Collateral and Secured Debt

Adriano A. Rampini
Duke University

S. Viswanathan
Duke University

SFS Cavalcade North America 2021
Session on Collateral and Restructuring

May 26, 2021
Theory to Distinguish between Secured Debt and Collateral

- **Secured debt**
 - Explicit collateralization: lien on specific assets, recovered in default
 - Secured lenders’ strong claim on assets enables **higher leverage**
 - Entails costs: direct or indirect (operational flexibility)

- **Unsecured debt**
 - Backed by unencumbered assets, implicitly collateralized

- **Key insights**
 - Collateral restricts both secured and unsecured debt
 - Constrained firms use more secured debt within and across firms

- **Consistent with stylized facts and evidence from causal forest**
 - Bulk of debt secured for most firms
 - Positive relation between secured debt and financial constraints
 - Positive relation between leverage and tangible assets

Adriano A. Rampini and S. Viswanathan
Why Do We Care?

- **Collateral central to macro finance and corporate finance**
 - Kiyotaki/Moore (1997)
 - Rampini/Viswanathan (2013)

- **Recent puzzles on secured debt**
 - Secured debt acyclical/countercyclical – Azariadis et al. (2016)
 - Limited use of secured debt by large firms – Lian/Ma (2021)
 - Secular decline in secured debt – Benmelech et al. (2019)

- **No distinction between secured debt and collateral!**

- **Punchline**
 - **Collateral is essential to understanding capital structure**
Law Perspective on Secured Debt

Based on Mann (1997)

Benefits of secured debt: enforcement of payment
- “increases the lender’s ability to collect the debt forcibly through liquidation of the collateral”
- “enhances the lender’s remedy (so that the lender can coerce payment more quickly than it could if its debt were not secured)”

Costs of secured debt
- Direct costs, such as information and transactions costs
- Indirect costs, such as operating flexibility
 - “you just don’t have the same flexibility of dealing with your properties as if you owned them unencumbered”

Very similar to basic trade-off in our model
Law Perspective on Secured Debt

- **Trade off depends on firms’ financial condition**
 - “as a borrower’s financial strength increases, secured credit becomes a less attractive alternative: its benefits decrease and its costs at best, remain constant” – Mann (1997)
 - “borrowers exhibit an increasing tendency toward unsecured debt as their financial strength increases” – Mann (1997)
 - “unsecured creditors frequently choose to waive negative pledge covenants in exchange for a quid pro quo, such as becoming equally and ratably secured” – Schwarcz (1997)

- **Contracting in the shadow of the law**
 - Borrowers and lenders are “reacting to the ‘shadow’ of the law – the parties’ anticipation of what would happen if formal legal proceedings were to occur” – Mann (1997)
Outline

(1) Stylized facts

(2) Model
 ▪ Key distinction between secured and unsecured debt
 ▪ Simple, deterministic model
 ▪ Stochastic model with quantitative evaluation

(3) Secured debt and leasing (time permitting)

(4) Evidence from causal forest
Stylized Facts on Secured Debt

Data

- Compustat; 1981-2018; annual; excluding SIC 6000-6999
- **Secured debt:** Debt/Mortgages & Other Secured (DM)
- **Debt:** Long-Term Debt (DLTT) + Debt in Current Liabilities (DLC)
- **Assets:** Assets (AT)

Two key stylized facts

- **Fact 1:** Secured debt increases with financial constraints
- **Fact 2:** Leverage increases with tangible assets
Stylized Fact 1 – Secured Debt and Financial Constraints

Financial structure across rating deciles

Panel A: Secured debt/Assets

Panel B: Secured debt/Total debt

Panel C: Unsecured debt/Assets

Panel D: Debt/Assets

Cross section: constrained firms have a lot more secured debt
Stylized Fact 1 – Secured Debt and Financial Constraints

- **Assets and dividend payout across rating deciles**

Panel E: Log assets

Panel F: Dividends/Assets

- Firms with low ratings are smaller and pay lower (or no) dividends
- Low rated firms seem **more constrained**
Stylized Fact 1 – Secured Debt and Financial Constraints

