Learning and Asset-price Jumps

Ravi Bansal
Fuqua School of Business, Duke University, and NBER

Ivan Shaliastovich
Wharton School, University of Pennsylvania

We develop a general equilibrium model in which income and dividends are smooth but asset prices contain large moves (jumps). These large price jumps are triggered by optimal decisions of investors to learn the unobserved state. We show that learning choice is determined by preference parameters and the conditional volatility of income process. An important model prediction is that income volatility predicts future jump periods, while income growth does not. Consistent with the model, large moves in returns in the data are predicted by consumption volatility but not by consumption growth. The model quantitatively captures these novel features of the data. (JEL G00, G12, G14, D83)

A prominent feature of financial markets is infrequent but large price movements (jumps). In this article, we develop a model in which income and dividends have smooth Gaussian dynamics; however, asset prices are subject to large infrequent jumps. In our model, large moves in asset prices obtain from the actions of the representative agent to acquire more information about the unobserved state of the economy for a cost. We show that the optimal decision to incur a cost and learn the true economic state is directly related to the level of uncertainty in the economy. This implies that aggregate economic volatility, as well as market volatility, should predict jumps in returns. We show that indeed in the data, consistent with the model, return jumps are predicted by consumption volatility (market volatility). Further, the implied asset-price implications from our model are consistent with the key findings from parametric models about frequency and predictability of jumps as well as nonparametric jump-detection analysis of Barndorff-Nielsen and Shephard (2006). Based on

We thank seminar participants at Duke University, University of Pennsylvania, the 2008 AEA meeting, the 2009 WFA meeting, the CREATE C-CAPM workshop, Hengjie Ai, Tim Bollerslev, Mikhail Chernov, Riccardo Colacito, Janice Eberly, Steve Heston, Neil Shephard, George Tauchen, Raman Uppal, two anonymous referees, and the journal editor, Geert Bekaert. Ravi Bansal is affiliated with the Fuqua School of Business, Duke University, and NBER; telephone: 919-660-7758, E-mail: ravi.bansal@duke.edu. Send correspondence to Ivan Shaliastovich, Wharton School, University of Pennsylvania; telephone: 215-746-0005. E-mail: ishal@wharton.upenn.edu.

our evidence, we argue that our structural model provides an economic basis for realistic reduced-form models of stock-price dynamics with time-varying volatility and jumps.

We rely on the long-run risks model of Bansal and Yaron (2004), the key ingredients of which are a small and persistent low-frequency expected growth component, time-varying income volatility, and recursive utility of Epstein and Zin (1989) and Weil (1989). The expected growth is unobserved and has to be estimated from the history of the data; in addition, the representative agent also has an option to incur a cost and learn the true economic state. This setup is designed to capture the intuition that some of the key aspects of the economy are not directly observable, but the agents can learn more about them through additional costly exploration. We show that the optimal decision to pay a cost and observe the true state endogenously depends on the aggregate volatility, the variance of the filtering error, and the agent’s preferences. In particular, with a preference for early resolution of uncertainty, the optimal frequency of learning about the true state after incurring a cost increases when the income volatility rises. On the other hand, with expected utility, the agent has no incentive to learn the true state even if costs are zero. Learning about the true state may lead to large revisions in expectations about future income, which translate into large moves in equilibrium asset prices. These large moves in asset prices obtain even though the underlying income and dividends in the economy are smooth and have no jumps. Such asset-price moves, we show, do not occur in economies where an option to learn about the true expected growth for a cost is absent.

The learning mechanisms in our article complement research by Van Nieuwerburgh and Veldkamp (2006) and Veldkamp (2006b). In these models, the information of the agent is endogenous and varies with the underlying state in the economy. In particular, the impact of bad news can be endogenously very large in good times when the information is abundant, so that asset prices fall precipitously and a sudden crash occurs. In a similar vein, in our model the endogenous actions of investors to obtain additional information about the underlying state lead to discrete changes in their expectations of future growth and consequently large moves in the financial markets.

We solve the model from the perspective of the social planner, who optimally allocates social resources for an acquisition of costly information. As argued by Grossman and Stiglitz (1980), this setup may be difficult to decentralize in the presence of costly information acquisition. However, Veldkamp (2006a) presents a model that motivates the market-price implications of a decentralized model with costly information acquisition. Veldkamp (2006a) allows the investors to hire a third party to acquire information on their behalf. The third party pays a fixed cost, determined endogenously in equilibrium, and shares the information with its clients. She shows that as more investors decide to purchase information, the per-investor cost of being informed declines in equilibrium; therefore, in many cases, most investors would
get informed. The implications of this equilibrium are very similar to those of the representative agent setup with costly information acquisition featured in our article.

One of the key implications of our model is that income volatility predicts future large moves in returns. We provide empirical support that large moves in the stock market can be predicted by the volatility measures in the economy. Specifically, we document a positive correlation of the return jump indicator with lags of conditional variance of consumption. On an annual frequency, the volatility of annual consumption significantly predicts large moves in next-year market returns with an R^2 of 9%, which we show using two alternative measures of consumption volatility, including the usual model of generalized autoregressive conditional heteroscedasticity (GARCH). Further, in the data there is no evidence for predictability of large moves in returns by the levels of the real aggregate variables. We show that the model can match both of these novel and important data features. Earlier evidence in Bates (2000), Pan (2002), and Eraker (2004) documents that market volatility also predicts jumps. In our structural model, the market variance is related to aggregate income volatility, which consequently enables us to match this data feature as well and provide an economic motivation for this empirical finding.

Our target is to match the key evidence on frequency, magnitude, and predictability of jumps in the data. We identify 25 years in the data with at least one significant price move (i.e., jump) in daily returns for the 80-year period from 1926 to 2008; hence, the frequency of jump-years is once every 3.3 years. In our sample, we find that the relative contribution of jumps to the total return variance is 7.5%, which is consistent with the evidence from Huang and Tauchen (2005) and other studies. We calibrate the model to match these dimensions along with other key asset-market facts. We use standard calibrations of income and preference parameters, while our calibration of learning costs is similar to observation and transaction costs from Abel, Eberly, and Panageas (2007). We show that at the calibrated value of the learning-cost parameter, investors optimally choose to observe the true state about once every 1.5 years. The expenditure on costly learning is 8.5% of the daily income; hence, the per-annum expenditure on costly learning is about 0.03% of the aggregate income. Our model generates a mean market return of 6.4%, volatility of returns of 15.5%, and a risk-free rate of 1%. Hence, our model can account for the usual equity premium and risk-free rate puzzles in the data. Further, the model with constant aggregate volatility delivers the average frequency of jump-years

2 This provides a conservative estimate for the frequency of return jumps in the data, as there can be more than one jump in daily returns in a given year.

3 In the context of rational inattention literature, Sims (2003) features similar adjustment costs related to the information-processing constraint. Costs of acquiring, absorbing, and processing information are also used to explain infrequent adjustments of stock portfolio (Duffie and Sun 1990) or the consumption and saving plans of investors (Reis 2006).
once every 4.8 years, and the contribution of jumps to return variance of 7.2%. When we allow for time-varying aggregate volatility, the average frequency of jump-years increases to once every 3.4 years, while the relative contribution of jumps increases to 12%. In standard models with no option to learn the true state for a cost, asset prices do not exhibit jumps. Further, we show that the model with costly learning delivers positive and significant correlation of the large return move indicator with endowment and return variances and zero correlation with endowment growth. The magnitudes of the correlation coefficients are comparable to the data.

A contribution of our article is to develop an equilibrium asset-pricing model where financial markets display jumps even though the underlying economic input (endowment growth) is smooth. In the standard full-information long-run risks model of Bansal and Yaron (2004), there are no discrete changes in the economy, and asset prices do not exhibit jumps. Croce, Lettau, and Ludvigson (2010) consider a similar long-run risks setup where the investors can learn from the history of the data only, i.e., no costly learning. David (1997), Veronesi (1999), Hansen and Sargent (2010), and Ai (2010) consider learning models in which the agents learn about unobserved state variables. It is worth noting that learning considered in these models does not generate jumps in returns. An alternative approach for motivating large moves (jumps) in asset prices is entertained by Liu, Pan, and Wang (2005), Barro (2006), Eraker and Shaliastovich (2008), Bansal, Kiku, and Yaron (2010), Bansal and Shaliastovich (2010), Bekaert and Engstrom (2010), Drechsler and Yaron (2011), Drechsler (2010), and Shaliastovich and Tauchen (2011) via exogenous jumps or non-Gaussian shocks in the underlying income process. In these models, asset-price jumps are due to large shifts or disasters in macroeconomic fundamentals. Our empirical evidence suggests that many asset-price jumps do not coincide with any tangible economic disasters. Consistent with this evidence, asset-price jumps in our model are not linked to economic disasters. We view our approach as complementing the literature that motivates asset-price jumps by macroeconomic jumps/disasters.

The article is organized as follows. In the next section, we review the empirical evidence on large moves in asset prices in the data. In Section 3, we set up a model and describe preferences, information structure, and income dynamics in the economy. In Section 4, we characterize solutions to the optimal learning policy and equilibrium asset valuations. Finally, in Section 4, we use numerical calibrations to quantify model implications for asset-price jumps. The conclusion and Appendix follow.

1. Evidence on Asset-price Jumps

Empirical evidence suggests that asset prices display infrequent large movements that are too big to be Gaussian shocks. In the first panel of Figure 1, we plot the time series of daily inflation-adjusted returns on a broad market index.
for the period 1926–2008. Occasional large spikes in the series suggest the presence of large moves (jumps). Consistent with this evidence, the kurtosis of market returns is 21, relative to 3 for normal distribution, as shown in the first panel of Table 1.

For further evidence on large movements in asset prices, we apply non-parametric jump-detection methods (see Barndorff-Nielsen and Shephard 2006), used in a stream of papers in financial econometrics. This approach allows us to identify years with one or more large price moves in daily returns.

Let R_T stand for a total return from time $T - 1$ to T, and denote $R_{T,j}$ the jth intra-period return from $T - 1 + (j - 1)/M$ to $T - 1 + j/M$, for $j = 1, 2, \ldots, M$. The two common measures that capture the variation in returns over the period are the realized variation, given by the sum of squared intra-period returns,

$$RV_T = \sum_{j=1}^{M} R_{T,j}^2,$$ \hspace{1cm} (1)

and the bipower variation, which is defined as the sum of the cross-products of the current absolute return and its lag,

$$BV_T = \frac{\pi}{2} \left(\frac{M}{M - 1} \right) \sum_{j=2}^{M} |R_{T,j-1}| |R_{T,j}|.$$ \hspace{1cm} (2)

4 We prorate monthly inflation rate to daily frequency to obtain inflation-adjusted returns from nominal ones. The results for the nominal returns are very similar.
Learning and Asset-price Jumps

Table 1
Summary statistics: data and model

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std Dev</th>
<th>Kurt</th>
<th>Jump-year Freq</th>
<th>Jump Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Return</td>
<td>7.36</td>
<td>17.09</td>
<td>21.03</td>
<td>3.32</td>
<td>7.48</td>
</tr>
<tr>
<td>Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant Volatility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Return with costly learning</td>
<td>6.70</td>
<td>15.49</td>
<td>17.69</td>
<td>4.84</td>
<td>7.16</td>
</tr>
<tr>
<td>Return without costly learning</td>
<td>6.95</td>
<td>15.55</td>
<td>3.01</td>
<td>41.42</td>
<td>1.95</td>
</tr>
<tr>
<td>Time-Varying Volatility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Return with costly learning</td>
<td>6.35</td>
<td>15.52</td>
<td>35.51</td>
<td>3.35</td>
<td>11.93</td>
</tr>
<tr>
<td>Return without costly learning</td>
<td>6.22</td>
<td>13.94</td>
<td>3.17</td>
<td>44.78</td>
<td>1.99</td>
</tr>
</tbody>
</table>

Mean, standard deviation and kurtosis of returns, and frequency and variance contribution of jumps. The first panel presents statistics in the data, while the second one presents statistics for the model specifications with constant and time-varying volatility. Return without costly learning refers to the case where the agent has no option to learn the true state for a cost. Jump-year frequency is the average frequency of years with jumps detected by the jump statistics, in years. Jump contribution measures the average percent contribution of large price moves to the total return variance. Data are daily inflation-adjusted market returns from 1926 to 2008. Model statistics are based on the average across 100 simulations of 85 years of data. Jump-detection statistics are based on the 1% significance level.

