Demand, Regulation, and Welfare on the Margin of Alternative Financial Services*

Ryan C. McDevitt† Aaron Sojourner‡

April 2021

Abstract

We use a nonlinear reduction in a bank’s check-cashing fees and variation in regulated check-clearing times to identify the elasticity of demand for cashing checks rather than depositing them. We find that an extra day of check-clearing time makes account holders 65.5% more likely to cash a check than deposit it, which implies they are willing to pay $11.17 per day for faster access to their funds. We use this elasticity to evaluate recent proposals that mandate faster check-clearing times.

Keywords: Alternative Financial Services, Check Cashing, Financial Regulation

JEL: D14, G12

*We thank Josh Garcia and Demetris Giannoulias of Spring Bank for their help acquiring the data, Brian McManus for his helpful feedback, and seminar participants at Collegio Carlo Alberto, the Consumer Financial Protection Bureau, the Department of Justine, EIEF, Kellogg School of Management, and the Minneapolis Fed for their productive comments. Sojourner was a director of Spring Bank.

†Duke University, ryan.mcdevitt@duke.edu
‡University of Minnesota, Carlson School of Management, asojourn@umn.edu
1 Introduction

Paper checks remain a ubiquitous form of payment in the United States, with 14.5 billion written each year and 40% of Americans regularly receiving them (Greene et al. 2020). At the same time, over 5% of U.S. households do not have access to a checking account and 17% use alternative financial services (AFS) such as check cashing and money orders (Kutzbach et al. 2020). This population must routinely decide how to convert their payments into a useful medium of exchange, with many using a check casher to meet this need, paying a total of $1.7 billion in fees in 2018 (Graham & Golden 2019). More recently, over three million paper checks from the Coronavirus Aid, Relief, and Economic Security (CARES) Act were cashed through check cashers, resulting in an estimated $66 million in check cashing fees (Murphy 2021).

In this paper, we provide novel, policy-relevant evidence on how service fees and check-clearing times affect “underbanked” individuals on the margin between AFS and the mainstream banking system. We do so by using transaction data from a bank that offers both regular checking accounts and the alternative financial service of check cashing, which presents a unique opportunity to study the choice between AFS and mainstream banking because most banks do not offer AFS and AFS providers cannot offer mainstream products due to various banking regulations. By studying a bank that offers customers an explicit choice between both services, we can isolate the effects of check-cashing fees and check-hold times from other factors that might lead a marginal consumer to favor AFS over traditional bank accounts, such as convenience, financial acumen, or distrust of the banking system (Schneider & Longjohn 2014, Burhouse et al. 2014). In addition, the bank we study introduced a large, nonlinear change to its check-cashing fees during our sample period, allowing us to cleanly identify how check-cashing prices affect demand.

We find that many deposit-account holders willingly pay high fees to accelerate access to their funds, with customers becoming much more likely to cash their checks than deposit them when they have to wait longer for their checks to clear through the banking system: an extra day of check-clearing time makes account holders 65.5% more likely to choose check cashing over making a deposit. Our estimates imply that the average customer is willing to pay the equivalent of $11.17 per day to speed up access to his or her cash, and this willingness to pay is even higher among low-income households. Our main results are robust to specifications that account for the potential confound of weekends and holidays. Notably, these estimates are the first in the literature derived from individual choice data — rather
than from surveys — that show how accelerating access to funds affects consumers, helping illuminate
the potential impact of the Federal Reserve’s proposal to expedite the federal accounts clearing house

A key reason to study why households use AFS is that the costs of doing so tend to be very high
relative to mainstream products. Payday loans often have APRs exceeding 400%, which is more than ten
times greater than the rate of most credit cards (Bertrand & Morse 2011), while the implicit APRs for
check cashing can be even more staggering: paying 2% of a check’s face value to receive cash immediately
rather than depositing the check and waiting two days for it to clear corresponds to an effective APR of
3992%. Consumer advocates view these high fees as predatory, arguing that AFS providers abuse their
market power to exploit a vulnerable and financially unsophisticated population, as people of color,
with less education, and with lower incomes are all more likely to use AFS (Caskey 1994, Rhine et al.
2006, Berry 2005, Burhouse et al., 2014). In 2019, for instance, 13.8% of Black households and 12.2% of
Hispanic households lacked a bank account compared to just 2.5% of white households (Kutzbach et al.
2020), making high AFS fees a disproportionately large burden for these groups.