- **Within-firm variation:** heterogeneous effects of downgrades

Panel A: Secured debt/Assets

Panel B: Secured debt/Total debt

Panel C: Unsecured debt/Assets

Panel D: Debt/Assets

- Firms that are downgraded shift to secured debt, esp. low-rated ones

Adriano A. Rampini and S. Viswanathan
Collateral and Secured Debt
Stylized Fact 1 – Secured Debt and Financial Constraints

- Shift to secured debt, esp. low-rated firms

- Change in secured/unsecured leverage

- Previous rating decile

- Secured
- Unsecured

Adriano A. Rampini and S. Viswanathan

Collateral and Secured Debt
Stylized Fact 1 – Secured Debt and Financial Constraints

- **Within-firm variation: Assets & payout effect of downgrades**

 Panel E: Log assets

 Panel F: Dividends/Assets

 ■ Downgraded firms downsize and reduce payout substantially
Stylized Fact 1 – Secured Debt and Financial Constraints

Financial structure and assets across size deciles

Panel A: Secured debt/Assets

Panel B: Secured debt/Total debt

Panel C: Unsecured debt/Assets

Panel D: Debt/Assets

Financial constraints measure: size; small firms high fraction secured
Stylized Fact 1 – Secured Debt and Financial Constraints

- **Assets and dividend payout across size deciles**

 Panel E: Log Assets

 Panel F: Dividends/Assets

 - Dramatic size pattern in dividends
Stylized Fact 2 – Financial Structure and Tangible Assets

Financial structure and assets across tangibility deciles

Panel A: Secured debt/Assets

Panel B: Secured debt/Total debt

Panel C: Unsecured debt/Assets

Panel D: Debt/Assets

Secured debt and total leverage increase substantially with tangibility
Stylized Facts – Secured Long-Term Debt Ratio

- Ratio of secured debt to long-term debt

Panel A: Secured LT debt ratio by ratings

Panel B: Secured LT debt ratio by assets

Panel C: Δ Secured LT debt ratio

Panel D: Secured LT debt ratio by tangibility

- Patterns in secured LT debt still more pronounced
Model with Secured and Unsecured Debt

- **Environment**
 - Discrete time, infinite horizon: \(t = 0, 1, 2, \ldots \)
 - Risk-neutral firm discounts at rate \(\beta \in (0, 1) \); limited liability
 - Net worth \(w_0 \) at time 0
 - Two types of capital: tangible and intangible (fixed proportions)
 - Leontief aggregator \(k \equiv \min\{k_p/\varphi, k_i/(1 - \varphi)\}; \ \varphi \in (0, 1] \) tangible
 - Capital \(k \) yields cash flow \(A(z')f(k) \) with productivity \(A(z') \)
 - \(z' \) follows Markov chain with transition function \(\Pi(z, z') \) on \(z' \in Z \)
 - Capital \(k \) depreciates at rate \(\delta \in (0, 1) \)

- **Production function**
 - Decreasing returns and Inada condition
 - **Assumption 1.** Production function \(f \) strictly increasing, strictly concave, \(f(0) = 0, \lim_{k \to 0} f'(k) = +\infty, \text{ and } \lim_{k \to +\infty} f'(k) = 0 \)
Secured vs. Unsecured Debt

- Financing
 - Intangible capital \((1 - \varphi)k\) internally financed
 - Tangible capital \(\varphi k\) can be financed with secured and unsecured debt
 - Encumbered capital \(k_s\) explicitly pledged to secured lender
 - Unencumbered capital \(k_u = \varphi k - k_s\) backs unsecured debt

- Collateralizability \(\theta_s\) and cost \(\kappa\) of secured debt – Mann (1997)
 - Benefit: “increas[es] the lender’s ability to collect the debt forcibly through liquidation of the collateral” and “enhanc[es] the lender’s remedy (so that the lender can coerce payment more quickly than it could if its debt were not secured)”
 - Cost (direct and indirect): “[y]ou just don’t have the same flexibility of dealing with your properties as if you owned them unencumbered”
 - Assumption 2. \(1 > \theta_s > \theta_u \geq 0\) and \(\kappa > 0\)

- Benefits and costs of secured and unsecured debt
 - Assumption 3. \(R^{-1}(\theta_s - \theta_u)(1 - \delta) > \kappa > (R^{-1} - \beta)(\theta_s - \theta_u)(1 - \delta)\)
 - Alternative: encumbered capital less efficient (indirect cost)
 - \(\varphi k = k_u + \phi k_s\) with \(\phi < 1\)
Deterministic Model with Secured & Unsecured Debt

