>(0.031)</td>
<td>(0.023)</td>
</tr>
<tr>
<td>2012</td>
<td>-0.042**</td>
<td>-0.039*</td>
</tr>
<tr>
<td></td>
<td>(0.035)</td>
<td>(0.054)</td>
</tr>
<tr>
<td>2013</td>
<td>-0.025*</td>
<td>-0.016</td>
</tr>
<tr>
<td></td>
<td>(0.078)</td>
<td>(0.115)</td>
</tr>
</tbody>
</table>

BHC FE: No No Yes No No Yes
Time FE: Yes Yes Yes Yes Yes Yes
DD Estimates with Alternative Treatments

Alternative treatments yield rather similar results

<table>
<thead>
<tr>
<th>Treatment</th>
<th>House price change</th>
<th>Housing supply elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Post-event dummy</td>
<td>Year dummies</td>
</tr>
<tr>
<td>2009 and after</td>
<td>-0.040***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>-0.020*</td>
<td>-0.022*</td>
</tr>
<tr>
<td></td>
<td>(0.099)</td>
<td>(0.079)</td>
</tr>
<tr>
<td>2010</td>
<td>-0.022*</td>
<td>-0.026*</td>
</tr>
<tr>
<td></td>
<td>(0.099)</td>
<td>(0.079)</td>
</tr>
<tr>
<td>2011</td>
<td>-0.044**</td>
<td>-0.051**</td>
</tr>
<tr>
<td></td>
<td>(0.031)</td>
<td>(0.023)</td>
</tr>
<tr>
<td>2012</td>
<td>-0.042**</td>
<td>-0.039*</td>
</tr>
<tr>
<td></td>
<td>(0.035)</td>
<td>(0.054)</td>
</tr>
<tr>
<td>2013</td>
<td>-0.025*</td>
<td>-0.016</td>
</tr>
<tr>
<td></td>
<td>(0.078)</td>
<td>(0.115)</td>
</tr>
<tr>
<td>BHC FE</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Time FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Similar results at bank level
Robustness: Parallel Trends Assumption

- **Testing parallel trends assumption**
- Include year-treatment dummies in pre-treatment period

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Net income</th>
<th>Year dummies</th>
<th>Year dummies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2005</td>
<td>-0.014 (0.331)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2006</td>
<td>-0.010 (0.499)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2007</td>
<td>-0.007 (0.626)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2008</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2009</td>
<td>-0.028* (0.085)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2010</td>
<td>-0.047*** (0.004)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2011</td>
<td>-0.046*** (0.005)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2012</td>
<td>-0.027* (0.095)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2013</td>
<td>-0.039** (0.019)</td>
</tr>
</tbody>
</table>

BHC FE No Yes
Time FE Yes Yes
Robustness: Parallel Trends Assumption

- **Testing parallel trends assumption**
 - Include year-treatment dummies in pre-treatment period

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Year dummies</th>
<th>Net income</th>
<th>Year dummies</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>-0.014</td>
<td>-0.003</td>
<td>(0.331)</td>
</tr>
<tr>
<td>2006</td>
<td>-0.010</td>
<td>0.008</td>
<td>(0.499)</td>
</tr>
<tr>
<td>2007</td>
<td>-0.007</td>
<td>-0.000</td>
<td>(0.626)</td>
</tr>
<tr>
<td>2008</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2009</td>
<td>-0.028*</td>
<td>-0.017</td>
<td>(0.085)</td>
</tr>
<tr>
<td>2010</td>
<td>-0.047***</td>
<td>-0.029**</td>
<td>(0.004)</td>
</tr>
<tr>
<td>2011</td>
<td>-0.046***</td>
<td>-0.028**</td>
<td>(0.005)</td>
</tr>
<tr>
<td>2012</td>
<td>-0.027*</td>
<td>-0.030***</td>
<td>(0.095)</td>
</tr>
<tr>
<td>2013</td>
<td>-0.039**</td>
<td>-0.036***</td>
<td>(0.019)</td>
</tr>
</tbody>
</table>

- BHC FE: No, Yes
- Time FE: Yes, Yes

- No significant pre-treatment differences in trends
Robustness: Maturity Gap in Treatment and Control Group

- No differences in maturity gap (Statistical significance [More])
- Treated BHCs do not seem to reduce interest rate exposure

![Graph showing maturity gap (net of BHC FE) over years 2005 to 2014 for Treated and Control groups.](image)
Alternative Hypothesis 1: Risk Shifting?