Previous studies have examined AFS regulations, mostly in the context of payday loans. Campbell
et al. (2011) provide a comprehensive review of this topic and argue for stronger protections, especially
given the vulnerability of many AFS users. To this point, Lusardi & Scheresberg (2013) find that
individuals with limited financial literacy, “lacking basic numeracy and knowledge of basic financial
concepts,” are more likely to use high-cost AFS-types of credit. Behavioral biases also influence deci-
sions, with Bertrand & Morse (2011) finding that customers with more information about fees think
less narrowly about finance costs and borrow less, while Skiba & Tobacman (2008) find that payday
loan borrowers exhibit partially-naive, quasi-hyperbolic discounting. Others have studied how access to
payday lenders correlates with measures of financial distress, finding mixed results.¹

We seek to fill a gap in the literature on AFS by studying the choice between using check cashing and
mainstream accounts. Although others have used survey-based approaches (Rhine et al. 2006, Berry
2005, Barr 2012, Schneider & Longjohn 2014), no prior work has used data from individuals’ transactions
to examine (i) how consumers respond to check-cashing fees and check-clearing times or (ii) why many
households with access to traditional checking accounts nevertheless choose to pay high check-cashing

¹Melzer (2011) shows that access to payday loans leads to difficulty in meeting financial obligations like mortgage
payments. Morse (2011) shows that the presence of payday lenders mitigates financial distress following a natural disaster.
Dobbie & Skiba (2013) show that payday borrowers are less likely to default on larger loans. Zinman (2010) shows that
restricting access to payday loans worsened the overall financial condition of Oregon households. Fusaro & Cirillo (2011)
show that repayment and renewal rates for payday loans are not affected by the interest rate.
fees instead of depositing their checks and then withdrawing funds later at no additional charge. As the answers to these two questions lie at the heart of AFS regulations, evaluating individual-level transaction data can provide insights for policymakers beyond what can be learned from surveys.

We use our demand estimates to evaluate how financial regulations that permit banks to delay access to deposited funds affect consumer welfare. Because deposit-account holders become less likely to cash their checks when they face a shorter wait to access their funds following a deposit, we argue that the choice to pay relatively high AFS fees is driven in large part by the desire for immediate access to cash. We estimate that changing the maximum check-hold time to one day would reduce the use of check cashing by 55.0% for deposit-account holders, while increasing the state rate cap to 3% in conjunction with shorter check-hold times would reduce it by 70.1%. Taken together, these findings highlight a tension between regulations that limit check-cashing fees and other initiatives that promote a greater use of mainstream deposit accounts among the quarter of Americans who are unbanked or underbanked.

2 Background on Check Cashing

The bank for our study, Spring Bank (formerly CheckSpring Bank), opened in 2007 with a mission to serve the needs of the underbanked by combining traditional banking and AFS. As the first bank since 1982 to open with headquarters in the Bronx, it operates in a part of the city otherwise devoid of mainstream banks. The area immediately surrounding Spring Bank is populated primarily by people of color on the financial margins: 75% have no discretionary income and 50% do not have a bank account. Moreover, the Bronx has few full-service banks, with just 1 per 20,000 residents compared to a rate of 1 per 3,000 in Manhattan.

Demand for check cashing typically comes from two distinct groups (Berry 2005, Barr 2012, Rhine et al. 2006). First, those who lack a traditional bank account rely on check cashers for their everyday financial transactions, like cashing checks or paying utility bills, including those who have been excluded from the mainstream banking system as a result of past misconduct and those who actively avoid it for various reasons, such as high minimum balance requirements and unpredictable fees (Kutzbach et al. 2020). Second, even some who have a traditional bank account may still use a check casher if they want cash in excess of their current balances or simply find using a check casher more convenient.

As described in Caskey (1994, 2002), the typical check-cashing outlet is a free-standing business, although some retailers such as Walmart offer similar services. In addition to cashing checks, check-
Cashing outlets commonly provide other financial services, including utility payments, pre-paid debit cards, money orders, and wire transfers. In some states, check cashers also offer payday loans. These other products notwithstanding, Caskey (1994) reports that check cashers derive the majority of their revenue from check-cashing fees.

AFS fees tend to be high compared to those for equivalent transactions in a mainstream account, in part because the costs of providing AFS are large relative to the size of transactions. Most check cashers remain open for 10–12 hours per day, resulting in long idle periods for staff, and incur interest expenses on the funds they advance that must be subsequently cleared through the banking system.