- Simplified model without uncertainty
 - No uncertainty (A' constant); no intangible capital ($\varphi = 1$)

- Firm’s problem
 \[
 v(w) = \max_{\{d,k_s,k_u,w',b'_s,b'_u\} \in \mathbb{R}_+^4 \times \mathbb{R}^2} d + \beta v(w')
 \]
 subject to budget constraints for current and next period
 \[
 w + \sum_{j \in \mathcal{J}} b'_j \geq d + \sum_{j \in \mathcal{J}} k_j + \kappa k_s
 \]
 \[
 A' f\left(\sum_{j \in \mathcal{J}} k_j\right) + \sum_{j \in \mathcal{J}} k_j (1 - \delta) \geq w' + \sum_{j \in \mathcal{J}} Rb'_j
 \]
 collateral constraints on secured and unsecured borrowing
 \[
 \theta_j k_j (1 - \delta) \geq Rb'_j, \quad \forall j \in \mathcal{J},
 \]
 where $\mathcal{J} \equiv \{s, u\}$.

Adriano A. Rampini and S. Viswanathan
Collateral and Secured Debt
Deterministic Model – First-order Conditions

- **Notation**
 - Multipliers on constraints (2) to (4): μ, $\beta \mu'$, and $\beta \lambda'_j$
 - Multipliers on non-negativity constraints for k_j and d: ν_j and ν_d
 - Let $k \equiv \sum_{j \in J} k_j$

- **First-order conditions**

 \[
 \begin{align*}
 \mu &= 1 + \nu_d \\
 \mu &= \beta R \mu' + \beta R \lambda'_j, \quad \forall j \in J, \quad (6) \\
 \mu(1 + \kappa) &= \beta \mu'[A' f_k(k) + (1 - \delta)] + \beta \lambda'_s \theta_s (1 - \delta) + \nu_s \quad (7) \\
 \mu &= \beta \mu'[A' f_k(k) + (1 - \delta)] + \beta \lambda'_u \theta_u (1 - \delta) + \nu_u \quad (8) \\
 \beta \mu' &= \beta v_w(w') \quad (9)
 \end{align*}
 \]

- **Envelope condition:** $v_w(w) = \mu$ (marginal value of net worth)

- **Note:** $\lambda'_u = \lambda'_s \equiv \lambda'$
Model with Secured and Unsecured Debt

- **Down payments and investment Euler equation**
 - Down pmts: \(\varphi_s = 1 - R^{-1}\theta_s (1 - \delta) + \kappa; \varphi_u = 1 - R^{-1}\theta_u (1 - \delta) \)
 - Firm’s investment Euler equation (IEE)
 \[
 1 = \beta \frac{\mu'}{\mu} A' f_k(k) + (1 - \theta_j)(1 - \delta) \frac{\nu_j}{\varphi_j} + \frac{\nu_j}{\varphi_j}, \quad \forall j \in J. \tag{10}
 \]

- **Choice between secured and unsecured debt**
 - Rewrite IEEs using Jorgenson’s (1963) frictionless user cost \(u \equiv r + \delta \)
 \[
 u + R\kappa + R \frac{\lambda'}{\mu'} \varphi_s \geq A' f_k(k) \tag{11}
 \]
 \[
 u + R \frac{\lambda'}{\mu'} \varphi_u \geq A' f_k(k), \tag{12}
 \]
 with equality if \(k_j > 0 \)
 - Trade-off between cost of encumbering assets and down payments
 - Assumption 3 implies \(\varphi_s < \varphi_u \) (otherwise secured debt dominated)
 - Secured debt enables more borrowing/higher leverage
Model with Secured and Unsecured Debt

- Using IEEs we get

\[1 = \beta \frac{\mu'}{\mu} \left(\theta_s - \theta_u \right) \left(1 - \delta \right) + \frac{\nu_u/\mu - \nu_s/\mu}{\phi_u - \phi_s} \]

(13)

- Let \(R_s \equiv \frac{(\theta_s - \theta_u)(1 - \delta)}{\phi_u - \phi_s} > R \) (by Assumption 2)
- Secured debt is more costly