When the underlying asset-price dynamic is a general jump-diffusion process, for finely sampled intra-period returns the realized variation RV_T measures the total variation coming from both Gaussian and jump components of the price, while the bipower variation BV_T captures the contribution of a smooth Gaussian component only (see, e.g., Barndorff-Nielsen and Shephard 2006). Hence, these two measures reveal the magnitudes of smooth and jump components in the total variation of returns. A scaled difference between these two measures (relative jump statistics) provides a direct estimate of the percentage contribution of jumps to the total price variance:

$$RJ_T = \frac{RV_T - BV_T}{RV_T}. \tag{3}$$

Under the assumption of no jump and some regularity conditions, Barndorff-Nielsen and Shephard (2006) show that the joint asymptotic distribution of the two variation measures is conditionally normal. This allows us to compute a t-type statistic to test for abnormally large price movements, which are indicative of jumps. A popular version of this statistic is

$$RJ_T = \frac{RV_T - BV_T}{RV_T}.$$

More precisely, under some technical conditions,

$$\lim_{M \to \infty} RV_T = \int_{T-1}^{T} \sigma_p^2(s)ds \sum_{j=1}^{N_T} k_{T,j}, \quad \lim_{M \to \infty} BV_T = \int_{T-1}^{T} \sigma_p^2(s)ds,$$

where $\sigma_p(s)$ is the instantaneous volatility of the Brownian motion component of the price, $k_{T,j}$ is the jump size, and N_T is the number of jumps within the period T. 5

5 More precisely, under some technical conditions,
The jump-robust tri-power quarticity measure TP_t estimates the scale of the variation measures and is defined as

$$TP_T = \left(\frac{M^2}{M-2} \right) \left(\mathbb{E}(|N(0, 1)|^{4/3}) \right)^{-3} \sum_{j=3}^{M} |R_{T,j-2}|^{4/3} |R_{T,j-1}|^{4/3} |R_{T,j}|^{4/3}.$$

(5)

Under the null hypothesis of no jumps and conditional on the sample path, the jump-detection statistic z_T is asymptotically standard normal. Thus, if the value of z_T is higher than the cutoff corresponding to the chosen significance level, then the test detects at least one abnormal large price move during the period T.

To calculate the jump-detection statistics over a year, we use the data on 266 daily returns, on average. We focus on the annual jump-detection frequency, as it is well recognized that one requires a large number of intra-period observations to compute jump statistics. Our choice of $M = 266$ is typical in high-frequency studies, which roughly corresponds to using 5-minute returns to compute daily (24-hour) statistics. Huang and Tauchen (2005) discuss the performance of the tests in finite samples.

On Figure 1, we plot daily inflation-adjusted market returns and the corresponding years detected by jump-detection statistic for the period 1927–2008, while Figure 2 depicts the corresponding jump statistics z_T. Notably, high values of z_T above the corresponding cutoff point indicate the presence of large moves in daily returns. At the 1% significance level, we identify twenty-five years with at least one significant move in daily asset prices. Eight of those jump-years occur before 1945; that is, eight out of eighteen years from 1927 to 1945 contain one or more large moves in daily returns. The remaining seventeen jump-years occur in the postwar period of sixty-three years. Some of the salient jump dates include 1982, 1987, 1991, and 2003. The relative contribution of large movements to the total return variation, as measured by the average relative jump measure RJ, is 7.5%. This estimate is consistent with other studies.

1.1 Predictability of large price moves

In this section, we provide empirical evidence that macroeconomic volatility and the market return variance can predict large asset-price moves in the data. On the other hand, there is no persuasive evidence in the data for the link between large moves in returns and the growth rates of aggregate macroeconomic variables at all leads and lags. That is, at the considered frequencies...
of large moves in returns, jumps in asset prices neither coincide with significant changes in the real economy nor can be predicted by them. This empirical evidence has important implications for identifying the sources of jump risk in financial markets, which motivate our model setup. The inputs in our model (i.e., endowment) are Gaussian. While there are no jumps in the real side of the economy, learning and costly information acquisition will trigger endogenous jumps in financial markets. In contrast, earlier literature incorporates jumps into the exogenous inputs in the model, namely, the consumption process. Our evidence suggests that on average there is close to zero correlation between jumps in growth rates and asset prices.

In the top panel of Figure 3, we plot the correlation coefficients of jump-year indicators with annual consumption growth rate, its conditional variance, and the conditional variance of market returns, up to five-year leads and lags.\footnote{Conditional variance computations are based on AR(1)-GARCH(1) fit.} We further provide the correlation estimates and the standard errors in the top panel of Table 2. The correlations of large move indicators with lagged aggregate volatility are consistently positive and reach the 20–30% range. Similarly,
Figure 3
Jump correlations in the data
Correlation of return jump indicator with the level of economic growth rate (left panel), aggregate economic volatility (middle panel), and conditional variance of returns, at up to five-year leads and lags. Top panel is based on annual observations of real consumption growth and returns from 1930 to 2008; middle and bottom panels are based on industrial production and return data from 1926 to 2008 at quarterly and monthly frequencies, respectively.
Table 2
Jump correlations: data and model

<table>
<thead>
<tr>
<th></th>
<th>−2y</th>
<th>−1y</th>
<th>0y</th>
<th>1y</th>
<th>2y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth rate</td>
<td>−0.15</td>
<td>−0.08</td>
<td>−0.08</td>
<td>−0.07</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>(0.16)</td>
<td>(0.14)</td>
<td>(0.10)</td>
<td>(0.12)</td>
<td>(0.15)</td>
</tr>
<tr>
<td>Macro vol</td>
<td>0.18</td>
<td>0.23</td>
<td>0.26</td>
<td>0.26</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>(0.11)</td>
<td>(0.10)</td>
<td>(0.09)</td>
<td>(0.11)</td>
<td>(0.10)</td>
</tr>
<tr>
<td>Return vol</td>
<td>0.10</td>
<td>0.11</td>
<td>0.12</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>(0.14)</td>
<td>(0.15)</td>
<td>(0.15)</td>
<td>(0.13)</td>
<td>(0.13)</td>
</tr>
<tr>
<td>Costly Learning Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth rate</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Macro vol</td>
<td>0.07</td>
<td>0.09</td>
<td>0.16</td>
<td>0.13</td>
<td>0.12</td>
</tr>
<tr>
<td>Return vol</td>
<td>0.04</td>
<td>0.07</td>
<td>0.11</td>
<td>0.09</td>
<td>0.06</td>
</tr>
<tr>
<td>Model Without Costly Learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth rate</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Macro vol</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Return vol</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Correlation of return jump indicator with past and future growth rate, aggregate economic volatility, and conditional variance of returns at one- and two-year leads and lags. The data are annual observations of real consumption growth and returns from 1930 to 2008. Model statistics are population values at annual frequency.

High market variance predicts an increase in future jump probability, and the correlations of market variance with contemporaneous and future jump-year indicators are about 10%. The jump-year indicator correlations with future variance measures decrease to zero after two or three years. Further, we do not find any strong evidence for the link between the asset-price jumps and contemporaneous or past consumption growth rates. The correlation coefficients for the jump-year indicator with consumption growth rate are negative at one- and two-year lags and are around −10%. They are essentially zero at three-year lags and beyond.

The above predictability patterns are even stronger at quarterly and monthly frequencies, as the persistence of the variance measures and the frequencies of identified jump periods increase. As consumption data are not available at such frequencies for a long historical sample, we use the industrial production index growth, whose monthly and quarterly observations are available from the 1930s. In the bottom panels of Figure 3, we plot the lead-lag correlations of the jump indicator with levels and conditional volatilities of the industrial production growth rate and variance of the market return at quarterly and monthly frequencies. The results present robust evidence for predictability of asset-price jump periods by the variance measures and absence of a persuasive link between the asset-price jumps and contemporaneous or past levels of real economic growth. We are going to match these jump predictability patterns in the model, alongside other key macroeconomic and financial data features.

8 On annual frequency, the correlation of growth rates in consumption and industrial production is 0.55, while the correlation of their conditional variances is 0.84.
Table 3
Estimation of consumption volatility

<table>
<thead>
<tr>
<th></th>
<th>Δc</th>
<th>pd</th>
<th>spread</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δc</td>
<td>0.351</td>
<td>0.006</td>
<td>−0.004</td>
<td>0.268</td>
</tr>
<tr>
<td>(0.063)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ² × 10⁴</td>
<td>22.358</td>
<td>−0.571</td>
<td>5.046</td>
<td>0.232</td>
</tr>
<tr>
<td>(33.241)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GARCH Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ₀</td>
<td>0.30</td>
<td>1.81e−05</td>
<td>0.72</td>
<td>0.18</td>
</tr>
<tr>
<td>(0.11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>1.5e−05</td>
<td>0.14</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>aₙ</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bₙ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Estimation of the conditional consumption volatility. Top panel presents slope coefficients and R² in the projections of consumption growth and squared consumption residual on price-dividend ratio and junk bond spread. Bottom panel presents estimation results of the AR(1)-GARCH(1,1) specification: Δcₜ₊₁ = μ₀ + ρ₀Δcₜ + σ₁εₜ₊₁, σ²ₜ₊₁ = σ + αₙσ²ₜ + βₙ(σ₁εₜ₊₁)². Annual observations of real consumption growth, price-dividend ratio, and AAA-BAA junk bond spread from 1930 to 2008. Standard errors are in parentheses.

We construct a measure of macroeconomic volatility using an approach similar to that of Kandel and Stambaugh (1990). Specifically, we regress annual consumption growth on its own lag, the lags of market price-dividend ratio, and junk bond spread and extract consumption innovation. The square of this innovation is regressed on the price-dividend ratio and junk bond spread to estimate the ex ante aggregate consumption volatility. The results of the two projections are summarized in the top panel of Table 3. The R²’s are in excess of 20%, and the signs of the slope coefficients are economically intuitive: Low asset valuations and high bond spreads predict low expected growth and high aggregate volatility.

We use the extracted factor ˆσ² to forecast the next-year jump indicator statistic. The probit regression of the next-period jump indicator on the current measure of macroeconomic volatility yields a statistically significant coefficient on ˆσ² with a t-statistic in excess of 2.5, and R² of 9%. Specifically,

\[
\hat{Pr}(JumpIndicator_{T+1}) = \Phi \left(\frac{-0.84 + 1186.23\hat{\sigma}²_T}{(0.21)(468.00)} \right),
\]

where JumpIndicatorₜ is equal to 1 if year T is flagged as a jump-year and 0 otherwise. In Figure 2, we plot the jump-detection statistic zₜ itself and the fitted probability of the contemporaneous jump. The spikes in fitted probabilities broadly agree with large values of the jump statistics, even for the 1955–1980 period, when no significant price moves were detected.

For robustness, we also check the results using a GARCH measure of annual consumption volatility in the data. The bottom panel of Table 3 shows that the estimated aggregate consumption volatility is very persistent in the data. The probit estimation of predictability of the future jump-year indicator is given by
Table 4
Jump predictability: data and model

<table>
<thead>
<tr>
<th></th>
<th>Data R^2, %</th>
<th>Model R^2, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption variance</td>
<td>6.28</td>
<td>4.92</td>
</tr>
<tr>
<td>Consumption growth</td>
<td>0.60</td>
<td>1.94</td>
</tr>
</tbody>
</table>

Predictability of jump-years by the consumption volatility and realized consumption growth. The table reports R^2 in probit regressions of the jump-year indicator on the lags of the level or variance of consumption growth. Data are based on annual observations of consumption and returns from 1930 to 2008. Model output is based on 100 simulations of 85 years of daily data aggregated to the annual horizon.

\[
\hat{P}(\text{JumpIndicator}_{T+1}) = \Phi\left(\frac{-0.76 + 875.84\hat{\sigma}^2_T}{0.20} \right),
\]

so that the consumption volatility is a statistically significant predictor of future jump-years with a t-statistic of 2.16 and R^2 of 6.3%.