Check cashers use both manual and automated processes to manage the risk of cashing bad checks. They require new customers to present photo identification; only accept checks issued by corporations, organizations, and government agencies, generally refusing personal and third-party-endorsed checks; manually verify a check’s authenticity by calling payers or issuing banks; and use commercial data vendors to assess a customer’s risk profile. As a result of these safeguards, modern check-cashing outlets tend to suffer negligible losses from bad checks. In an analysis of Dollar Financial, the nation’s largest publicly-traded check-cashing company, Bradley et al. (2009) find that net write-offs of bad checks were just 0.31% of face value in 2008 compared to average fees of 3.11%. They conclude that, “given the generally low-risk nature of most checks cashed, losses tend to be low.” Likewise, Spring Bank has only cashed two bad checks since its founding.

Check-cashing services are regulated on multiple levels in the U.S. Historically, states regulated check cashing individually (Fox & Woodall 2006), but more recently the Consumer Financial Protection Bureau (CFPB) has acted at a national level “to stand on the side of consumers and ensure they are treated fairly in the financial marketplace” (Cordray 2014), with Dodd-Frank explicitly including the regulation of check cashers in the CFPB’s purview (Hawkins 2011). The Federal Reserve Board has also acted to protect consumers through its research departments and community affairs programs.

In New York, check cashers must obtain a license from the state’s Department of Financial Services, and the state places two major regulations on check cashers, a rate cap and a bar against opening within 0.3 miles of an incumbent check casher. These two regulations are purportedly designed to complement one another: the rate cap is meant to protect consumers from “exorbitant” prices, whereas the local monopoly protects check cashers’ “reasonable” profitability and continued operation.

Each year in February, New York updates its ceiling for check-cashing rates, which since 1993 has risen from 1.1% of face value (or $1 for small checks) to the current rate of 2.27%. Check cashers
typically charge the maximum price allowed by state law. Fox & Woodall (2006), for instance, surveyed 21 check cashers in New York and found that 20 charged the state maximum of 1.64% that year, with the other charging 1.58%, while an earlier survey in 1987 found all New York check cashers charged the prevailing state cap at the time.

Banks face different regulations and could provide direct competition to check cashers. Banks can open full-service branches close to check cashers and offer all of the same services (subject to approval from their own regulators), although very few have done so. Most banks refuse to cash government checks for those without deposit accounts because they would incur costs handling the checks, worry about crowding their lobbies with public aid recipients, and fear that fraudulently claimed income-tax refund checks might be cashed for which they would not be reimbursed (U.S. General Accounting Office 1988). Even for their own account holders, banks generally require that they first deposit the check and then make the funds available only after the check clears, taking up to five business days. Federal regulations limit how long a bank can hold funds from a deposited check, and most banks adhere to the maximum length.

Just like at a check-cashing outlet, customers without a deposit account at Spring Bank can cash their checks for a fee. Also, account holders can cash a check without waiting for it to clear if they do not have enough covering funds in their accounts; instead, the bank charges a fee only on the uncovered portion of the cash. To our knowledge, only one other bank in New York provides this type of service.

3 Data and Preliminary Analysis of Check Cashing

Our data come from transactions that took place between October 2008 and March 2014 at Spring Bank’s main branch from customers with checks between $100 and $5,000 and primary addresses within three miles of the bank. To protect customers’ privacy, Spring Bank removed all identifying information from the data and provided an anonymized index number that links each customer to his or her transactions. For each transaction, we have data on the customer’s index number, distance from Spring Bank, and deposit-account status; the date; the check’s face value; and the fee paid.

In a typical month during our sample period, Spring Bank cashed an average of 468 checks with a total face value of $253,000. These came from 239 unique check-cashing customers who cashed an average of two checks with a face value of $549 each. Of these 239 customers, about 70 (29.3%) also had a deposit account at Spring Bank.
Spring Bank’s check-cashing prices have varied throughout its history, often diverging widely from competitors at the state cap. Between October 2008 and February 2012, New York’s cap for cashing a check above $100 increased from 1.75% to 1.86%, and all check cashers that we and the bank staff are aware of always charged the maximum amount allowed. Initially, Spring Bank also charged the state cap but held steady at 1.75% when the state re-indexed its rate each February. Then, in March 2012, Spring Bank substantially changed its fee structure. Under the new pricing scheme, checks up to $1000 could be cashed for a $1 fee and checks above $1000 for 1% of face value. Spring Bank’s new menu stayed in place until January 1, 2014, when Spring Bank began charging non-account holders a uniform 1% for all checks and charging account holders $1 on all checks as long as they maintained a minimum balance of $100.