- Severely constrained firms \((w \to 0)\) use secured debt only
 - (2) & (4) \(\Rightarrow w \geq \sum_{j \in J} \phi_j k_j \) and \(k_j \to 0, \forall j \in J \Rightarrow k \to 0\)
 - IEE implies \(\beta \mu'/\mu \to 0\); then (13) implies \(\nu_u > 0\)

- Dividend-paying firms \((d > 0)\) use unsecured debt only
 - Firm pays dividends in steady state: \(\mu = \mu' = 1\), so \(\beta \mu'/\mu = \beta\)
 - By Assumption 3 \(R_s > \beta^{-1}\); then (13) implies \(\nu_s > 0\)
 - IEE: \(1 = \beta \frac{A'_f k(k)+(1-\theta_u)(1-\delta)}{\phi_u} \) implicitly defines \(\bar{k}\)

- Firms indifferent between secured and unsecured debt
 - From (13): \(\beta \mu'/\mu = R_s^{-1}\); IEE defines \(\underline{k} < \bar{k}\)
Given Assumptions 1 to 3, \(\exists \) thresholds \(0 < w_s < \bar{w}_s < w < +\infty \)

Financing policy

- \(w \leq w_s \): issue only secured debt
- \(w \in (w_s, \bar{w}_s) \): substitute from secured debt to unsecured debt
- \(w \geq \bar{w}_s \): use only unsecured debt

Investment \(k \) increases in \(w \); strictly if \(w \leq w_s \), \(w \in [\bar{w}_s, \bar{w}] \)

Payout policy: firms with \(w > \bar{w} \) pay dividends

Firm life cycle

- Over time, firms accumulate net worth, ...
- ... increase investment,
- ... substitute from secured debt to unsecured debt,
- ... and eventually initiate dividends.
Model with Secured and Unsecured Debt with Uncertainty

- Stochastic productivity

- **Assumption 4.** \(\forall z_+, z \in Z \ni z_+ > z, \ (i) \ A(z_+) > A(z), \)
 \((ii) \ A(z) > 0 \)

- Firm’s problem

\[
v(w, z) = \max_{\{d, k_s, k_u, w', b'_s, b'_u\} \in \mathbb{R}^4_+ \times \mathbb{R}^{2s}} d + \beta E[v(w', z')|z] \tag{14}
\]

subject to budget constraints for current and next period, \(\forall z' \in Z , \)

\[
w + E\left[\sum_{j \in \mathcal{J}} b'_j \bigg| z \right] \geq d + \frac{1}{\varphi} \sum_{j \in \mathcal{J}} k_j + \kappa k_s \tag{15}
\]

\[
A' f\left(\frac{1}{\varphi} \sum_{j \in \mathcal{J}} k_j \right) + \frac{1}{\varphi} \sum_{j \in \mathcal{J}} k_j (1 - \delta) \geq w' + \sum_{j \in \mathcal{J}} Rb'_j \tag{16}
\]

and collateral constraints (4) \(\forall \{j, z'\} \in \mathcal{J} \times Z \)
Model with Secured and Unsecured Debt

- **Investment Euler equation (IEE)**

\[
1 = E \left[\frac{\beta \mu'}{\mu} A' f_k(k) + (1 - \varphi \theta_j)(1 - \delta) \left| \frac{\varphi_j}{\varphi_j} \right| z \right] + \frac{\varphi \nu_j / \mu}{\varphi_j} \tag{17}
\]

where \(\varphi_j \equiv 1 - \varphi + \varphi \varphi_j \)

- **Severely constrained firms \((w \rightarrow 0) \) use secured debt only**
 - \((15) \& (4) \Rightarrow w \geq \frac{1}{\varphi} \sum_{j \in J} \varphi_j k_j \Rightarrow k_j \rightarrow 0, \forall j \in J; k \rightarrow 0\)
 - IEE implies \(\beta \mu' / \mu \rightarrow 0, \forall z' \in Z \) since

\[
1 \geq E \left[\frac{\beta \mu'}{\mu} A' f_k(k) + (1 - \varphi \theta_j)(1 - \delta) \left| \frac{\varphi_j}{\varphi_j} \right| z \right] \\
\geq \beta \frac{\mu'}{\mu} A' f_k(k) + (1 - \varphi \theta_j)(1 - \delta) \left| \frac{\varphi_j}{\varphi_j} \right|
\]