While consumption volatility forecasts jump periods, the level of consumption growth rate does not seem to predict future jump-years in the data. In Table 4, we report the R^2 in the probit regression of the next period jump-year indicator on the realized consumption growth. The slope coefficient is insignificant from 0, and the R^2 is below 1%. We show that our calibrated model can match well this quantitative evidence on the predictability of jumps in returns.

Predictability of future jumps by the consumption variance is a novel dimension of this article. Predictability of future return jumps by market variance is consistent with the evidence in earlier studies that estimate parametric models of asset-price dynamics; see studies by Bakshi, Cao, and Chen (1997), Bates (2000), Pan (2002), Eraker (2004), and Singleton (2006). We provide further discussion of these model specifications in Section 4.5.

2. Model Setup

Our model builds on the long-run risks framework developed by Bansal and Yaron (2004), where the investor has full information about the economy. In contrast, we assume that investors do not observe all the relevant state variables, and hence there is an important role for learning about the true underlying state of the economy. The exogenous endowment process is Gaussian and does not contain any exogenous jumps. However, we show that the optimal actions of the agents to learn the unobserved states for a cost can lead to asset-price dynamics that exhibit jumps.

2.1 Preferences and information

Denote \mathcal{I}_t the beginning-of-period information set of the agent, which includes current and past observed variables. The information set by the end of the period is endogenous and depends on the decision of investors to learn about

9 For robustness, we checked the regressions using a postwar sample and found very similar results.
the true state. Let us introduce a binary choice indicator \(s_t \in \{0, 1\} \), which is equal to one if the agent learns about the true state for a cost in period \(t \), and zero otherwise. Let \(\mathcal{I}_t(s_t) \) be the time-\(t \) (end-of-period) information set following a choice \(s_t \). With no learning about the true state \((s_t = 0) \), the end-of-period information set coincides with that in the beginning of the period: \(\mathcal{I}_t(0) \equiv \mathcal{I}_t \). On the other hand, when \(s_t = 1 \), investors acquire new information during the day that enriches their information set: \(\mathcal{I}_t(1) \supset \mathcal{I}_t \). Further, let \(E_t \) denote the conditional expectation with respect to the information set \(\mathcal{I}_t \), while \(E_{s_t}^s(.) \) denotes the conditional expectation based on the information following a binary choice \(s_t: E_{s_t}^s(.) \equiv E[\cdot|\mathcal{I}_t(s_t)] \).

We consider recursive preferences of Epstein and Zin (1989) over the uncertain consumption stream, with the intertemporal elasticity of substitution parameter set to one:

\[
U_t = C_t^{1-\beta} \left(J_t^{s_t}(U_{t+1}) \right)^{\beta},
\]

(8)

\[
J_t^{s_t}(U_{t+1}) = \left(E_t^{s_t} U_{t+1}^{1-\gamma} \right)^{\frac{1}{1-\gamma}}.
\]

(9)

\(C_t \) denotes consumption of the agent, and \(J_t^{s_t}(U_{t+1}) \) is the certainty equivalent function that formalizes how the agent evaluates uncertainty across the states. Parameter \(\beta \) is the subjective discount factor, and \(\gamma \) is the risk-aversion coefficient of the agent. Note that the certainty equivalent function depends on the choice indicator \(s_t \in \{0, 1\} \), as the information set of the agent is different whether the investors learn about the true state \((s_t = 1) \) or not \((s_t = 0) \).

To derive our model implications, we solve the model from the perspective of the social planner, who optimally allocates social resources for the acquisition of costly information. As previously discussed, Veldkamp (2006a) presents a mechanism that motivates the decentralized market-price implications of the model with costly information acquisition. While we do not explicitly introduce such information channels to keep the model tractable and maintain the focus on large moves in returns, the implications of this equilibrium are similar to those of the representative agent setup with costly information acquisition featured in our article.

2.2 Social planner problem
Consider the lifetime utility of the agent \(U_t(s_t) \) for a given learning choice of the social planner \(s_t \in \{0, 1\} \):

\[
U_t(s_t) = C_t(s_t)^{1-\beta} \left(J_t^{s_t}(U_{t+1}) \right)^{\beta},
\]

(10)

where \(U_{t+1} \) is the optimal utility tomorrow, and \(C_t(s_t) \) denotes a choice-specific consumption of the agent. The risk-sensitive certainty equivalent operator \(J_t^{s_t}(U_{t+1}) \) is specified in Equation (9).

The objective of the social planner is to maximize the certainty equivalent of the lifetime utility of the agent \(U_t(s_t) \) with respect to the beginning-of-period
information set \mathcal{I}_t by choosing whether or not to learn about the true state for a cost:

$$s_t^* = \arg\max_{s_t} \{J_t(U_t(s_t))\}. \quad (11)$$

The true value of the state is not known to the planner in the beginning of the period. As the agents are risk sensitive to the new information about the state, the planner chooses to learn about the state for a cost if the certainty equivalent of the agent’s lifetime utility with learning is bigger than the lifetime utility without learning. Following a decision to learn, the social planner then uses part of the endowment to pay the learning cost.

Denote Y_t the aggregate income process. Then, the budget constraint of the social planner states that the aggregate income is equal to consumption and learning-cost expenditures:

$$Y_t = C_t(s_t) + s_t\xi_t. \quad (12)$$

The learning cost ξ_t represents the resources required to acquire and process the new information about the underlying economic state. We interpret this cost to be a social cost in terms of research costs borne by financial institutions (e.g., the Treasury, the Federal Reserve Bank) to gather information about the underlying state of the economy. An alternative interpretation is presented in Veldkamp (2006a), who argues that these costs may be related to media costs to gather information about the economy. For analytical tractability, we make ξ_t proportional to the aggregate income:

$$\xi_t = \chi Y_t, \quad (13)$$

for $0 \leq \chi < 1$. This specification preserves the homogeneity of the problem and simplifies the solution of the model.

In the Appendix, we show that in equilibrium, the lifetime utility of investors following learning choice s_t is proportional to the level of income,

$$U_t(s_t) = \phi_t(s_t)Y_t, \quad \text{for } s_t \in \{0, 1\}, \quad (14)$$

where the utility per-income ratio $\phi_t(s_t)$ satisfies the following recursive equation:

$$\phi_t(s_t) = (1 - s_t\chi)^{1-\beta} \left(E_t^{s_t} \left[\frac{Y_{t+1}}{Y_t} \right]^{1-\gamma} \right)^{\frac{\beta}{1-\gamma}}. \quad (15)$$

Learning about the true state has two effects on the utility of investors. First, the agent’s consumption drops as part of the aggregate endowment is sacrificed to cover the learning costs. This decreases the agent’s utility, as is evident from examining the first bracket in Equation (15). On the other hand, learning enriches the information set of investors, and the ensuing reduction in the
uncertainty about future economy may increase their utility (second part of Equation (15)). The net effect depends on the attitude of investors to the timing of resolution of uncertainty and the magnitude of learning costs, as we discuss in detail in Section 4.

In the Appendix, we show that the equilibrium discount factor M_{t+1} depends on the income growth, future lifetime utility, and endogenous information set of the agent:

$$M_{t+1} = \beta \left(\frac{Y_{t+1}}{Y_t} \right)^{-1} \frac{U_{t+1}^{1-\gamma}}{E_t^{s_t^*} (U_{t+1}^{1-\gamma})}. \quad (16)$$

Hence, we can solve for the price of any asset traded in the economy using a usual-equilibrium Euler equation:

$$E_t^{s_t^*} \left[M_{t+1} R_{t,t+1} \right] = 1, \quad (17)$$

where $R_{t,t+1}$ is the return on the asset, and s_t^* is an equilibrium costly learning choice.

2.3 Income dynamics

The log income growth rate process incorporates a time-varying mean x_t and stochastic volatility σ_t^2:

$$\Delta y_{t+1} = \mu + x_t + \sigma_t \eta_{t+1}, \quad (18)$$

$$x_{t+1} = \rho x_t + \varphi_e \epsilon_{t+1}, \quad (19)$$

$$\sigma_{t+1}^2 = \sigma_0^2 + \nu (\sigma_t^2 - \sigma_0^2) + \sigma_w \omega_{t+1}, \quad (20)$$

where η_t, ϵ_t, and ω_t are independent standard normal innovations. Parameters ρ and ν determine the persistence of the mean and variance of the income growth rate, respectively, while φ_e and σ_w govern their scale. The empirical motivation for the time variation in the conditional moments of the income process comes from Kandel and Stambaugh (1990), Bansal and Yaron (2004), Bansal, Khatchatrian, and Yaron (2005) and Hansen, Heaton, and Li (2008).

We assume that the volatility σ_t^2 is known to the agent at time t, which can be justified because the availability of high-frequency data allows for an accurate estimation of the conditional volatility in the economy. On the other hand, the true expected income state x_t is not directly observable to the investors. The investors can learn about the state from the observed data using standard filtering techniques, and they also have an additional option to pay a cost to learn its true value. This setup is designed to capture the intuition that some of the key aspects of the economy are not directly observable, but the agents can learn more about them through additional costly exploration.
To solve the learning problem of the agents, we follow a standard Kalman filter approach. Given the setup of the economy, the beginning-of-period information set of the agent consists of the history of income growth, income volatility, and observed true states up to time \(t \): \(\mathcal{I}_t = \{ y_\tau, \sigma^2_\tau, s_{\tau-1} x_{\tau-1} \}_{\tau=1}^t \). If the agent does not learn the true state in period \(t \), the end-of-period information set is the same as in the beginning of the period: \(\mathcal{I}_t(0) = \mathcal{I}_t \). On the other hand, if the agent learns the true value of the expected income state, the information set immediately adjusts to include \(x_t \): \(\mathcal{I}_t(1) = \mathcal{I}_t \cup x_t \). Define a filtered state \(\hat{x}_t(s_t) \), which gives the expectation of the true state \(x_t \) given the information set of the agent and the costly learning decision \(s_t \):

\[
\hat{x}_t(s_t) = E_{s_t}^{s_t}(x_t),
\]

(21)

and denote \(\omega^2_t(s_t) \) the variance of the filtering error that corresponds to the estimate \(\hat{x}_t(s_t) \):

\[
\omega^2_t(s_t) = E_{s_t}^{s_t}(x_t - \hat{x}_t(s_t))^2.
\]

(22)

If the agent chooses to learn about the true state, we obtain, naturally, that \(\hat{x}_t(1) = x_t \) and \(\omega^2_t(1) = 0 \).