As a former director of Spring Bank, Sojourner participated in the decisions that led to these changes. The mission of the bank is to serve the financial-service needs of the community, and the purpose of the price cut was to bring more customers from competing check cashers into the bank. Spring Bank hoped this would create the opportunity to build relationships with community members and allow them to access a fuller range of financial services. The $1 and 1% price policy was chosen because it would be simple to communicate, easy to compare, and clearly attractive relative to competitors’ prices; $1 was also management’s estimate of the marginal cost to cash a check, primarily due to staff time. The price cut was advertised with banners in the window, sandwich boards on the sidewalk, and hand-billing in front of the branch.

Spring Bank’s fee cut had an immediate and large effect, with the number of monthly check-cashing transactions more than doubling from 326 to 702. Total volume in dollar terms, however, increased less than twofold, with the average face value falling from $562 to $527. Most notably, the average fee fell by more than two-thirds, dropping from $9.84 to $2.57. This resulted in much lower check-cashing revenue for Spring Bank, with total fees declining by almost half, from $3,259 to $1,707. New deposit accounts, one of Spring Bank’s primary motivations for implementing the price cut, did not increase meaningfully. To the best of our knowledge, Spring Bank’s competitors did not respond to the price cut by cutting their own prices or changing their services in any way. We surveyed the closest five check cashers in the months before and after the price change and none changed their price or operations noticeably — all charged the state cap during this entire period.

Approximately one quarter of check-cashing customers also have a deposit account at Spring Bank. In keeping with previous studies of the unbanked, those who have a deposit account in our data differ in
notable ways from those who do not. Deposit-account holders have made four more transactions overall (≈50%) with a total face value more than one and a half times as large. Perhaps not surprisingly, those with deposit accounts live 0.2 miles closer to Spring Bank — the more frequent interaction associated with a deposit account presumably makes travel costs a more prominent concern for this group. Because we have a full transaction history for customers with deposit accounts (i.e., we observe both check-cashing and deposits), we focus our analysis on this segment to study the choice between traditional banking services and AFS.

4 Choosing Between Cashing and Depositing Checks

As opposed to a checking account that bundles together payment and savings features, check cashers’ offerings separate these two functions: at a check cashier, customers can immediately convert their checks to cash that they can then use to purchase money orders for making payments. An important choice for deposit-account holders at Spring Bank, then, is whether to cash their checks for a fee and receive funds straightaway, or to avoid fees by depositing their checks and then waiting until they clear through the banking system before making payments.

Spring Bank follows federal banking regulations for making funds available after a deposit: same day availability for direct deposits, wire transfers, cash, and checks drawn on Spring Bank; next business day availability for cashier’s, certified, teller’s, or government checks, and the first $200 of other checks; second business day availability for the remaining balance of other checks up to $5000; and fourth business day availability for the amount over $5000 (we only consider checks up to $5000).

Summary statistics for those with deposit accounts appear in Table 1. The data include 46,669 transactions from 2,494 unique customers. Among these checks, 81.97% were deposited, with the remainder cashed for a fee. The average implicit fee is $10.22, which includes the hypothetical fee that would have been charged on deposited checks had they been cashed instead; for checks that were actually cashed, the average fee is $5.04. The average check in this sample has a face value of $840.19, which is well above the average of approximately $549 from all check-cashing transactions in the previous section and is consistent with others’ findings that deposit-account holders have higher incomes than the unbanked. Checks on average would take 2.6 days to clear completely, with most — 51.9% — needing two days. Much of the variation in check-hold times comes from deposits made on Fridays that require

\footnote{Our data exclude ATM and direct deposits, as we focus on transactions conducted at the window.}
a four-day hold for checks greater than $200, which make up approximately 25.7% of transactions. A small portion, 3.5%, would take five days to clear because they were deposited the day before a three-day holiday weekend (e.g., on the Friday before Memorial Day). Because unobserved factors associated with weekends and holidays may cause an atypical shift in the demand for cash (e.g., holiday shopping), we consider three specifications below to test if our results are robust to such potential confounds.

Panel (a) of Table 2 shows that, following Spring Bank’s price cut for check cashing, the likelihood of cashing a check instead of depositing it increased from 13.6% to 22.2% overall. Notably, this rate varies over the potential hold time a customer faces. In the pre-cut period, the share cashed ranged from 7.1% for checks facing a potential one-day hold to 20.7% for those facing a potential five-day hold. These shares went to 12.6% and 34.6%, respectively, after the price cut, meaning that over one-third of checks that would take five days to clear are now cashed by account holders rather than deposited.