- Analogous argument implies \(\nu_u > 0 \)
- **Financially constrained firms borrow secured**

- **Dividend-paying firms use unsecured debt only**
Quantitative Evaluation

- **Baseline calibration based on Li/Whited/Wu (2016)**
 - Structural estimate version of R/V (2013) model using SMM
 - Calibrated parameters:
 - $\beta = 0.985$ – avg. real 3m T-bill rate 1965-2012: 1.5%
 - $R^{-1} = 0.988$ – difference due to tax wedge with $\tau = 20%$
 - Estimated parameters:
 - $f(k) = k^\alpha$ and $\alpha = 0.6$
 - $A(z') = \exp(z')$ with $\sigma_z = 0.5$ and $\rho_z = 0.5$
 - Not used: $\delta = 0.04; \theta = 0.4$

- **Our parametrization**
 - Symmetric two-state Markov chain with $\Pi(z, z) = 0.75$ to match ρ_z
 - $\delta = 0.1$
 - $\varphi = 0.6$: Falato/Kadyrzhanova/Sim/Steri (2018)
 - Calibrated: $\theta_s = 0.8; \theta_u = 0.6; \kappa = 0.01$
Quantitative Evaluation

- Financial structure by net worth
 - Panel A: Secured debt/Assets
 - Panel B: Secured debt/Total debt
 - Panel C: Unsecured debt/Assets
 - Panel D: Debt/Assets

Secured debt and leverage decrease with net worth
Stylized Fact 1 – Secured Debt with Leasing

- Financial structure and leasing across rating deciles

Panel A: Secured debt/Assets (lease-adjusted)

Panel B: Secured debt/Total debt (lease-adjusted)

Panel C: Leasing debt/Assets (lease-adjusted)

Panel D: Debt/Assets (lease-adjusted)

- Cross section: accentuated patterns and higher level

Adriano A. Rampini and S. Viswanathan

Collateral and Secured Debt
Stylized Fact 1 – Secured Debt and Leasing

- Within-firm variation: heterogeneous effects of downgrades

Panel A: Secured debt/Assets (lease-adj.)

Panel B: Secured debt/Total debt (lease-adj.)

Panel C: Leasing debt/Assets (lease-adj.)

Panel D: Debt/Assets (lease-adj.)

- Firms that are downgraded shift to secured debt and leasing

Adriano A. Rampini and S. Viswanathan

Collateral and Secured Debt
Stylized Fact 1 – Secured Debt and Leasing

- Shift to secured debt (incl. leasing), esp. low-rated firms
Stylized Fact 1 – Secured Debt and Leasing

- **Financial structure and leasing across size deciles**

Panel A: Secured debt/Assets (lease-adj.)

Panel B: Secured debt/Total debt (lease-adj.)

Panel C: Leasing debt/Assets (lease-adj.)

Panel D: Debt/Assets (lease-adj.)

- Bulk of financing secured in all but largest firms
Stylized Fact 2 – Financial Structure and Tangible Assets

- Financial structure and leasing across tangibility deciles

Panel A: Secured debt/Assets (lease-adj.)

Panel B: Secured debt/Total debt (lease-adj.)

Panel C: Leasing debt/Assets (lease-adj.)

Panel D: Debt/Assets (lease-adj.)

- Secured debt, leasing, and total leverage all increase with tangibility
Stylized Facts – Secured LT Debt Ratio (Lease-Adj.)

- Ratio of secured debt to long-term debt (lease-adj.)