Given the history of income, income volatility, and past observed expected growth states, the agent updates the beliefs about the unobserved expected income state in a Kalman filter manner. Indeed, as the income volatility is observable, the evolution of the system is conditionally Gaussian, so that the expected mean and variance of the filtering error are the sufficient statistics to track the beliefs of the agent about the economy. Specifically, for a given choice indicator \(s_t \) today, the evolution of the states in the beginning of the next period follows from the one-step-ahead innovation representation of the system in Equations (18)–(20):

\[
\Delta y_{t+1} = \mu + \hat{x}_t(s_t) + u_{t+1}(s_t),
\]

(23)

\[
\hat{x}_{t+1}(0) = \rho \hat{x}_t(s_t) + K_t(s_t) u_{t+1}(s_t),
\]

(24)

\[
\omega^2_{t+1}(0) = \sigma^2_t \left(\varphi^2 + \rho^2 \frac{\omega^2_t(s_t)}{\omega^2_t(s_t) + \sigma^2_t} \right),
\]

(25)

where the gain of the filter is equal to

\[
K_t(s_t) = \frac{\rho \omega_t(s_t)^2}{\omega_t(s_t)^2 + \sigma^2_t}.
\]

(26)

10 For Kalman filter reference and applications, see Lipster and Shiryaev (2001), David (1997), and Veronesi (1999).
The filtered consumption innovation $u_{t+1}(s_t) = \sigma_t \eta_{t+1} + x_t - \hat{x}_t(s_t)$ is learning choice specific and contains short-run consumption shock and filtering error. The two cannot be separately identified unless the agent learns the true x_t, in which case the filtered consumption innovation is equal to the short-run consumption shock, $u_{t+1}(1) = \sigma_t \eta_{t+1}$. Recall that the variance shocks ω_{t+1} are assumed to be independent from the income innovations at all leads and lags. That is, future volatility shocks do not help predict tomorrow’s expected income, and neither can learning about x_t affect the agent’s beliefs about future income volatility. Therefore, the dynamics of the income volatility is independent of the learning choice of the agent and follows Equation (20). In particular, if income volatility is constant, we obtain a standard result that the variance of the filtering error $\omega_t^2(0)$ increases in a deterministic fashion since the last costly learning. On the other hand, when income volatility is stochastic, the variance of the filtering error fluctuates over time and is high at times of heightened aggregate volatility.

The key novel economic channel in our model is a discrete adjustment in the agent’s expectation about future growth, \hat{x}_t, at times when the agent decides to learn the true state; that is, when $s_t = 1$. Indeed, if investors decide to pay a cost to learn the true state, the expected income growth and variance of the filtering error are immediately adjusted to reflect the new information. We can then express the values of the states in the following way:

$$\hat{x}_{t+1}(s_{t+1}) = s_{t+1} x_{t+1} + (1 - s_{t+1}) \hat{x}_{t+1}(0),$$

$$\omega^2_{t+1}(s_{t+1}) = (1 - s_{t+1}) \omega^2_{t+1}(0).$$

In equilibrium, such revisions in expected growth state endogenously trigger large moves in asset prices that look like jumps, even though the fundamental income process is smooth Gaussian. We characterize the optimal decision to learn for a cost and the asset-pricing implications in the next section.

3. Model Solution

3.1 Optimal costly learning

We solve for the equilibrium lifetime utility of the agent and characterize the optimal decision to learn about the expected growth for a cost. In the Appendix, we show that the lifetime utility of the agent depends on the beginning-of-period information and, at times when the agent chooses to learn about the true state for a cost, on the true value of the expected income growth. In particular, as the volatility and income growth shocks are assumed to be independent, we can separate the expected growth and volatility components, so that the solution to the lifetime utility per-income ratio can be written in the following way:

$$\phi_t(s_t) = e^{B \hat{x}_t(s_t) + f(s_t, \sigma^2_t, \omega^2_t(0))}.$$
The sensitivity of the utility to expected income growth B is independent of the decision to learn for a cost and is given by

$$B = \frac{\beta}{1 - \beta \rho}. \quad (30)$$

The volatility function $f(s_t, \sigma_t^2, \omega_t^2(0))$ depends on the learning choice s_t, the exogenous income volatility σ_t^2, and the beginning-of-period filtering variance $\omega_t^2(0)$, as well as the risk aversion of the agent γ, learning cost χ, and other model and preference parameters. The recursive solution to this volatility component is provided in the Appendix.

Let us characterize the solution to the optimal costly learning decision of the agent and use it to illustrate some of the important features of the model. The agent chooses to observe the true state if the ex ante lifetime utility with learning exceeds the utility with no learning about the true state. Given the equilibrium solution to the lifetime utility per-income ratio in Equation (29), the investor’s lifetime utility with no learning is equal to

$$\phi_t(0) = e^{B\hat{x}_t(0)} + f(0, \sigma_t^2, \omega_t^2(0)), \quad (31)$$

while the ex ante lifetime utility with costly learning is given by

$$J_t(\phi_t(1)) = e^{B\hat{x}_t(0)} + \frac{1}{2}(1 - \gamma)B^2\omega_t^2(0) + f_t(1, \sigma_t^2, \omega_t^2(0)). \quad (32)$$

The lifetime utility of the agent depends on the estimate of expected growth \hat{x}_t and the volatility factors σ_t^2 and $\omega_t^2(0)$, as is evident from the above equations. Further, the expected growth enters symmetrically across the ex ante lifetime utilities with and without costly learning (see Equations (31) and (32)). The optimal decision to pay a cost to learn is determined by evaluating the lifetime utility across the two decisions, that is, comparing Equations (31) and (32). From this comparison, we find that the optimal costly learning choice s_t^* is given by

$$s_t^* = 1\{J_t^0(\phi_t(1)) > \phi_t(0)\}$$

$$= 1\left[\frac{1}{2}(1 - \gamma)B^2\omega_t^2(0) + f_t(1, \sigma_t^2, \omega_t^2(0)) > f_t(0, \sigma_t^2, \omega_t^2(0))\right]. \quad (33)$$

This decision implies the following important result:

Result 1: The optimal costly learning rule depends on only the volatility states $\omega_t^2(0)$ and σ_t^2, and it does not depend on the expected growth \hat{x}_t.

Indeed, in our model, learning for a cost gives an agent a real option to reduce the uncertainty about the estimate of expected growth. Because of this option feature and a Gaussian dynamics of the economy, we obtain that the
optimal decision depends on only the volatility states, as is evident from Equation (33).

In general, the timing of costly learning is stochastic and determined by the income volatility σ_t^2 and variance of filtering error ω_t^2, as well as by the model and preference parameters. In a particular case where income volatility is constant, the optimal costly learning rule considerably simplifies, as we demonstrate in the next result:

Result 2: When income volatility is constant, investors optimally learn about the true state for a cost at constant time intervals.

Indeed, when income shocks are homoscedastic, the optimal learning rule is driven by only the variance of the filtering error, and the agent chooses to exercise a costly learning option and reduce the uncertainty about expected growth when this variance is high enough. However, since income volatility is constant, the variance of the filtering error is a deterministic function of time since the last costly learning. Hence, investors optimally choose to learn the true state for a cost at constant time intervals determined in equilibrium. This result is similar to that of Abel, Eberly, and Panageas (2007), who show in a partial equilibrium setting that investors optimally choose to update their information in the presence of observation costs at equally spaced points in time.

The frequency of costly learning in our model depends on the model and preference parameters. In particular, we can show that the optimal costly learning policy depends on the risk-aversion and learning-cost parameters in an intuitive way:

Result 3: When income volatility is constant and agents prefer early resolution of uncertainty, the frequency with which agents learn for a cost increases when the risk-aversion parameter increases, or when learning becomes less costly.

The formal proof for these comparative statics results is shown in the Appendix, and the importance of the preference for early resolution of uncertainty is discussed in detail in the next section.

In the time-varying volatility model, the optimal learning policy depends both on the variance of the filtering error and on the stochastic volatility of income growth, which complicates the formal comparative statics analysis of the model. In particular, the frequency of costly learning is no longer constant and depends on the conditional volatility of income growth. Using a numerical solution to the model, we document the following result:

Result 4: When income volatility is time varying, agents exercise a costly learning option more frequently when income volatility is high.

While we do not provide a formal proof for this finding, it appears to be quite intuitive and follow from our previous discussion of the homoscedastic
model. Indeed, as filtering uncertainty accumulates very quickly at times of heightened aggregate volatility, the incentives to learn and reduce the uncertainty are thus bigger in high-relative to low-income volatility periods. Hence, the frequency of costly learning is increasing in income volatility. This result implies that costly learning times are predictable by the income volatility in economy, which, we show, provides an economic basis for the predictability of asset-price jumps in financial markets.

3.2 Preferences and information acquisition
One of the key ingredients of the model that determines the optimal learning choice is the preferences of the agent. In our setup, the agent has recursive preferences when the risk-aversion coefficient γ is different from 1; when $\gamma = 1$, preferences collapse to a standard expected log utility case. The incentive to learn the unobserved state for a cost critically requires the recursive preferences of the agent, and in particular, the preference for early resolution of uncertainty ($\gamma > 1$). We establish the following important result:

Result 5: With standard expected utility preferences, the agent is indifferent to the timing of the resolution of uncertainty, and as a consequence, has no incentive to learn for a cost.

Indeed, consider a case where learning costs are zero, that is, $\chi = 0$, so that the consumption of the agent is equal to the income. Then, the utility of the agent corresponding to the indicator variable $s_t \in \{0, 1\}$ satisfies

$$U_t(s_t) = E_t^{s_t} \sum_{j=0}^{\infty} \beta^j u(Y_{t+j}).$$ (34)

The optimal learning policy in the expected utility case is based on the ex ante expected utility given the beginning-of-period information. Applying the law of iterated expectations, we find that the ex ante utility of the agent with the new information is equal to the lifetime utility without the new information:

$$E_t U_t(1) = E_t \left(E_t^1 \sum_{j=0}^{\infty} \beta^j u(Y_{t+j}) \right) = E_t^0 \sum_{j=0}^{\infty} \beta^j u(Y_{t+j}) = U_t(0).$$ (35)

In expectation, new information does not increase the utility of the agent. Therefore, with power utility, investors have no incentive to gather new information about the economy, even if this information is costless. On the other hand, in the Appendix we show that with recursive utility, investors have incentives to learn the new information as long as they have a preference for early resolution of uncertainty ($\gamma > 1$). In this case, the value of learning the new information can exceed the immediate learning costs, so the agents optimally choose to pay a cost and acquire the information. This underscores the
economic importance of the preference for early resolution of uncertainty in learning models.

3.3 Risk compensation and asset prices

Using the solution to the agent’s learning model, we can express the equilibrium discount factor in Equation (16) in terms of the underlying variables in the economy. In particular, the innovation into the log discount factor satisfies

\[
m_{t+1}(s_t) - E_t^{s_t} m_{t+1}(s_t) = -(1 + (\gamma - 1)(1 + BK_t(s_t))) u_{t+1}(s_t)
\]

\[
- (\gamma - 1)(f_{t+1} - E_t^{s_t} f_{t+1})
\]

\[
- (\gamma - 1)Bs_{t+1}^*(x_{t+1} - \hat{x}_{t+1}(0)).
\] (36)

In our economy, the agent is exposed to three sources of risk: Gaussian consumption shocks \(u_{t+1}(s_t)\), volatility shocks \((f_{t+1} - E_t^{s_t} f_{t+1})\), and discrete revisions in the true state \(s_{t+1}^*(x_{t+1} - \hat{x}_{t+1}(0))\). The key novel dimension of the article is the discrete revision of the expected growth state, \(s_{t+1}^*(x_{t+1} - \hat{x}_{t+1}(0))\), triggered by the optimal costly learning. A discrete revision in the expected growth can be quite large, in absolute value, as the agent’s estimate of expected growth moves away from the true underlying state between the relatively infrequent times of costly learning. Such a revision of the expected growth introduces an endogenous jump risk in the economy, as both the timing and the magnitude of the discount factor jump are determined in equilibrium by the underlying states and model and preference parameters. The costly learning channel is essential to generate endogenous jumps in our model in the absence of corresponding jumps in economic fundamentals. The special cases of our model where agents always know the true state \((s_t \equiv 1)\) or never know the true value of the state \((s_t \equiv 0)\) do not lead to asset-price jumps when model inputs are smooth.

Indeed, when the agent knows the true expected growth state at all times \((s_t \equiv 1)\), our model collapses to a standard long-run risks setup of Bansal and Yaron (2004). In this case, the price of short-run consumption risk is \(\gamma\), the price of long-run risk is \((\gamma - 1)B\), and the price of volatility risk is constant and provided in Bansal and Yaron’s study. In a standard long-run risks model, asset prices do not exhibit jumps, as economic inputs are smooth and shocks are normal.