As shown in panel (b), an account holder’s income also relates to the decision to cash or deposit a check. Low-income account holders — defined as those with between six and twenty-four checks in a year adding up to less than $20,000, the federal poverty level for a family of three at the time of our study — opt for check cashing more than 20% of the time, which compares to less than 5% of the time for those making more than $20,000 based on our imputed measure of paychecks. This propensity also depends on check-hold times, as the rate for those with high incomes increases by less than half a percentage point for longer holds but increases by nearly 24 percentage points for those with low incomes.

Finally, in panel (c) we consider a preliminary robustness check for potential holiday and weekend confounds. We restrict the sample in panel (c) to checks between $150 and $250 for non-holiday transactions occurring Monday through Wednesday. Given federal banking regulations, the first $200 of these checks will be made available the next business day, with the remainder above $200 made available in two business days. Over this narrow range of face values, all unobservable features of the transactions should be equivalent except that checks above $200 require an extra day to clear fully. This provides a plausibly exogenous increase in check-clearing time not confounded by holiday or weekend effects, and customers with checks between $200 and $250 are more than twice as likely to cash their checks than those with checks between $150 and $200, suggesting that the extra day of waiting has a large influence.

We estimate the demand for cashing a check relative to depositing it among deposit-account holders
from the following specification:

\[U_{ict} = \alpha \text{Fee}_{ict} + \lambda \text{Days}_{ict} + \gamma \text{X}_{ict} + \varepsilon_{ict}, \]

where the key variables are the associated check-cashing fees, \(\text{Fee} \), and the number of days it would take the check to clear if deposited, \(\text{Days} \). Transactions are indexed by customer, \(i \), for check, \(c \), at time, \(t \).

For identification of \(\alpha \), Spring Bank’s price cut provides extensive and exogenous price variation across our panel and across face-value amounts, with prices changing by different amounts at different face values. The key identifying assumption is that the mean of unobserved influences on demand, \(\varepsilon_{ict} \), is independent of price conditional on other observed variables. We therefore implicitly assume that the arrival of checks to consumers is exogenous and not influenced by check-cashing fees (e.g., that customers do not respond to price changes for check cashing by asking their employers to pay them via direct deposit or cash). We also assume that customers with a deposit account at Spring Bank do not have one elsewhere or use other AFS providers — if they did, this would alter their outside options. Although we cannot be certain, we and the bank believe that few of their customers have a deposit account at another institution because (i) very few banks operate in the surrounding area and (ii) Spring Bank offers competitive terms for its accounts, so a typical customer who uses Spring Bank’s check-cashing service and also wants a deposit account likely would use Spring Bank’s.

For identification of \(\lambda \), we rely on the natural variation in check-hold times induced by the face value of the check and the day of the deposit. Although check-hold times are not strictly exogenous since customers choose when they visit the bank after receiving a check, we contend that most cash or deposit their checks as soon as possible, perhaps best reflected by an above-average number of transactions on typical paydays like the last day of the month. Furthermore, we find no direct evidence of selection bias stemming from check-hold times, as the correlation between the number of transactions on a given day and the corresponding check-hold time is not statistically significant, and likewise for the correlation between check-hold times and the average face value of checks, the proportion of low income customers, and the distance customers travel to the bank. Lastly, the average check-clearing time is 2.6 days both before and after Spring Bank’s fee change, suggesting that lower check-cashing prices did not lead to a

Some customers have balances that exceed the face value of their checks and would not incur check-cashing fees if they withdrew available funds equal to the amount of the check immediately. They do not actually face a choice between depositing and cashing a check unless they want more funds than their current balance. In that case, we will understate the elasticity of substitution because that customer’s choice is deposit by default, making our estimate conservative.
different mix of checks among account holders.

Taken together, our long panel of transactions, the price changes, and variation in check-hold times provide a compelling identification strategy for estimating customers’ sensitivity to check-cashing prices and check-clearing times. For example, the fee for cashing a $1,000 check varies abruptly and exogenously from $17.50 to $1 during our sample period, while unobservable transaction determinants — neighborhood population, local economic conditions, and substitute products — remain stable.

Table 3 shows the results from a series of logit regressions in which the dependent variable is one if the customer cashes a check and zero if he or she deposits it. Across all specifications, we control for the day of the week, the month, the customer’s distance from Spring Bank, and the check’s face value. We cluster standard errors by customer.

Our estimates imply that higher check-cashing fees make customers less likely to cash their checks and longer potential check-hold times make them more likely to, with specification (1) showing that an extra day of holding time increases the likelihood of cashing a check by 65.5%. Fees affect this decision in the expected way, with an elasticity of demand of \(-0.5\). As a benchmark, the estimated parameters suggest that adding an extra day of potential hold time — from one day to two — is equivalent to a fee increase of $11.17. On an average check of $840.19, that represents a daily discount rate of 1.3% — or an effective annualized discount rate of 11.054%\(^4\). Specification (2) includes account-holder fixed effects, and all estimated coefficients remain statistically indistinguishable from (1).