- **Evidence from trading**
 - Idea: risk shifting should involve more trading
 - **Significantly positive relation between trading and net worth**
 - ... both in cross-section and within institutions [More]
Alternative Hypothesis 1: Risk Shifting?

- **Evidence from trading**
 - Idea: risk shifting should involve more trading
 - **Significantly positive relation between trading and net worth**
 - ... both in cross-section and within institutions [More]

- **Banks cut derivatives trading before distress**

 ![Graph showing the relationship between Bank trading and Total assets over quarters before distress]

 - However, corresponding estimates not statistically significant
Alternative Hypothesis 2: Operational Risk Management?

- Cross-sectional evidence using maturity gap
 - Idea: operational hedging should involve higher maturity gap
 - **Significant, positive correlation between maturity gap and net worth** [More]
 - Poorly capitalized institutions do less operational risk management
Alternative Hypothesis 2: Operational Risk Management?

- **Cross-sectional evidence using maturity gap**
 - Idea: operational hedging should involve higher maturity gap
 - **Significant, positive correlation between maturity gap and net worth** [More]
 - Poorly capitalized institutions do less operational risk management

- **Maturity gap drops before distress**
 - Institutions engage in less, not more, operational risk management

![Graph showing maturity gap and BHC level](image1)

![Graph showing bank maturity gap and distress](image2)
Alternative Hypothesis 3: Regulatory Capital?

- **Measurement**
 - Total regulatory capital / Risk-weighted assets
 - Tier 1 regulatory capital / Risk-weighted assets

There is no significant relation between hedging and regulatory capital. Most coefficients are insignificant and several change signs.

Both across (pooled OLS and pooled Tobit) and within institutions, Davidson-Mackinnon (1981)'s J-test of model nestedness shows that market net worth, not regulatory capital, explains hedging.
Alternative Hypothesis 3: Regulatory Capital?

Measurement
- Total regulatory capital / Risk-weighted assets
- Tier 1 regulatory capital / Risk-weighted assets

No significant relation between hedging and regulatory capital
- Most coefficients insignificant and several change signs [More]
- Both across (pooled OLS and pooled Tobit) and within institutions

Davidson-Mackinnon (1981)’s J-test of model nestedness

Market net worth, not regulatory capital, explains hedging

Adriano A. Rampini, S. Viswanathan, Guillaume Vuillemey

Risk Management in Financial Institutions
Alternative Hypothesis 3: Regulatory Capital?

- **Measurement**
 - Total regulatory capital / Risk-weighted assets
 - Tier 1 regulatory capital / Risk-weighted assets

- **No significant relation between hedging and regulatory capital**
 - Most coefficients insignificant and several change signs [More]
 - Both *across* (pooled OLS and pooled Tobit) and *within* institutions

- **Davidson-Mackinnon (1981)’s J-test of model nestedness**
 - Market net worth, not regulatory capital, explains hedging
Conclusion

- Better capitalized financial institutions hedge more
 - Net worth explains basic patterns in cross section and time series
 - Novel identification strategy allows causal interpretation
Conclusion

- Better capitalized financial institutions hedge more
 - Net worth explains basic patterns in cross section and time series
 - Novel identification strategy allows causal interpretation

- Financing needs associated with hedging substantial barrier to risk management
Conclusion

- Better capitalized financial institutions hedge more
 - Net worth explains basic patterns in cross section and time series
 - Novel identification strategy allows causal interpretation

- Financing needs associated with hedging substantial barrier to risk management

- No evidence for alternative hypothesis
 - Risk shifting (from trading)
 - Operational risk management
 - Importance of regulatory capital

Adriano A. Rampini, S. Viswanathan, Guillaume Vuillemey
Risk Management in Financial Institutions
Literature

- **Rampini/Sufi/Viswanathan (2014)**
 - Empirical laboratory: airlines’ fuel price risk management
 - Advantage: measurement – fraction expected fuel expenses hedged
 - Panel data at intensive and extensive margin
 - Financial constraints impede risk management

- **Begenau/Piazzesi/Schneider (2015)**
 - New methodology to measure interest rate risk
 - Trading positions increase interest rate risk exposures

Additional literature

- **Tufano (1996)**
 - Gold price risk management by gold mining firms
 - Focus on executive compensation and incentives
 - Much of literature: single cross-section; user dummies
Rampini/Sufi/Viswanathan (2014)
- Empirical laboratory: airlines’ fuel price risk management
- Advantage: measurement – fraction expected fuel expenses hedged
- Panel data at intensive and extensive margin
- Financial constraints impede risk management