An alternative case considered in the literature is where investors never know the true value of the state \((s_t \equiv 0)\), and they optimally estimate the unknown expected growth using the history of the data. Such an approach, within the long-run risks setup, is pursued by Croce, Lettau, and Ludvigson (2010), while David (1997), Veronesi (1999), and Ai (2010) develop a model in which the agents learn about the regime shifts. It is worth emphasizing that learning considered in these models does not generate jumps in the asset prices. Hansen and Sargent (2010) consider an alternative approach and introduce a preference for
robustness in the agent’s learning. This, they show, magnifies the level and variation in risk premiums relative to the standard models. However, to deliver jumps in the asset prices, such specifications require exogenous jumps in the inputs of the economy (endowment process), as shown by Liu, Pan, and Wang (2005) and Drechsler (2010). On the other hand, our approach complements the approach taken by Veldkamp (2006b) and Van Nieuwerburgh and Veldkamp (2006), where information is endogenous and varies with the state in the economy. For example, in Veldkamp (2006b), the impact of bad news can be endogenously very large in good times when the information is abundant, so that asset prices move sharply. In a similar vein, in our model, the endogenous actions of investors to obtain additional information lead to discrete changes in expectations about future growth and therefore large asset-price movements.

To bring our model implications closer to the data, we calibrate a dividend asset, which is a levered claim with a dividend stream proportional to income growth:

$$
\Delta d_t = \mu + \varphi d (\Delta y_t - \mu).
$$

(37)

Bansal and Yaron (2004) specify dividend dynamics that include idiosyncratic dividend shock. The specification above is simpler because it does not require extension of the model to a multivariate Kalman filter but preserves model results and intuition.

Using the equilibrium solution to the discount factor in Equation (36) and the Euler condition in Equation (17), we can solve for the equilibrium log price-dividend ratio,

$$
v_t(s_t) = H \tilde{x}_t(s_t) + h(s_t, \sigma^2_t, \sigma^2(0)),
$$

(38)

for which the solutions for a constant H and the volatility component $h(s_t, \sigma^2_t, \sigma^2(0))$ are given in the Appendix.

The asset valuations depend on filtered or, if $s_t = 1$, true expected income growth and the volatility factors in the economy. When investors pay a cost and learn the true state, their estimate of expected growth can change substantially from what it was a period ago. The equilibrium price-dividend ratio responds to this change in the expected growth state magnified by loading H. For example, as H is positive in the model, when the true x_t is much lower than what the agent expected, asset prices can fall sharply. This discrete decline in asset prices, triggered by the optimal decision of investors to learn the true state, is detected as a jump in the financial markets. Hence, the distribution of asset prices in our economy is heavy tailed, even though the underlying macroeconomic inputs are smooth Gaussian.

The probability of costly learning and consequently large asset-price moves depends on the volatility states in the economy. In particular, when aggregate volatility is high, investors learn for a cost more often, which triggers more frequent large moves in returns. Hence, asset-price jump times are predictable.
by the aggregate macroeconomic volatility. Further, as the volatility of equilibrium returns is positively related to aggregate volatility, the model can also explain the predictability of future asset-price jumps by the variance of the market return. Notably, in the model, the probability of asset-price jumps is not related to the level of real economy, so the financial jumps are not predicted by the endowment growth rate.

In the next section, we calibrate the economy and show that the model-implied jump implications are quantitatively consistent with the data.

4. Model Output

4.1 Model calibration

The model is calibrated on a daily frequency. The baseline calibration parameter values, which are reported, annualized, in Table 5, are similar to the ones used in standard long-run risks literature (see, e.g., Bansal and Yaron 2004). Specifically, we set the persistence in the expected income growth $\rho^{12\times22}$ at 0.4 on annual frequency. The choice of ϕ_e and σ_0 ensures that the model matches the annualized aggregate volatility of about 1.4%, while the annualized volatility persistence is set to 0.77. To calibrate dividend dynamics, we set the leverage parameter of the corporate sector ϕ_d to 5. We calibrate the model on a daily frequency and then time-aggregate to the annual horizon. Table 6 shows that we can successfully match the unconditional mean, volatility, and autocorrelations of the endowment dynamics in the data.

As for the preference parameters, we let the subjective discount factor equal 0.997 and set the risk-aversion parameter at 10. The learning expenditure includes the resources that the investors spend to acquire and process the information about the true value of the underlying economic state, which includes opportunity costs of time and effort. We calibrate the cost parameter similar to observation and information costs emphasized by Abel, Eberly, and Panageas (2007). They set the observation cost to a fraction of annual income and show
Table 6
Consumption dynamics: data and model

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate</td>
<td>S.E.</td>
</tr>
<tr>
<td>Mean</td>
<td>1.92 (0.29)</td>
<td></td>
</tr>
<tr>
<td>Vol</td>
<td>2.13 (0.59)</td>
<td></td>
</tr>
<tr>
<td>AR(1)</td>
<td>0.45 (0.11)</td>
<td></td>
</tr>
<tr>
<td>AR(2)</td>
<td>0.16 (0.14)</td>
<td></td>
</tr>
<tr>
<td>AR(5)</td>
<td>−0.01 (0.09)</td>
<td></td>
</tr>
</tbody>
</table>

Calibration of consumption dynamics. Data are annual real consumption growth for 1930–2008. Model is based on 100 daily simulations of 85 years of consumption growth aggregated to the annual horizon. Standard errors are Newey–West with ten lags.

that investors choose to update their information once every eight months. Motivated by the empirical evidence on the frequency of jumps, we calibrate expenditure on costly learning accounts to be 0.03% of annual aggregate income (8.5% of daily income). At this level of learning costs, investors are willing to optimally learn the true state about once every one and a half years. Even though the level of costly expenditure appears to be quite small, we show that it has important implications for the distributions of the asset prices and financial jumps in the economy, which are impossible to obtain when the costly learning option is absent. Naturally, the calibration of the learning-cost parameter is sensitive to the assumed values of other model parameters, such as risk aversion and level of the volatility shocks.

As the model does not admit convenient closed-form solutions for the asset prices, we use calibrated parameter values to solve the model numerically. We first start with the model specification when income volatility is constant; that is, \(\sigma_t = \sigma_0 \). As shown in Result 2, the optimal learning policy in this setup is purely time dependent, and the agents learn about the true state at constant, determined-in-equilibrium time intervals. The details of the model solution for the optimal learning choice and the equilibrium asset prices are provided in the Appendix. In the general case where income volatility is time varying, we first put income and filtering volatility states on a fine grid and numerically search for fixed-point solutions to the recursive volatility function equations. It turns out that the optimal solutions to the volatility components can be very accurately approximated by the linear functions of the volatility states, where the loading coefficients are learning-choice specific. We utilize these linear approximations to speed up and stabilize numerical computations.

4.2 Constant volatility case
Table 1 reports asset-pricing implications of the model with constant income volatility. Model-implied mean and volatility of market returns are 6.7% and 15.5%, respectively, and the risk-free rate is 1.1%, which match the empirical data. Hence, the model can account for the usual equity premium, the return
volatility, and the risk-free rate puzzles. The model specification where agents have no option to pay a cost and learn the true state delivers comparable values for the first two moments of the return distributions; this is consistent with the findings by Bansal and Yaron (2004), who show that a standard long-run risks model without costly learning can explain the unconditional mean and volatility of returns.

The costly learning option, however, is central to account for large asset-price moves and the heavy tails of the distribution of returns. To illustrate the jump implications of our model, in Figure 4 we plot a typical simulation of the economy for 80 years. The log income growth is conditionally normal, and the filtered expected income state closely tracks the true state with a correlation coefficient in excess of 70%. About every 2 years the agent pays the cost and learns the true state. The revision in expectations about future income growth triggers proportional adjustments to the equilibrium asset prices, as can be seen from Equation (38). In the presence of persistent expected growth shocks, asset prices are very sensitive to changes in expected income state. Therefore, even small deviations in the filtered state from the truth, when uncovered, can lead to large changes in asset valuations, which are empirically detected as jumps. As shown in Table 1, the frequency of detected jump-years is about once every 4.8 years, and the contribution of jumps to the total return variation is 7.2%, which is consistent with the data. Due to large moves in returns, the unconditional distribution of returns is heavy tailed: The kurtosis of the return distribution in the model is equal to 18, which is close to the empirical estimate of 21 in the data. Notably, as the market volatility is constant, the heavy tails in return distribution obtain through the discrete adjustments to the asset prices due to costly learning.

Large asset-price moves cannot be obtained in the model where the agent had no option to learn for a cost and had to rely exclusively on standard Kalman filtering from the history of the data, as can be seen from the return simulations in the bottom panel of Figure 4 and the summary statistics in the second panel of Table 1. Indeed, with no costly learning, we do not find more than one or two instances of large price moves in eighty years of simulated daily data; the detected jumps represent pure-chance large random draws in the simulation. Consistent with the lack of large moves in returns, the unconditional distribution of market returns does not possess heavy tails, as the kurtosis of return distribution of 3 is equal to that of normal distribution.

Our constant volatility model can deliver the key result that the equilibrium asset prices can display infrequent large movements, while there are no corresponding jumps in the macroeconomic inputs (endowment growth). These asset-price jumps arise endogenously due to the optimal actions of investors.

11 Although costly learning occurs at constant time intervals, the years with flagged jumps do not always occur at regular intervals, as can be seen in Figure 4. Indeed, the jump-detection statistics are designed to pick out only large jumps, hence the significance level of 1%, so that some of the smaller price adjustments remain undetected.
Learning and Asset-price Jumps

Figure 4
Income and return simulation in constant volatility model
Simulation of the economy for 85 years in constant volatility model. Top panel depicts daily income growth. The next two panels show daily market returns in the models when the agent has an option to learn the true state for a cost and with no option to learn, respectively. Dots indicate days of costly learning, while shaded regions correspond to the years with at least one significant jump, detected by the jump statistics.

to pay a cost and learn the true expected growth state. However, since income shocks are homoscedastic, the agents exercise a costly learning option at constant time intervals, and steady-state volatilities of macroeconomic and financial variables are constant, which cannot account for the predictability of asset-price jumps in the data. We can address these issues by opening up a stochastic volatility channel, which we discuss in the next section.

4.3 Time-varying volatility model
The bottom panel of Table 1 depicts summary statistics for model-implied return distribution in the time-varying volatility specification. When agents have an option to learn for a cost, the model generates the mean market return of 6.4% and the volatility of returns of 15.5%. The model-implied risk-free rate is 1%. Hence, as in the constant volatility case, the model accounts for the equity premium and risk-free rate puzzles. Notably, while the model specification without costly learning can generate a similar level of the equity premium, an option to learn for a cost leads to a considerably higher variation in the conditional equity premium in the time series. For the consumption asset, the annualized volatility of the equity premium is 0.44% with costly learning versus 0.16% without costly learning (the total volatility of return on consumption asset is about 2%). For the dividend asset, the variation in annualized equity premium is 2.4% versus 0.32% without costly learning. This underscores the
The simulation of the economy for 85 years in a time-varying volatility model. Top panel depicts daily income growth. The next two panels show conditional volatility of income growth and the volatility of filtering error, annualized in percents.

Figure 5

Income simulation in time-varying volatility model
Simulation of the economy for 85 years in a time-varying volatility model. Top panel depicts daily income growth. The next two panels show conditional volatility of income growth and the volatility of filtering error, annualized in percents.