Specification (3) shows that the likelihood of cashing a check increased 78.2% in the post-cut period, whereas the impact of an extra day of holding time is largely the same as in specification (1), at 73.2%. In specification (4), we restrict our sample to customers who made at least one transaction before Spring Bank’s price cut, as this group may be less susceptible to concerns of selection bias since they were not drawn to the bank by the promotion. These account holders are less sensitive to check-clearing times, with an extra day associated with a 41.2% probability of cashing a check, although we cannot reject that this coefficient is the same as the one from the full sample in specification (1), with \(p > 0.10\), suggesting that selection into the sample following the price cut is not biasing our results.

In specification (5), we find that those with low incomes (based on our imputed measure using likely paychecks) are 232.9% more likely to cash a check than those with incomes above $20,000. Furthermore, specification (6) includes an interaction term between having a low income and the number of days until a check clears, showing that the effect of check-hold times is twice as large for those with low incomes.

\(^4\)Calculation based on annualized discount rate of \((1.013)^{365} - 1\).
Low-income account holders are also more price sensitive, with an estimated price elasticity of -0.54 compared to -0.32 for those above $20,000$, although the interaction between having a low-income and the check-cashing fee is not statistically significant ($z = -1.53$).

We also consider three specifications to test whether our results are confounded by unobserved factors associated with weekends and holidays that may cause an atypical shift in the demand for cash (e.g., holiday shopping). First, we restrict our sample to checks between 150 and 250 for non-holiday transactions occurring on Monday, Tuesday, or Wednesday. As discussed for panel (c) in Table 2, all unobservable features of these transactions are likely equivalent except that checks above 200 require an extra day to clear fully. This provides a plausibly exogenous increase in check-clearing time not confounded by holiday or weekend effects, and the likelihood of cashing a check more than doubles when the check-clearing time increases by a day, as shown in specification (7).

As a second robustness check, we restrict the sample to transactions made Monday through Thursday. Doing so removes any “weekend effect” from the set of possible confounding factors, with identification coming solely from variation generated by holidays that occur during the week. As shown in specification (8), an extra day of holding time given this sample restriction increases the demand for check cashing by 91.1%.

Finally, we restrict the sample to transactions made on the last business day before holidays that occur on different days of the week depending on the year: Independence Day, Christmas Day, New Year’s Day, and Veteran’s Day. Here the potential confounding factors related to holidays remain fixed, but because these holidays occur on different days of the week each year, the number of days needed to clear a check varies. In specification (9), we find that an extra day of check-clearing time during one of these floating holidays leads to a nearly fivefold increase in the demand for check cashing, although we cannot reject that the effect is the same as in specification (7).

5 **The Impact of Check Clearing & Cashing Regulations**

Federal regulations specify check-clearing times based on the day a check is deposited, and consumer advocates have called for reducing maximum hold times [Fox & Woodall 2006], which is consistent with our finding above that consumers strongly prefer a shorter wait for accessing their funds. Lower check-cashing fees also prompt more customers to cash their checks rather than deposit them, with this decision directly tied to how long their checks take to clear. Because many states cap check-cashing
rates, they may be reducing the use of mainstream deposit accounts since check cashing is viewed as a better overall value compared to waiting several days to access funds. To encourage a greater take-up of mainstream accounts, our analysis suggests that an effective policy would be to make deposited funds available more quickly. From a practical standpoint, such a policy seems feasible in light of innovations that automate most check processing and make three-day holding periods over a weekend superfluous. Banks clearly profit from the float, but long check-hold times harm consumers, especially the poorest and most credit-constrained, which has spurred proposals to improve the banking system by accelerating check-clearing times, such as the Federal Reserve System’s January 2015 report “Strategies for Improving the U.S. Payment System.”

Given this motivation, we consider a counterfactual in which all deposits at Spring Bank are cleared within one day, rather than making depositors wait up to five days. Based on our results from Table 3, a universal one-day hold would result in a decrease in check cashing from 18.0% of transactions to 8.1% among deposit-account holders, a 55.0% reduction. To provide a sense of scale, we can extrapolate the findings from Spring Bank to the national level, where a 9.9 percentage point decline in check cashing among deposit-account holders would amount to a savings of $52.6 million in check-cashing fees for this population each year based on estimates from Schneider & Longjohn (2014). Moreover, given the estimated willingness to pay of $11.17 per day to accelerate check clearing among the underbanked in specification (1) of Table 3, a maximum hold of one day would generate $312 in consumer surplus per underbanked household each year, or $10.6 billion in total.