Panel A: Secured LT debt ratio by ratings

Panel B: Secured LT debt ratio by assets

Panel C: ∆ Secured LT debt ratio

Panel D: Secured LT debt ratio by tangibility

Patterns in secured LT debt still more pronounced
Model with Secured and Unsecured Debt and Leasing

- Benefits and costs of leasing \(k_l \)
 - Monitoring cost \(m > 0 \); leasing fee \(\varphi_l \equiv R^{-1}u + m \)
 - Assumption 5. \(R^{-1}(1 - \theta_s)(1 - \delta) > m - \kappa > \frac{1 - \theta_s}{\theta_s - \theta_u} \kappa \)
 - Implies \(\varphi_s > \varphi_l \) and \(R_l \equiv \frac{(1 - \theta_s)(1 - \delta)}{\varphi_s - (R^{-1}u + m)} > R_s \)
 - Repossession advantage: Eisfeldt/Rampini (2009); R/V (2013)

- Firm’s problem

\[
v(w, z) = \max_{\{d, k_s, k_u, k_l, w', b'_s, b'_u\} \in \mathbb{R}_+^5 \times \mathbb{R}_2^S} \left\{ d + \beta E[v(w', z') | z] \right\}
\]

subject to budget constraints for current and next period, \(\forall z' \in Z \),

\[
w + E\left[\sum_{j \in J} b'_j \bigg| z \right] \geq d + \frac{1}{\varphi} \sum_{j \in J} k_j + \kappa k_s + \frac{1 - \varphi + \varphi(R^{-1}u + m)}{\varphi} k_l
\]

\[
A' f \left(\frac{1}{\varphi} \left(\sum_{j \in J} k_j + k_l \right) \right) + \frac{1}{\varphi} \left(\sum_{j \in J} k_j + (1 - \varphi) k_l \right)(1 - \delta) \geq w' + \sum_{j \in J} Rb'_j
\]

and collateral constraints (4) \(\forall \{j, z'\} \in J \times Z \)

- Prediction: Most constrained firms lease; then borrow secured; ...
Effect of Downgrades – Inference using Causal Forest

- **Estimate heterogeneous treatment effects using causal forest**
 - Method: Wager/Athey (2018); Athey/Wager (2019)
 - Application to covenant violations: Gulen/Jens/Page (2019)

- **Primer on causal forest**
 - Non-parametric machine learning based estimation method
 - Intuitively: nearest neighbor method with adaptive neighborhood
 - Classification and regression trees (CARTs): tree with leaves
 - Grow tree by recursively splitting sample by covariates
 - Maximize variance of treatment effects across leaves
 - Honest (causal) tree splits sample into training and estimation set
 - Causal forest aggregates causal trees to allow inference
 - Obtain consistent, asymptotically normal treatment effect

- **Our causal forest**: 4000 trees using 50% of sample, 50% honesty
 - Outcome var: financial structure, assets, and payout policy;
 treatment: downgrade
 - Covariates: SecDebt, UnsecDebt, Debt, NetInc, MktCap, Div (all /Assets); SecDebt/Debt; Rating; MktCap; Assets; Tangibility
Causal Forest – Treatment Effect Densities

- **Density of conditional avg. treatment effects (CATEs)**
 - Treatment: ratings downgrades by one notch (or more)
 - Effect on secured debt leverage and secured debt ratio
 - Densities for treatment effects on the treated (TT) and control (TC)

![Graph](image)

- Estimates of average treatment effects

Adriano A. Rampini and S. Viswanathan
Collateral and Secured Debt
Causal Forest – Heterogenous Treatment Effects

- Treatment effect of one-notch (or more) downgrade by rating

![Graphs showing treatment effects by rating for Secured debt/Assets and Secured debt/Total debt.](#)
Causal Forest – Treatment Effects (Lease-adj.)

- Treatment effect of one-notch (or more) downgrade by rating

![Secured debt/Assets (lease-adj.)](chart1)

![Secured debt/Total debt (lease-adj.)](chart2)

Leasing and Unsecured Debt

Adriano A. Rampini and S. Viswanathan
Conclusion

- **Secured debt** enables higher leverage but entails costs
 - Explicit collateralization gives secured lender strong claim on assets
 - More constrained firms use more secured debt within and across firms

- **Collateral restricts both secured and unsecured debt**
 - Unsecured debt backed by unencumbered assets

- **Consistent with stylized facts and evidence from causal forest**

- **Collateral is essential to understanding capital structure**
 - Collateral constraints matter despite large firms borrowing unsecured
 - Firms shift to secured debt when constrained
 - Bulk of debt secured for small firms and lease-adj. for most firms
 - Unsecured debt implicitly collateralized
Average Treatment Effects from Causal Forest