Time variation in income volatility implies that the optimal costly learning is stochastic and no longer occurs at constant time intervals. In particular, an important prediction of the model, stated in Result 4, is that the frequency of costly learning and, consequently, asset-price jumps increases at times of heightened income volatility. For a graphical illustration of these model implications, we show a typical simulation of income growth, income volatility, and the variance of filtering error in Figure 5, and the equilibrium returns with and without the costly learning option in Figure 6. The income growth process is conditionally normal and hence does not exhibit large moves. Further, unlike the constant volatility model, the variance of the filtering error now fluctuates over time, and one can observe the occasional sharp reductions of the filtering uncertainty to zero at times when agents choose to learn the true state for a cost. These times of costly learning correspond to the periods of high income volatility and high variance of the filtering error. We highlight the dependence of the costly learning rule on the volatility states in Figure 7, which depicts the expected number of periods until the next costly learning given current filtering variance for high, medium, and low values of aggregate volatility. Consistent with our earlier discussion, investors choose to learn for a cost if the variance of the filtering error grows too high in the economy, and the frequency of costly learning increases at times of heightened income volatility.
The actions of investors to learn about the underlying state can lead to large adjustments in daily asset prices, detected as jumps by annual jump-detection statistics, as shown in return simulation on Figure 6. To illustrate the response of the asset valuations to the revisions of the expected growth, we show a scatter plot of the change in price-dividend ratio Δv_t versus the revision in expectations $x_t - \hat{x}_t(0)$ in Figure 8. When the agents do not exercise the costly learning option, the unobserved gap between the true and the filtered state has no information about asset prices, hence the horizontal line in the middle of the graph. On the other hand, when agents pay a cost and observe the true state, the price-dividend ratio changes to reflect the adjustment in the agent’s expectations about future growth. Positive revisions lead to upward moves in the asset prices, while lower than expected growth implies large negative jumps in returns.

Relative to the constant volatility case, the detected jump-years are more frequent, averaging once every 3.4 years, and contribute more to the total variation in returns, 12% versus 7% in a constant volatility case and in the data (see Table 1). These large moves in returns cannot be obtained in the economy without costly learning, as can be visually seen on the time-series plot of returns in Figure 6. Without costly learning, the average frequency of detected jump-years is less than 2 in 80 years, and the detected “jumps” are merely pure-chance large random draws. The comparison of the higher-order moments of

![Figure 6](image)

Return simulation in time-varying volatility model
Simulation of the economy for 85 years in a time-varying volatility model. The two panels show daily market returns in the models when the agent has an option to learn the true state for a cost and with no option to learn, respectively. Dots indicate days of learning, while shaded regions correspond to the years with at least one significant jump, detected by the jump statistics.
Figure 7
Costly learning frequency in time-varying volatility model
Average number of periods until next costly learning update, in years, for a given filtering variance and three levels of income volatility. Based on a long simulation of the time-varying volatility model. Volatilities are annualized, in percents.

Figure 8
Change in price-dividend ratio due to revision in expected growth
Scatter plot of the change in price-dividend ratio, Δp_t, versus the revision in expected growth, $x_t - \hat{x}_t(0)$. Based on a long simulation of the time-varying volatility model.
model-implied return distribution is revealing: without an option to learn, the kurtosis of market returns is 3, and it reaches 36 when the agent can learn the true state for a cost.

Naturally, the frequency of detected jump-years depends on the significance of the jump-detection test, which we set to 1%. For robustness, in Figure 9 we show the jump-year frequency for a range of significance levels from 0.5% to 10%. As the significance level increases, the null of no jumps is rejected more often, so that the frequency of detected jump-years increases. As the figure shows, the model can match very well the evidence on the average frequency of jump-years in the data, as the model-implied jump-year frequency is nearly on top of the empirical one and is well within the 5%–95% confidence band.

4.4 Predictability of jumps
An important feature of our model is that asset-price jumps are predictable by persistent variance measures, such as endowment and market volatility. To put our results in perspective, note that if the jump arrival intensity is constant, as is sometimes assumed in reduced-form asset-pricing models, the number of periods between successive jumps follows an exponential distribution. In Figure 10, we plot the unconditional distribution of the number of periods between the detected jump-years from the long simulation of the time-varying volatility model, along with the exponential fit to this distribution. The mean
of the fitted exponential distribution is 3.6 years, which agrees with the estimate of the jump-year frequency reported in Table 1. While the exponential distribution generally fits the distribution of jump duration, there is evidence for clustering of jumps—the unconditional distribution has a heavier left tail than an exponential, so a jump-year is likely to follow another.

The persistence of asset-price jumps is a natural outcome of the model result that the frequency of learning, and consequently the likelihood of price jumps, is increasing with aggregate volatility. As discussed before in Section 1, the predictability of return jumps by the aggregate volatility is an important feature of the data, and our model can capture this effect. Furthermore, as the aggregate volatility also drives the variation in equilibrium market returns, our model can provide an economic explanation for the predictability of large asset-price moves by the variance of returns in the data. Finally, as in the data, the level of endowment growth does not predict future return jumps, as the optimal learning choice depends only on the income volatility and variance of filtering error. This highlights an important aspect of the model and the data that the second moments are critical to forecast future jumps, while the movements in the level are not informative about future jumps in returns.

The model can quantitatively reproduce the key features of predictability of return jumps by consumption and market variance, and absence of predictability of future jumps by the level of consumption growth. In the lower panels of Table 2, we show model-implied population values for the lead-lag correlations of the jump indicator with endowment growth and conditional variance of endowment growth and returns at an annual frequency, constructed in the
same way as the empirical counterparts in the data. As shown in the table, the return jump indicator and the consumption growth rate have zero correlation, and return jumps and macroeconomic volatility have positive correlations of about the same magnitude as in the data. Most of the model correlations are within one standard deviation from their estimates in the data. For robustness, we checked the results using monthly frequency and obtained similar results. In sharp contrast, in the model without costly learning, all correlations are zero (shown in the lower panel of the table). That is, in the absence of endogenous jumps due to costly learning, the model is unable to capture the correlation between return volatility and the jump indicator, as well as the correlation between macroeconomic volatility and the jump indicator.

In Table 4, we show the probit regression results for the predictability of jump-years by consumption variance and consumption growth. Using the consumption variance, we obtain the R^2 of 6% and 5% in the data and in the model, respectively. The R^2 drops to less than 1% in the data and 2% in the model when we use the lags of consumption growth rate to predict future jumps. Without the costly learning option, the R^2's are zero. Hence, our costly learning model can capture the predictability evidence of jumps in the data. In the next section, we show that the jump predictability implications from the model are also consistent with the evidence from the parametric asset-pricing models.

4.5 Parametric jump model
The predictability of large moves in returns that our model is able to capture is consistent with the evidence from parametric models for asset prices, which feature stochastic volatility and jumps in returns whose arrival intensity is increasing in market variance; see examples in Bates (2000), Pan (2002), Eraker (2004), and Singleton (2006). To further compare our model implications with the results from the parametric studies of return dynamics, we fit a discrete-time GARCH-jump specification for returns, which features autoregressive stochastic volatility and time-varying arrival intensity of jumps in returns.12 Specifically, the return dynamic is given by

$$ r_t = \mu_r + a_{1,t} + a_{2,t}. $$

The first component $a_{1,t}$ represents a smooth normal component of returns, whose conditional volatility is time varying and follows the GARCH(1,1) process:

$$ a_{1,t} = \sigma_{r,t-1} \tilde{a}_t, \quad \tilde{a}_t \sim N(0, 1), $$

$$ \sigma_{r,t}^2 = \sigma_v^2 + \beta_v \sigma_{r,t-1}^2 + \alpha_v (r_t - \mu_r)^2. $$

12 A similar specification is considered in Bates and Craine (1999). See Maheu and McCurdy (2004) for extensions and estimation details.
The second shock $a_{2,t}$ is driven by Poisson jumps:

$$a_{2,t} = \sum_{k=1}^{n_t} \zeta_{t,k} - \mu_j \lambda_{t-1}. \quad (42)$$

The jump size distribution is assumed to be normal:

$$\zeta_{t,k} \sim N(\mu_j, \sigma_j^2), \quad (43)$$

and the arrival of number of jumps $n_t = 0, 1, 2, \ldots$ is described by a conditional Poisson distribution with intensity λ_t, so that

$$Pr_{t-1}(n_t = j) = \frac{\exp(-\lambda_{t-1})\lambda_{t-1}^j}{j!}. \quad (44)$$

As we are interested in the predictability of jumps by market variance, we follow the literature and model the jump intensity to be linear in the variance of returns,

$$\lambda_t = \lambda_0 + \lambda_l \sigma_{r,t}^2. \quad (45)$$

The above specification of return dynamics can be readily estimated by maximum likelihood using the sample and simulated data. In particular, we use monthly returns from 1926 to 2008 in the data and perform a Monte Carlo study with 100 simulations of 85 years of monthly returns from a time-varying volatility model.\(^\text{13}\) The estimation results in the data and the model are shown in Table 7. As can be seen in Table 7, the model matches quite well the dynamics of the time-varying volatility of the smooth component of the returns, as the volatility persistence parameters α_v and β_v are quite close to the data. The model can also capture the key findings regarding the frequency and predictability of jumps. The estimated probability of jumps loads positively and

\(^{13}\) We chose to focus on monthly rather than daily data because estimation using monthly data is more stable and shows less evidence of model misspecification.
significantly on the market variance in the data, and the slope coefficient in the model matches the data estimate very well. The estimated mean jump size is -7% in the data, and the estimate is not statistically significant. In the model, as investors can learn that the true state is bigger or smaller than their estimate, the jumps are symmetric, so that the mean jump size is zero. The standard deviations of the jump distribution in the data and in the model are very close and equal to 6% and 7%, respectively.

Thus, the model can account for the key features of the conditional distribution of returns in the data, so it can serve as an economic basis for realistic reduced-form models of asset prices that incorporate time-varying volatility and jump components.

5. Conclusion

We present a general equilibrium model that features smooth Gaussian dynamics of income and dividends and large infrequent movements in asset prices (jumps). The large moves in asset prices are triggered by the optimal actions of investors to learn the unobserved expected growth. We show that the optimal decision to learn the true state is stochastic and depends on the time-varying volatility of income growth and the variance of the filtering error, as well as the preference parameters. The revisions in the expected income due to costly learning lead to large moves in asset valuations that look like jumps. These large price moves cannot be obtained in the economy without costly learning of the true state, or in the economy with standard expected utility.

A prominent feature of the model is that the frequency of costly learning, and consequently the likelihood of asset-price jumps, increases in the income volatility, so that return jumps are more frequent at times of high aggregate volatility. We show that predictability of return jumps by consumption variance is an important and novel aspect of the data. Furthermore, the model can provide an economic explanation for the predictability of large asset-price moves by the variance of returns, and lack of return jump predictability by the levels of consumption growth in the data. This highlights an important aspect of the model and the data that the second moments are critical to forecast future jumps, while the movements in the level are not informative about future jumps in returns.

Using calibrations, we find that the model can quantitatively reproduce the key features of predictability of return jumps by consumption and market variance, and absence of predictability of future jumps by the level of consumption. In addition, the model can account for the frequency and magnitude of price jumps in the data, fat-tail distribution of market returns, equity premium, and other asset-pricing features. We argue that our structural model can serve as an economic basis for realistic reduced-form models of asset prices that incorporate time-varying volatility and jump components.
A Model Solution

A.1 Social Planner’s Problem
The learning decision of the social planner maximizes the ex ante utility of the agent:

\[s^*_t = \arg \max_s \{ J_t(U_t(s)) \} , \]
(A.1)

subject to the resource constraint in Equation (12):

\[Y_t = C_t(s_t) + s_t \xi_t , \]
(A.2)

where the learning cost \(\xi_t \) is proportional to the aggregate income \(Y_t \):

\[\xi_t = \chi Y_t , \]
(A.3)

for \(0 \leq \chi < 1 \). From the resource constraint, it immediately follows that

\[C_t(s_t) = Y_t (1 - \chi s_t) . \]
(A.4)

Therefore, when the planner does not learn about the true state \((s_t = 0) \), the agent’s consumption is equal to the aggregate income. On the other hand, when the planner learns about the true state, \((s_t = 1) \), part of the endowment is sacrificed to cover the learning cost.

Conjecture that the lifetime utility functions are proportional to income:

\[U_t(s_t) = \phi_t(s_t) Y_t , \]
(A.5)

for \(s_t \in \{0, 1\} \). The optimal utility of the agent then is given by the learning choice-specific counterpart evaluated at the optimal indicator \(s^*_t \):

\[U_t(s_t) = \phi_t(s_t) Y_t , \]
(A.5)

The optimal utility next period takes into account the optimal learning choice tomorrow and can be written as \(U_{t+1} = \phi_{t+1} Y_{t+1} \), where, to simplify the notations, we denote \(\phi_{t+1} \equiv \phi_{t+1}(s^*_{t+1}) \).