Another policy lever to promote deposit accounts would be to make check cashing less attractive by increasing the rate cap. Although this would reduce consumer welfare for those who predominately use check cashing, it would nevertheless move more customers towards mainstream accounts; policy makers could then decide how to trade off these competing objectives. Increasing the rate cap to 3.0%, for instance, would reduce the number of checks cashed instead of deposited to 12.2%, a 32.3% decline. Using both levers simultaneously would have an even larger effect, bringing the number of checks cashed by deposit-account holders down to 5.4%, a 70.1% reduction.

5 At Spring Bank, 29.5% of check-cashing transactions are from deposit-account holders. Assuming 29.5% of $1.8 billion nationwide check-cashing fees in Schneider & Longjohn (2014) are attributable to this group, saving 9.9% of that annually totals $52.6 million.

6 Assumption based on last twelve months of our sample period for Spring Bank deposit-account holders who cashed at least one check (i.e., underbanked). Burhouse et al. (2014) estimate that 34 million underbanked households exist nationwide and Spring Bank’s underbanked customers average 6.9 checks with two-day holds, 1.4 with three-day holds, 5.3 with four-day holds, and 0.6 with five-day holds.
6 Conclusion

Many Americans face a choice between using mainstream bank accounts or alternative financial services. In this paper, we have specifically examined those on the margin between these two types of providers. Our findings have important implications for regulators and others interested in low-income households’ financial decisions.

Account holders in our study exhibit a strong preference for receiving cash immediately rather than waiting to access their funds. Based on our analysis, the average customer is willing to pay the equivalent of 1.3% per day to avoid waiting for his or her check to clear — which compounds to a staggering 11,000% effective APR. Low-income customers are willing to pay even more to receive their cash immediately, which could stem from time preferences in the form of either a high discount rate or present-bias \cite{Laibson1997}. Alternatively, low-income account holders are likely credit-constrained and may urgently need access to their funds to avoid incurring late fees or penalties. These customers would greatly value shorter hold times. We estimate that imposing a maximum hold of one day would generate $10.6 billion in consumer surplus for underbanked households each year.

Whether policymakers should protect users of AFS by mandating lower check-cashing fees or by nudging them towards deposit accounts through shorter hold times remains an open question. As it stands, current initiatives appear to work at cross-purposes: low check-cashing rate caps and long check-hold times prompt many to favor AFS, while other efforts seek to move AFS users into the mainstream banking system. These potentially conflicting goals notwithstanding, our results provide novel evidence on the likely impact of such reforms and can serve as a guide for financial regulators who have previously relied exclusively on surveys as a basis for their policies.
References

Neiman, R. H. (2007), Report and Recommendation to the Governor Pursuant to Banking Department Study Regarding Geographic and Fee Restrictions Imposed on Locations Used Primarily for Check Cashing, Technical report, New York State Banking Department.

Tables

Table 1: Summary statistics of transactions from customers with deposit accounts at Spring Bank.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash Check</td>
<td>0.18</td>
<td>0.384</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Check Cashing Fee</td>
<td>10.218</td>
<td>14.593</td>
<td>1</td>
<td>87.5</td>
</tr>
<tr>
<td>Face Value</td>
<td>840.190</td>
<td>959.582</td>
<td>100.01</td>
<td>5000</td>
</tr>
<tr>
<td>Distance</td>
<td>0.736</td>
<td>0.851</td>
<td>0.012</td>
<td>2.996</td>
</tr>
<tr>
<td>Days Until Check Clears</td>
<td>2.571</td>
<td>1.099</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Days Until Check Clears — 1</td>
<td>0.119</td>
<td>0.323</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Days Until Check Clears — 2</td>
<td>0.519</td>
<td>0.5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Days Until Check Clears — 3</td>
<td>0.07</td>
<td>0.256</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Days Until Check Clears — 4</td>
<td>0.257</td>
<td>0.437</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Days Until Check Clears — 5</td>
<td>0.035</td>
<td>0.184</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Post Check Cashing Price Cut</td>
<td>0.513</td>
<td>0.5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>N</td>
<td>46669</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Percentage of checks cashed rather than deposited by number of days until check clears.