Begenau/Piazzesi/Schneider (2015)
- New methodology to measure interest rate risk
- Trading positions increase interest rate risk exposures
Literature

- **Rampini/Sufi/Viswanathan (2014)**
 - Empirical laboratory: airlines’ fuel price risk management
 - Advantage: measurement – fraction expected fuel expenses hedged
 - Panel data at intensive and extensive margin
 - Financial constraints impede risk management

- **Begenau/Piazzesi/Schneider (2015)**
 - New methodology to measure interest rate risk
 - Trading positions increase interest rate risk exposures

- **Additional literature**
 - **Tufano (1996)**
 - Gold price risk management by gold mining firms
 - Focus on executive compensation and incentives
 - Much of literature: single cross-section; user dummies
Maturity gap – Descriptive Statistics

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>10th</th>
<th>25th</th>
<th>Mean</th>
<th>Med.</th>
<th>75th</th>
<th>90th</th>
<th>Max.</th>
<th>S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gap (BHC)</td>
<td>-0.59</td>
<td>-0.09</td>
<td>-0.00</td>
<td>0.09</td>
<td>0.08</td>
<td>0.17</td>
<td>0.28</td>
<td>0.77</td>
<td>0.15</td>
</tr>
<tr>
<td>Gap (bank)</td>
<td>-0.63</td>
<td>-0.19</td>
<td>-0.12</td>
<td>-0.02</td>
<td>-0.03</td>
<td>0.06</td>
<td>0.16</td>
<td>0.98</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Back
Net Worth – Descriptive Statistics

Market-based measures of net worth – BHC level

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>10th</th>
<th>25th</th>
<th>Mean</th>
<th>Med.</th>
<th>75th</th>
<th>90th</th>
<th>Max.</th>
<th>S.D.</th>
<th>Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mkt. cap.</td>
<td>7.63</td>
<td>10.91</td>
<td>11.55</td>
<td>12.67</td>
<td>12.39</td>
<td>13.60</td>
<td>14.86</td>
<td>18.56</td>
<td>1.62</td>
<td>22,723</td>
</tr>
<tr>
<td>Mkt. cap./A.</td>
<td>0.00</td>
<td>0.06</td>
<td>0.10</td>
<td>0.14</td>
<td>0.14</td>
<td>0.17</td>
<td>0.20</td>
<td>0.33</td>
<td>0.06</td>
<td>22,723</td>
</tr>
<tr>
<td>Net inc./ A.</td>
<td>-0.194</td>
<td>0.001</td>
<td>0.006</td>
<td>0.008</td>
<td>0.010</td>
<td>0.012</td>
<td>0.015</td>
<td>0.103</td>
<td>0.012</td>
<td>20,704</td>
</tr>
<tr>
<td>Payout/ A.</td>
<td>-0.000</td>
<td>0.000</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.002</td>
<td>0.019</td>
<td>0.001</td>
<td>5,813</td>
</tr>
<tr>
<td>Div./ A.</td>
<td>-0.001</td>
<td>0</td>
<td>0.000</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.002</td>
<td>0.040</td>
<td>0.001</td>
<td>22,426</td>
</tr>
<tr>
<td>Rating</td>
<td>CCC-</td>
<td>BBB-</td>
<td>BBB</td>
<td>BBB+</td>
<td>BBB+</td>
<td>A</td>
<td>A+</td>
<td>AA</td>
<td>2.06</td>
<td>3,579</td>
</tr>
</tbody>
</table>
Cross-Sectional Regressions – BHC-mean and Pooled OLS

- **Positive relation between hedging and net worth**
- Cross-sectional evidence

<table>
<thead>
<tr>
<th>Model</th>
<th>Size</th>
<th>Mkt. cap.</th>
<th>Mkt. cap./Assets</th>
<th>Net income</th>
<th>Net payout</th>
<th>Div.</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHC-mean</td>
<td>0.034***</td>
<td>0.025***</td>
<td>0.060</td>
<td>0.962***</td>
<td>11.014**</td>
<td>15.884***</td>
<td>0.014**</td>
</tr>
<tr>
<td>OLS</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.313)</td>
<td>(0.000)</td>
<td>(0.024)</td>
<td>(0.004)</td>
<td>(0.033)</td>
</tr>
<tr>
<td>Pooled OLS w/ time FE</td>
<td>0.031***</td>
<td>0.023***</td>
<td>0.017</td>
<td>0.344***</td>
<td>8.115***</td>
<td>3.304***</td>
<td>0.013***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.143)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
</tbody>
</table>