Substitute the conjecture for \(U_t(s_t) \) and \(U_{t+1} \), and the consumption rule in Equation (A.4) into the definition of the lifetime utility of the agent in Equation (10) to obtain the following recursive formula for the utility per-income \(\phi_t(s_t) \):

\[\phi_t(s_t) = (1 - s_t \chi)^{1-\beta} \left(E_t^{s_t} \left[\frac{Y_{t+1}}{Y_t} \right]^{1-\gamma} \right)^{\frac{\beta}{1-\gamma}} . \]
(A.6)

As aggregate income \(Y_t \) is known in the beginning of the period, it can be factored out from the optimal condition for learning in Equation (A.1). We can then rewrite it in the following way:

\[s^*_t = 1 \quad \text{if } J_t(\phi_t(1)) > J_t(\phi_t(0)) \]
\[= 0 \quad \text{if } J_t(\phi_t(1)) \leq J_t(\phi_t(0)). \]
(A.7)

A.2 Representative Agent Problem
For completeness, we also show the solution to the representative agent problem.

Denote \(W_t \) the agent’s wealth in period \(t \). Denote \(\omega_t \) the fraction of agent’s wealth invested into each asset (i.e., the portfolio weights), so that \(\omega_t 1 = 1 \). Then, for a vector of asset returns \(R_{t+1} \), we can write down the return on the aggregate wealth,

\[R_{e,t+1} = \omega_t' R_{t+1} . \]
(A.8)
Hence, we can write down the budget constraint of the agent in the following way:

\[W_{t+1} = (W_t - C_t - s_t \zeta_t) R_{c,t+1}. \]

(A.9)

For convenience, we make the learning costs \(\zeta_t \) be a fixed proportion of the consumption level of the agent,

\[\zeta_t = \frac{\chi}{1 - \chi} C_t. \]

(A.10)

It is easy to see that with this parameterization, in equilibrium the learning costs are going to be proportional to the aggregate income of the agent with a coefficient of proportionality \(\chi \), as stated in Equation (13).

The budget constraint can then be rewritten in the following way:

\[W_{t+1} = \left(W_t - \frac{C_t}{1 - \chi s_t} \right) R_{c,t+1}. \]

(A.11)

The optimization problem of the agent is given by

\[U_t(s_t) = \max_{C_t, w_t} \left\{ J_t(U_t(s)) \right\}, \]

(A.12)

subject to the budget constraint above.

Taking a first-order condition with respect to consumption, we obtain, after some algebra, the optimal consumption rule

\[\frac{C_t}{W_t} = (1 - \beta)(1 - s_t \chi). \]

(A.13)

Now let us take a first-order condition with respect to a portfolio weight \(i \), subject to the restriction \(\omega_t’ = 1 \):

\[E_t^s \left(\left(U_{t+1}/W_{t+1} \right)^{1-\gamma} R_{c,t+1}^{-\gamma} R_{i,t+1} \right) = \text{const}, \quad \forall i. \]

(A.14)

Multiplying each of these conditions by a corresponding asset weight and summing up, we obtain that

\[E_t^s \left(\left(U_{t+1}/W_{t+1} \right)^{1-\gamma} R_{c,t+1}^{-\gamma} R_{i,t+1} \right) = E_t^s \left(\left(U_{t+1}/W_{t+1} \right)^{1-\gamma} R_{c,t+1}^{-\gamma} \right). \]

(A.15)

from which we can read the discount factor,

\[M_{t+1} = \frac{(U_{t+1}/W_{t+1})^{1-\gamma} R_{c,t+1}^{-\gamma}}{E_t^s \left(\left(U_{t+1}/W_{t+1} \right)^{1-\gamma} R_{c,t+1}^{-\gamma} \right)}. \]

(A.16)

Let us impose equilibrium restrictions that income is equal to consumption plus learning costs, \(Y_t = C_t + s_t \zeta_t \). For our parameterization of the learning cost in Equation (A.10), this implies that, in equilibrium, the learning costs are proportional to the aggregate income, \(\zeta_t = \chi Y_t \).

Note that while the consumption-per-wealth ratio is not constant (see Equation (A.13)), the total income-per-wealth ratio is constant:

\[\frac{Y_t}{W_t} = 1 - \beta. \]

(A.17)

Using the budget constraint in Equation (A.11), we obtain that the equilibrium aggregate wealth return is proportional to the income growth:

\[R_{c,t+1} = \frac{1}{\beta} \frac{Y_{t+1}}{Y_t}. \]

(A.18)
From here, we obtain that, in equilibrium,

\[
(U_{t+1}/W_{t+1}) R_{c,t+1} = \left(\frac{U_{t+1}}{W_{t+1}} \right) \left(\frac{1}{\beta} \frac{Y_{t+1}}{Y_t} \right) = \frac{1 - \beta}{\beta} \frac{U_{t+1}}{Y_t}.
\]

(A.19)

Substitute this into the expression for the discount factor in Equation (A.16) to obtain

\[
M_{t+1} = \beta \left(\frac{Y_{t+1}}{Y_t} \right)^{-1} \frac{U_{t+1}^{1-\gamma}}{E_t^{s_t} U_{t+1}^{1-\gamma}}.
\]

(A.20)

This is the equilibrium discount factor for a given model choice of the agent \(s_t \).

We can also plug the optimal consumption policy into the utility equation (Equation (A.12)) to verify the solution to the utility per wealth in Equation (A.6) obtained using the social planner problem.

A.3 Timing of Resolution of Uncertainty

The key aspect of our model is that the agent has a preference for a timing of the resolution of uncertainty. In Section 4, we showed that with standard utility preferences, the agents have no incentive to learn for a cost, even if the cost is zero. Let us now formally prove that when investors have a preference for early resolution of uncertainty (\(\gamma > 1 \)), they have incentives to learn the new information.

Using the recursive solution for the utility per-income ratio in Equation (A.6), the solution to the optimal choice indicator above can be expanded in the following way:

\[
s_t^* = 1 \left(1 - \chi \right)^{1-\beta} \left(E_t^0 \left[E_t^1 \left(\phi_{t+1} \frac{Y_{t+1}}{Y_t} \right)^{1-\gamma} \right]^{\beta} \right)^{\frac{1}{1-\gamma}} \left[E_t^0 \left(\phi_{t+1} \frac{Y_{t+1}}{Y_t} \right)^{1-\gamma} \right]^{\frac{\beta}{1-\gamma}}.
\]

(A.21)

Consider a case where the learning cost is zero, \(\chi = 0 \). As \(\beta < 1 \), using Jensen’s inequality argument it follows that \(E(U^\beta) < (E(U))^\beta \) for any random variable \(U \) with positive support. Now apply this inequality for \(U = E_t^1 \left(\phi_{t+1} \frac{Y_{t+1}}{Y_t} \right)^{1-\gamma} \) to obtain

\[
E_t^0 \left[E_t^1 \left(\phi_{t+1} \frac{Y_{t+1}}{Y_t} \right)^{1-\gamma} \right]^{\beta} < \left[E_t^0 \left(\phi_{t+1} \frac{Y_{t+1}}{Y_t} \right)^{1-\gamma} \right]^{\beta}.
\]

(A.22)

To plug this inequality into the optimal policy in Equation (A.21), we need to take both sides of it to the \(1/(1 - \gamma) \) power. With a preference for early resolution of uncertainty, \(\gamma > 1 \) and the exponent \(1/(1 - \gamma) \) is negative, so the inequality reverses. Hence, with a preference for early resolution of uncertainty, agents can always increase their lifetime utility by learning additional information at zero cost. On the other hand, when \(\gamma \leq 1 \), agents have no preference for early resolution of uncertainty, and hence they have no incentive to acquire additional information even if it is costless. Hence, a preference for early resolution of uncertainty plays a key role in the investor’s decision to pay a cost and learn the new information.

A.4 Utility and Learning Choice

As the volatility and consumption shocks are uncorrelated, we can separate the expected growth and volatility components in the equilibrium utility per-income ratio, which simplifies the solution to the fixed-point recursion in Equation (15). In this section, we consider a general case with time-varying volatility, while in Appendix A.6 we show that the solution can be simplified even further when the volatility is constant.
Conjecture that for each choice indicator s_t and corresponding states $\hat{x}_t(s_t)$, $\omega_{t+1}^2(0)$ and σ_t^2 today, the lifetime utility per-income ratio satisfies

$$\phi(s_t, \hat{x}_t(s_t), \omega_{t+1}^2(0), \sigma_t^2) = e^{B\hat{x}_t(s_t) + f(s_t, \omega_{t+1}^2(0))},$$ (A.23)

for some utility loading B and volatility function $f(s_t, \omega_{t+1}^2(0))$. Note that the variance of the filtering error used in the value function is based on the beginning-of-period information; the actual value $\omega_{t+1}^2(s_t)$ depends deterministically on the beginning-of-period estimate $\omega_{t+1}^2(0)$ and learning choice s_t (see Equation (28)).

Conjecture that the optimal learning choice tomorrow s_{t+1}^* depends on only the income volatility and beginning-of-period variance of the filtering error, and not on the expected income and dividend factors, i.e., $s_{t+1}^* = s^*(\sigma_{t+1}^2, \omega_{t+1}^2(0))$. Consider the equilibrium lifetime utility from the next period onward:

$$\phi_{t+1} = \phi(s_{t+1}^*, \hat{x}_{t+1}(s_{t+1}^*), \omega_{t+1}^2(0), \sigma_{t+1}^2)$$

$$= e^{B\hat{x}_{t+1}(s_{t+1}^*) + f_{t+1}},$$ (A.24)

where for notational simplicity we define $f_{t+1} = f(s_{t+1}^*, \omega_{t+1}^2(0))$. Now, using Equation (27),

$$\log \left(\frac{\phi_{t+1} Y_{t+1}}{Y_t} \right) = B \left(\hat{x}_{t+1}(0) + s_{t+1}^*(x_{t+1} - \hat{x}_{t+1}(0)) \right) + f_{t+1} + \Delta y_{t+1}.$$ (A.25)

Consider a recursive equation for the optimal utility per-income ratio in Equation (A.6) for a given choice indicator s_t today. To evaluate $E_{t}^{s_t} \left(\phi_{t+1} Y_{t+1} \right)^{1-\gamma}$, we use the law of iterated expectations, where we first condition on I_{t+1}, then Δy_{t+1}, σ_{t+1}^2 and f_{t+1} are known, while the only random component is the true state x_{t+1}. Due to the Kalman filter procedure,

$$x_{t+1} | I_{t+1} \sim N(\hat{x}_{t+1}(0), \omega_{t+1}^2(0)),$$

where $\hat{x}_{t+1}(0)$ and $\omega_{t+1}^2(0)$ satisfy Equations (27) and (28). Therefore, the right-hand-side expectation in the utility recursion in Equation (15) is equal to

$$E_{t}^{s_t} \left(\phi_{t+1} Y_{t+1} \right)^{1-\gamma} = E_{t}^{s_t} e^{-((\gamma-1))B\hat{x}_{t+1}(0) + f_{t+1} + \Delta y_{t+1} + 1/2(1-\gamma)B^2\omega_{t+1}^2(0)s_{t+1}^*}$$

$$= e^{-(\gamma-1))((\mu + (B\hat{\rho} + 1)\hat{x}_{t}(s_t)) + f_{t+1} + \Delta y_{t+1} + 1/2(1-\gamma)B^2\omega_{t+1}^2(0)s_{t+1}^*)}.$$ (A.27)

Now, by conjecture, s_{t+1}^* and thus f_{t+1} and $\omega_{t+1}(s_{t+1}^*)$ are driven by income volatility shocks, which are independent of income innovations and therefore of the filtered shock $u_{t+1}(s_t)$. Thus,

$$E_{t}^{s_t} \left(\phi_{t+1} Y_{t+1} \right)^{1-\gamma} = e^{-(\gamma-1))((\mu + (B\hat{\rho} + 1)\hat{x}_{t}(s_t)) + 1/2(1-\gamma)(B\hat{K}_t(s_t) + 1)^2(\omega_{t+1}^2(s_t) + \sigma_t^2) + f_{t+1} + 1/2(1-\gamma)B^2\omega_{t+1}^2(0)s_{t+1}^*)}$$

$$\times E_{t}^{s_t} e^{-((\gamma-1))B^2\omega_{t+1}^2(0)s_{t+1}^*)}.$$ (A.28)

Therefore, using the equilibrium utility recursion in Equation (A.6) and the conjectured solution for the lifetime utility of the agent in Equation (A.23) and matching the coefficients, we obtain that loading on expected growth is equal to

$$B = \frac{\beta}{1 - \beta \rho}.$$ (A.29)
while the volatility function satisfies
\[f(s_t, \sigma_t^2, \omega_t^2(0)) = (1 - \beta) \ln(1 - s_t \chi) + \beta \mu + \beta \frac{1}{2} (1 - \gamma)(BK_t(s_t) + 1)^2(\omega_t^2(s_t) + \sigma_t^2) \]

\[+ \frac{\beta}{1 - \gamma} \ln E_t^{s_t} e^{(1 - \gamma) \left[f_{t+1} + \frac{1}{2} (1 - \gamma) B^2 \omega^2_{t+1}(0)s_{t+1}^*\right].} \]

(A.30)

The solution to \(B\) and \(f\) verifies the conjecture for the lifetime utility of the agent.