- Effects on financial structure, investment, and payout policy
- ATE/ATT/ATC: Average Treatment Effect; on Treated; on Control

<table>
<thead>
<tr>
<th>Outcome variable</th>
<th>ATE</th>
<th>ATT</th>
<th>ATC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secured debt /Assets</td>
<td>0.021</td>
<td>0.016</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>(6.973)</td>
<td>(5.602)</td>
<td>(6.962)</td>
</tr>
<tr>
<td>Secured debt/Total debt</td>
<td>0.032</td>
<td>0.025</td>
<td>0.033</td>
</tr>
<tr>
<td></td>
<td>(5.629)</td>
<td>(4.914)</td>
<td>(5.563)</td>
</tr>
<tr>
<td>Unsecured debt/Assets</td>
<td>0.018</td>
<td>0.011</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td>(4.753)</td>
<td>(3.230)</td>
<td>(4.829)</td>
</tr>
<tr>
<td>Debt/Assets</td>
<td>0.040</td>
<td>0.027</td>
<td>0.042</td>
</tr>
<tr>
<td></td>
<td>(9.740)</td>
<td>(7.340)</td>
<td>(9.803)</td>
</tr>
<tr>
<td>Log assets (level)</td>
<td>-0.101</td>
<td>-0.110</td>
<td>-0.099</td>
</tr>
<tr>
<td></td>
<td>(-8.746)</td>
<td>(-11.220)</td>
<td>(-8.222)</td>
</tr>
<tr>
<td>Dividends/Assets</td>
<td>-0.004</td>
<td>-0.003</td>
<td>-0.004</td>
</tr>
<tr>
<td></td>
<td>(-11.329)</td>
<td>(-12.098)</td>
<td>(-10.998)</td>
</tr>
</tbody>
</table>

Adriano A. Rampini and S. Viswanathan
Collateral and Secured Debt
Average Treatment Effects from Causal Forest

- **Treatment Effects on Financial Structure (Lease-adj.)**

<table>
<thead>
<tr>
<th>Outcome variable</th>
<th>ATE</th>
<th>ATT</th>
<th>ATC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secured debt /Assets</td>
<td>0.024</td>
<td>0.020</td>
<td>0.025</td>
</tr>
<tr>
<td></td>
<td>(8.753)</td>
<td>(7.415)</td>
<td>(8.719)</td>
</tr>
<tr>
<td>Secured debt/Total debt</td>
<td>0.016</td>
<td>0.019</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>(3.464)</td>
<td>(4.453)</td>
<td>(3.236)</td>
</tr>
<tr>
<td>Unsecured debt/Assets</td>
<td>0.012</td>
<td>0.005</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td>(3.956)</td>
<td>(1.559)</td>
<td>(4.186)</td>
</tr>
<tr>
<td>Debt/Assets</td>
<td>0.038</td>
<td>0.026</td>
<td>0.040</td>
</tr>
<tr>
<td></td>
<td>(10.620)</td>
<td>(8.059)</td>
<td>(10.703)</td>
</tr>
<tr>
<td>Leasing debt/Assets</td>
<td>0.014</td>
<td>0.016</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td>(7.677)</td>
<td>(9.153)</td>
<td>(7.328)</td>
</tr>
</tbody>
</table>

Adriano A. Rampini and S. Viswanathan
Collateral and Secured Debt
Causal Forest – Heterogenous Treatment Effects

- Treatment effect of one-notch (or more) downgrade by rating

<table>
<thead>
<tr>
<th>Rating code</th>
<th>Unsecured debt/Assets</th>
<th>Total debt/Assets</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>−0.04</td>
<td>−0.04</td>
</tr>
<tr>
<td>CCC</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>B</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>BB</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>BBB−</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assets and Dividends

Adriano A. Rampini and S. Viswanathan

Collateral and Secured Debt
Causal Forest – Heterogenous Treatment Effects

- Treatment effect of one-notch (or more) downgrade by rating

<table>
<thead>
<tr>
<th>Rating code</th>
<th>Assets</th>
<th>Dividends/Assets</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BBB−</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Back
Causal Forest – Treatment Effects (Lease-adj.)

- **Treatment effect of one-notch (or more) downgrade by rating**

![Graph showing the treatment effect of one-notch (or more) downgrade by rating.](image-url)