Back
Cross-Section – BHC level

<table>
<thead>
<tr>
<th>Model</th>
<th>Size</th>
<th>Mkt. cap.</th>
<th>Mkt. cap./ Assets</th>
<th>Net income</th>
<th>Div.</th>
<th>Rating</th>
<th>Net worth index</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHC mean</td>
<td>0.052***</td>
<td>0.040***</td>
<td>-0.059</td>
<td>0.681*</td>
<td>17.631***</td>
<td>0.013**</td>
<td>0.018***</td>
</tr>
<tr>
<td>Tobit</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.426)</td>
<td>(0.098)</td>
<td>(0.005)</td>
<td>(0.010)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Tobit w time FE</td>
<td>0.055***</td>
<td>0.043***</td>
<td>0.130***</td>
<td>0.695***</td>
<td>11.958***</td>
<td>0.014***</td>
<td>0.022***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Quantile 75th pctile</td>
<td>0.031***</td>
<td>0.019***</td>
<td>0.112***</td>
<td>0.338***</td>
<td>16.142***</td>
<td>0.016***</td>
<td>0.008***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Quantile 85th pctile</td>
<td>0.049***</td>
<td>0.029***</td>
<td>0.131***</td>
<td>0.599***</td>
<td>22.791***</td>
<td>0.021***</td>
<td>0.014***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Heckman model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.005***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.000)</td>
</tr>
</tbody>
</table>

Back
Hedging and Net Worth: Time-Series Evidence

Within variation – institution fixed effects

<table>
<thead>
<tr>
<th>Model</th>
<th>Size</th>
<th>Mkt. cap.</th>
<th>Mkt. cap./Assets</th>
<th>Net income</th>
<th>Div.</th>
<th>Rating</th>
<th>Net worth index</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHC Gross</td>
<td>0.034***</td>
<td>0.006***</td>
<td>-0.009</td>
<td>0.182***</td>
<td>0.661***</td>
<td>-0.001</td>
<td>0.002***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.358)</td>
<td>(0.000)</td>
<td>(0.003)</td>
<td>(0.642)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Obs.</td>
<td>22,723</td>
<td>22,723</td>
<td>22,723</td>
<td>20,839</td>
<td>20,568</td>
<td>3,657</td>
<td>20,568</td>
</tr>
<tr>
<td>Bank Gross</td>
<td>0.003***</td>
<td></td>
<td>0.052***</td>
<td>0.032***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td></td>
<td>(0.000)</td>
<td>(0.003)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obs.</td>
<td>627,219</td>
<td></td>
<td>581,207</td>
<td>418,225</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank Net</td>
<td>0.008***</td>
<td></td>
<td>0.060</td>
<td>0.105*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td></td>
<td>(0.773)</td>
<td>(0.080)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obs.</td>
<td>95,650</td>
<td></td>
<td>94,118</td>
<td>78,091</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Institutions hedge more when their net worth is higher
Hedging and Net Worth: Time-Series Evidence

Within variation – institution fixed effects

<table>
<thead>
<tr>
<th>Model</th>
<th>Size</th>
<th>Mkt. cap.</th>
<th>Mkt. cap./ Assets</th>
<th>Net income</th>
<th>Div.</th>
<th>Rating</th>
<th>Net worth index</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHC Gross</td>
<td>0.034***</td>
<td>0.006***</td>
<td>-0.009</td>
<td>0.182***</td>
<td>0.661***</td>
<td>-0.001</td>
<td>0.002***</td>
</tr>
<tr>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.358)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.003)</td>
<td>(0.642)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Obs.</td>
<td>22,723</td>
<td>22,723</td>
<td>22,723</td>
<td>20,839</td>
<td>20,568</td>
<td>3,657</td>
<td>20,568</td>
</tr>
<tr>
<td>Bank Gross</td>
<td>0.003***</td>
<td></td>
<td>0.052***</td>
<td>0.032***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.000)</td>
<td></td>
<td></td>
<td>(0.000)</td>
<td>(0.003)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obs.</td>
<td>627,219</td>
<td></td>
<td>581,207</td>
<td>418,225</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank Net</td>
<td>0.008***</td>
<td></td>
<td>0.006</td>
<td>0.105*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.000)</td>
<td></td>
<td></td>
<td>(0.773)</td>
<td>(0.080)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obs.</td>
<td>95,650</td>
<td></td>
<td>94,118</td>
<td>78,091</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Institutions hedge more when their net worth is higher
Hedging Before Distress