Now, given the utility equation (Equation (A.23)) and the dynamics of the factors, we can rewrite the optimal condition for a learning choice in Equation (11). Notably, the expected growth component drops out, so that the optimal choice indicator depends on only the learning and aggregate variance:

\[s_t^* = 1 \left[\frac{1}{2} (1 - \gamma) B^2 \omega_t^2(0) + f_t(1, \sigma_t^2, \omega_t^2(0)) > f_t(0, \sigma_t^2, \omega_t^2(0)) \right]. \]

(A.31)

Using the optimal condition for \(s_{t+1}^*\) tomorrow to rewrite the recursive equation of the volatility function in Equation (A.30) in the following way,

\[f(s_t, \sigma_t^2, \omega_t^2(0)) = (1 - \beta) \ln(1 - s_t \chi) + \beta \mu + \beta \frac{1}{2} (1 - \gamma)(BK_t(s_t) + 1)^2(\omega_t^2(s_t) + \sigma_t^2) \]

\[+ \frac{\beta}{1 - \gamma} \ln E_t^{s_t} e^{(1 - \gamma) \max\left[\frac{1}{2} (1 - \gamma) B^2 \omega_{t+1}^2(0) + f_{t+1}(1, \sigma_{t+1}^2, \omega_{t+1}^2(0), f_{t+1}(0, \sigma_{t+1}^2, \omega_{t+1}^2(0)) \right].} \]

(A.32)

That is, the volatility function \(f\) can be obtained as a fixed-point solution to Equation (A.32), given the evolution of the variance of the filtering error in Equations (25) and (28).

Using the solution to the equilibrium discount factor in Equation (A.20), we can express the equilibrium discount factor in terms of the underlying variables in the economy:

\[m_{t+1}(s_t) = \log \beta - \mu - \hat{x}_t(s_t) - \frac{1}{2} (1 - \gamma)^2 (BK_t(s_t) + 1)^2(\omega_t^2(s_t) + \sigma_t^2) \]

\[- \ln E_t^{s_t} e^{(1 - \gamma) \left[f_{t+1} + \frac{1}{2} (1 - \gamma) B^2 \omega^2_{t+1}(0)s_{t+1}^*\right].} \]

\[- (1 + (\gamma - 1)(1 + BK_t(s_t))) u_{t+1}(s_t) - (\gamma - 1) B s_{t+1}(x_{t+1} - \hat{x}_{t+1}(0)) \]

\[- (\gamma - 1) f_{t+1}. \]

(A.33)

Using the equilibrium solution to the discount factor, we obtain that the risk-free rate satisfies

\[r_{ft} = - \log \beta + \mu + \hat{x}(s_t) - \frac{1}{2} (2\gamma - 1)(BK_t + 1)^2(\omega_t^2 + \sigma_t^2). \]

(A.34)

A.5 Dividend Asset

We follow the standard approach of Bansal and Yaron (2004) to solve for the equilibrium price-dividend ratio in the economy.

Conjecture that the equilibrium price-dividend ratio satisfies

\[v_t(s_t) = H \hat{x}_t(s_t) + h(s_t, \sigma_t^2, \omega_t^2(0)). \]

(A.35)

We log-linearize the market return, which, using the dividend specification in Equation (37), the conjectured solution for the price-dividend ratio, and the dynamics of the state, can be expressed in the following way:
for endogenous log-linearization coefficients κ_0 and κ_1.

Using Euler conditions and the equilibrium solution for discount factor for the log-linearized dividend return, we obtain that the loading H is given by

$$H = \frac{\varphi_d - 1}{1 - \kappa_1 \rho}, \quad (A.37)$$

while the price-dividend volatility component satisfies a recursive equation:

$$h_t(s_t, \sigma_t^2, \omega_t^2(0)) = \ln \beta + \kappa_0$$

$$+ \frac{1}{2} (\varphi_d - 1 + \kappa_1 H K_t(s_t)) (\varphi_d - 1 + \kappa_1 H K_t(s_t))$$

$$- 2(\gamma - 1)(1 + B K_t(s_t))(\sigma_t^2 + \omega_t^2(s_t))$$

$$+ \ln E_t^{s_t} e^{\kappa_1 h_{t+1} + \frac{1}{2} (\kappa_1 H - (\gamma - 1) B) \gamma s_t^2 + \omega_{t+1}^2(0) - (\gamma - 1) f_{t+1}}$$

$$- \ln E_t^{s_t} e^{(1 - \gamma) (f_{t+1} + \frac{1}{2} (1 - \gamma) B^2 s_t^2 + \omega_{t+1}^2(0))}. \quad (A.38)$$

To solve for the approximating constants κ_0 and κ_1, we use the numerical procedure discussed by Bansal, Kiku, and Yaron (2007), who develop a method to solve for the endogenous constants associated with each return and document that the numerical solution to the model is accurate.

A.6 Constant Volatility Case

When the income volatility is constant, $\sigma_i = \sigma_0^2$, the variance of the filtering error becomes a deterministic function of time since the last learning about the true state. In this case, the optimal learning decision is purely time dependent, so that the investors choose to learn about the underlying state if the last time they did so was N or more periods ago.

Assume we know the optimal N, and consider the time interval from 1 to N. In equilibrium, the agent starts filtering in period 1 and learns about the true state for a cost in period N; afterward, the solution repeats itself.

The equilibrium volatility functions are non-random functions of time, so to simplify the notations, denote them f_i:

$$f_1 = f(0, \sigma_0^2, \omega_0^2(0)), \quad 1 \leq i < N,$$

$$f_N = f(1, \sigma_0^2, \omega_N^2(0)). \quad (A.39)$$

Now we can rewrite the recursions in Equation (A.30) as a system of linear equations (to simplify the exposition, we consider the case $N > 2$):

$$f_1 - \beta f_2 = \beta \mu + \frac{1}{2} \beta (1 - \gamma) (BK_1(0) + 1)^2 (\omega_1^2(0) + \sigma_0^2),$$

$$\ldots$$

$$f_i - \beta f_{i+1} = \beta \mu + \frac{1}{2} \beta (1 - \gamma) (BK_i(0) + 1)^2 (\omega_i^2(0) + \sigma_0^2), \quad 2 \leq i < N - 1$$

2777
\[f_{N-1} - \beta f_N = \beta \mu + \frac{1}{2} \beta (1 - \gamma) \left((BK_{N-1}(0) + 1)^2 (\omega_{N-1}^2(0) + \sigma_0^2) + B^2 \omega_N^2(0) \right), \]
\[f_N - \beta f_1 = (1 - \beta) \ln(1 - \chi) + \beta \mu + \frac{1}{2} \beta (1 - \gamma) (BK_N(1) + 1)^2 (\omega_N^2(1) + \sigma_0^2). \]
(A.40)

This system can be easily solved for equilibrium volatility functions \(f_i, i = 1, \ldots, N \).

Now we need to make sure that the chosen \(N \) is indeed optimal; that is, the agent is not better off deviating from the conjectured learning rule. If investors were to learn about the state earlier than in the \(N \)th period, their utility would be \(f_N \). To preclude this deviation, we need to have that (see the condition in Equation (A.31))

\[\frac{1}{2} (1 - \gamma) B^2 \omega_i^2(0) + f_N < f_i, \]
(A.41)

for \(1 \leq i < N \).

On the other hand, consider a scenario where investors fail to learn about the true state at time \(N \). By conjecture, the optimal behavior in period \(N + 1 \) is to learn; therefore, from the expression in Equation (A.30), the utility that the investors would get by deviating is given by

\[\tilde{f}_N = \beta \mu + \frac{1}{2} \beta (1 - \gamma) \left((BK_N(0) + 1)^2 (\omega_N^2(0) + \sigma_0^2) + B^2 \omega_{N+1}^2(0) \right) + \beta f_N. \]
(A.42)

Following the optimality condition for the choice indicator in Equation (A.31), we then need to have that

\[\frac{1}{2} (1 - \gamma) B^2 \omega_N^2(0) + f_N > \tilde{f}_N. \]
(A.43)

In practice, we loop from a low value of \(N \) until we satisfy both optimality conditions in Equations (A.41)-(A.43), solving a linear system in Equation (A.40) for the volatility functions \(f_i \). In numerical calibrations, we verify that the optimal \(N \) is always unique: When \(N \) is lower than the optimum, we violate the last condition in Equation (A.43), so that the agent can increase the utility by estimating, rather than learning about the state for a cost; for \(N \) higher than the optimum, Equation (A.41) is not satisfied, and investors want to learn sooner.

We follow the same approach to find the volatility functions in the price-dividend ratio. As \(h \)s are no longer random, we can rewrite their recursion in Equation (A.38) much in the same way as in Equation (A.40). The solution for the price-dividend volatility components then follows directly because we already know the optimal choice indicator and utility functions \(f_i \). To solve for the approximating constants \(\kappa_0 \) and \(\kappa_1 \), we use the numerical procedure discussed by Bansal, Kiku, and Yaron (2007).

Now let us prove formally that if investors have a preference for early resolution of uncertainty, the frequency of costly learning increases when the agents get more risk averse or learning becomes less costly. Indeed, when \(\gamma > 1 \), we can express the constraint in Equation (A.41) using the system in Equation (A.40) as

\[0 > \frac{f_1 - f_N}{1 - \gamma} - \frac{1}{2} B^2 \omega_i^2(0) = -\left(1 - \beta\right)^2 \left(\frac{1}{1 - \beta} \ln(1 - \chi) - \frac{1}{1 - \gamma}\right) + q_i, \]
(A.44)

where the term \(q_i \) does not depend on the risk-aversion \(\gamma \) or learning-cost \(\chi \) parameters. Notably, the sign of the inequality critically depends on \(\gamma > 1 \); that is, a preference for early resolution of uncertainty. When \(\gamma < 1 \), the inequality would reverse, and in this case, as we discussed in Section 4.2, it is never optimal to learn for a cost, and \(N \) is infinity.

It is easy to see that the right-hand side of the inequality in Equation (A.44) is unambiguously increasing in the risk-aversion and decreasing in the learning-cost parameter. Hence, if we start with an equilibrium solution to the model and increase the risk aversion (decrease learning cost), the optimality constraint on number of period \(N \) in Equation (A.41) gets monotonically more restrictive. When the risk aversion rises high enough (learning cost drops low enough), the constraint gets violated and the agent optimally chooses to decrease the number of learning
periods N. That is, the frequency of costly learning increases with the risk-aversion coefficient and decreases with the costly learning parameter.

References