- Econometric specification

\[H_{it} = F E_i + F E_t + \sum_{j=0}^{8} \gamma_j \cdot D_{t-j} + \varepsilon_{it} \]
Hedging Before Distress

- **Econometric specification**

\[H_{it} = F E_i + F E_t + \sum_{j=0}^{8} \gamma_j \cdot D_{t-j} + \varepsilon_{it} \]

- **Regression results**

<table>
<thead>
<tr>
<th>Event time</th>
<th>BHC level</th>
<th>Bank level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross hedging</td>
<td>Gross hedging</td>
<td>Net hedging</td>
</tr>
<tr>
<td>(t - 8)</td>
<td>-0.007</td>
<td>-0.002</td>
</tr>
<tr>
<td>(t - 7)</td>
<td>-0.011</td>
<td>-0.000</td>
</tr>
<tr>
<td>(t - 6)</td>
<td>-0.013</td>
<td>-0.006</td>
</tr>
<tr>
<td>(t - 5)</td>
<td>-0.020**</td>
<td>-0.013**</td>
</tr>
<tr>
<td>(t - 4)</td>
<td>-0.020**</td>
<td>-0.014**</td>
</tr>
<tr>
<td>(t - 3)</td>
<td>-0.021**</td>
<td>-0.013*</td>
</tr>
<tr>
<td>(t - 2)</td>
<td>-0.020**</td>
<td>-0.012*</td>
</tr>
<tr>
<td>(t - 1)</td>
<td>-0.026***</td>
<td>-0.018**</td>
</tr>
<tr>
<td>(t)</td>
<td>-0.026***</td>
<td>-0.023***</td>
</tr>
<tr>
<td>Obs.</td>
<td>16,056</td>
<td>51,520</td>
</tr>
<tr>
<td>No. distressed</td>
<td>49</td>
<td>636</td>
</tr>
<tr>
<td>Within-(R^2)</td>
<td>0.013</td>
<td>0.036</td>
</tr>
</tbody>
</table>
Variance Decomposition of Net Income

- **Changes in provisions explain changes in net income**
 - Changes in net interest income less important

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta) Net interest income</td>
<td>0.736</td>
<td>0.091</td>
<td></td>
<td>0.760</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(37.15)</td>
<td>(2.09)</td>
<td></td>
<td>(38.09)</td>
<td></td>
</tr>
<tr>
<td>(\Delta) Net noninterest income</td>
<td>0.904</td>
<td></td>
<td>0.967</td>
<td></td>
<td>(157.45)</td>
</tr>
<tr>
<td></td>
<td>(157.45)</td>
<td></td>
<td>(123.09)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta) Noninterest income</td>
<td></td>
<td></td>
<td></td>
<td>0.807</td>
<td>(62.46)</td>
</tr>
<tr>
<td>(\Delta) Noninterest expense</td>
<td></td>
<td></td>
<td></td>
<td>0.918</td>
<td>(154.07)</td>
</tr>
<tr>
<td>(\Delta) Provisions</td>
<td>-0.793</td>
<td></td>
<td>-1.045</td>
<td>-0.790</td>
<td>(-92.54)</td>
</tr>
<tr>
<td></td>
<td>(-92.54)</td>
<td></td>
<td>(-66.14)</td>
<td>(-92.37)</td>
<td></td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.803</td>
<td>0.000</td>
<td>0.605</td>
<td>0.307</td>
<td>0.804</td>
</tr>
</tbody>
</table>

Back
Most nonaccrual loans are loans secured by real estate
Robustness: Maturity Gap in Treatment and Control Group

- **DD estimates with maturity gap as dependent variable**
- Treated BHCs increase interest rate exposure in treatment year

<table>
<thead>
<tr>
<th></th>
<th>BHC level</th>
<th></th>
<th>Bank level</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Post-event dummy</td>
<td>Year dummies</td>
<td>Post-event dummy</td>
<td>Year dummies</td>
</tr>
<tr>
<td>2009 and after</td>
<td>-0.025</td>
<td></td>
<td>-0.038</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>-0.087**</td>
<td></td>
<td>-0.094***</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>-0.019</td>
<td></td>
<td>-0.036</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>-0.021</td>
<td></td>
<td>-0.041</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>0.008</td>
<td></td>
<td>-0.006</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>-0.008</td>
<td></td>
<td>-0.014</td>
<td></td>
</tr>
</tbody>
</table>

Back
Regression of Hedging on Regulatory Capital

- No significant relation between hedging and regulatory capital
 - ... both in cross-section and within institution
 - ... both for Tier 1 and total regulatory capital

<table>
<thead>
<tr>
<th></th>
<th>BHC-mean OLS</th>
<th>Pooled OLS</th>
<th>Pooled Tobit</th>
<th>BHC FE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reg. Cap. / Assets</td>
<td>-0.224</td>
<td>0.260</td>
<td>0.192</td>
<td>0.113</td>
</tr>
<tr>
<td></td>
<td>(0.280)</td>
<td>(0.114)</td>
<td>(0.619)</td>
<td>(0.318)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.000</td>
<td>0.008</td>
<td>0.036</td>
<td>0.009</td>
</tr>
<tr>
<td>Tier 1 Cap. / Assets</td>
<td>0.193</td>
<td>0.086</td>
<td>-0.337</td>
<td>0.247*</td>
</tr>
<tr>
<td></td>
<td>(0.529)</td>
<td>(0.472)</td>
<td>(0.259)</td>
<td>(0.060)</td>
</tr>
<tr>
<td>R^2</td>
<td>-0.000</td>
<td>0.008</td>
<td>0.036</td>
<td>0.009</td>
</tr>
</tbody>
</table>
Regression of Trading on Net Worth

- Positive and significant relation between trading and net worth
- ... both in cross-section and time dimension

<table>
<thead>
<tr>
<th>Model</th>
<th>Size</th>
<th>Mkt. cap.</th>
<th>Mkt. cap./Assets</th>
<th>Net income</th>
<th>Net payout</th>
<th>Div.</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHC-mean</td>
<td>0.579***</td>
<td>0.484***</td>
<td>0.600</td>
<td>9.361*</td>
<td>330.525***</td>
<td>374.661***</td>
<td>0.872***</td>
</tr>
<tr>
<td>Tobit</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.509)</td>
<td>(0.089)</td>
<td>(0.001)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Tobit with</td>
<td>0.590***</td>
<td>0.511***</td>
<td>3.300***</td>
<td>11.459***</td>
<td>214.900***</td>
<td>164.830***</td>
<td>0.809***</td>
</tr>
<tr>
<td>time FE</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Tobit with</td>
<td>0.318</td>
<td>0.279</td>
<td>0.014</td>
<td>0.009</td>
<td>0.029</td>
<td>0.012</td>
<td>0.045</td>
</tr>
<tr>
<td>time FE</td>
<td>(0.000)</td>
<td>(0.010)</td>
<td>(0.000)</td>
<td>(0.001)</td>
<td>(0.039)</td>
<td>(0.471)</td>
<td>(0.127)</td>
</tr>
<tr>
<td>BHC FE</td>
<td>0.082***</td>
<td>0.020***</td>
<td>0.692***</td>
<td>1.172***</td>
<td>20.334**</td>
<td>5.965</td>
<td>0.040</td>
</tr>
<tr>
<td>rating</td>
<td>(0.000)</td>
<td>(0.010)</td>
<td>(0.000)</td>
<td>(0.001)</td>
<td>(0.039)</td>
<td>(0.471)</td>
<td>(0.127)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.009</td>
<td>0.042</td>
<td>0.049</td>
<td>0.044</td>
<td>0.089</td>
<td>0.042</td>
<td>0.096</td>
</tr>
</tbody>
</table>
Regression of Maturity Gap on Net Worth

- Positive correlation between maturity gap and net worth
- Better capitalized institutions do more operational hedging

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pooled OLS with time FE</td>
<td>0.042***</td>
<td>0.037***</td>
<td>0.626***</td>
<td>1.277***</td>
<td>-0.433</td>
<td>2.449</td>
<td>0.078***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.032)</td>
<td>(0.960)</td>
<td>(0.599)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.124</td>
<td>0.131</td>
<td>0.061</td>
<td>0.032</td>
<td>0.031</td>
<td>0.034</td>
<td>0.149</td>
</tr>
</tbody>
</table>

Back