<table>
<thead>
<tr>
<th>Days Until Full Check Clears</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. By Period</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre Price-Cut</td>
<td>7.11</td>
<td>10.70</td>
<td>18.49</td>
<td>20.61</td>
<td>20.69</td>
<td>13.62</td>
</tr>
<tr>
<td>Post Price-Cut</td>
<td>12.63</td>
<td>17.90</td>
<td>24.85</td>
<td>32.48</td>
<td>34.60</td>
<td>22.22</td>
</tr>
<tr>
<td>B. By Income</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Income</td>
<td>8.90</td>
<td>19.25</td>
<td>19.97</td>
<td>30.92</td>
<td>33.82</td>
<td>21.15</td>
</tr>
<tr>
<td>High Income</td>
<td>4.84</td>
<td>4.41</td>
<td>3.12</td>
<td>5.04</td>
<td>5.13</td>
<td>4.56</td>
</tr>
<tr>
<td>C. By Check Size on Non-Holiday Monday–Wednesday</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$150-200</td>
<td>7.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$200-250</td>
<td>15.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3: Model results for choice to cash or deposit check among deposit account holders.

<table>
<thead>
<tr>
<th>DV: 1(Cash Check)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check Cashing Fee</td>
<td>-0.0526***</td>
<td>-0.0541***</td>
<td>0.0168</td>
<td>-0.0516***</td>
<td>-0.0564***</td>
<td>-0.0333</td>
<td>-0.275**</td>
<td>-0.0474***</td>
<td>-0.0384</td>
</tr>
<tr>
<td></td>
<td>(0.0124)</td>
<td>(0.00509)</td>
<td>(0.0173)</td>
<td>(0.0138)</td>
<td>(0.0129)</td>
<td>(0.0192)</td>
<td>(0.0917)</td>
<td>(0.0142)</td>
<td>(0.0373)</td>
</tr>
<tr>
<td>Days Until Check Clears</td>
<td>0.587***</td>
<td>0.605***</td>
<td>0.644***</td>
<td>0.476***</td>
<td>0.629***</td>
<td>0.327*</td>
<td>1.485***</td>
<td>0.761***</td>
<td>1.800***</td>
</tr>
<tr>
<td></td>
<td>(0.0750)</td>
<td>(0.0422)</td>
<td>(0.0727)</td>
<td>(0.101)</td>
<td>(0.0791)</td>
<td>(0.162)</td>
<td>(0.219)</td>
<td>(0.0926)</td>
<td>(0.365)</td>
</tr>
<tr>
<td>Distance</td>
<td>-0.173</td>
<td>0.0975</td>
<td>-0.179</td>
<td>-0.105</td>
<td>-0.0369</td>
<td>-0.0374</td>
<td>0.0475</td>
<td>-0.116</td>
<td>-0.352*</td>
</tr>
<tr>
<td></td>
<td>(0.158)</td>
<td>(0.295)</td>
<td>(0.158)</td>
<td>(0.151)</td>
<td>(0.0978)</td>
<td>(0.0980)</td>
<td>(0.356)</td>
<td>(0.181)</td>
<td>(0.176)</td>
</tr>
<tr>
<td>Post Price Cut</td>
<td>0.758***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.162)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Income</td>
<td></td>
<td>1.426***</td>
<td>0.952</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.366)</td>
<td>(0.597)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Income X Days</td>
<td></td>
<td></td>
<td>0.315*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.143)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Income X Fee</td>
<td></td>
<td></td>
<td></td>
<td>-0.0250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.0164)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.186)</td>
<td>(0.193)</td>
<td>(0.240)</td>
<td>(0.400)</td>
<td>(0.608)</td>
<td>(0.603)</td>
<td>(0.218)</td>
<td>(1.004)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>46669</td>
<td>21293</td>
<td>46669</td>
<td>14905</td>
<td>16662</td>
<td>16662</td>
<td>3940</td>
<td>549</td>
<td></td>
</tr>
<tr>
<td>Pseudo R^2</td>
<td>0.090</td>
<td>0.035</td>
<td>0.097</td>
<td>0.043</td>
<td>0.068</td>
<td>0.069</td>
<td>0.063</td>
<td>0.076</td>
<td>0.152</td>
</tr>
</tbody>
</table>

Robust standard errors clustered by customer in parentheses.

Notes: logit regressions in which the dependent variable is equal to zero if the customer deposits a check and one if he or she cashes it. All specifications include day and month fixed effects and controls for the check’s face value and customers’ distance from Spring Bank. The variable Post Price Cut is equal to zero if the transaction occurred before Spring Bank’s price cut for check-cashing fees and one after. The variable Low Income is equal to zero if a deposit-account holder makes between 6–24 transactions in a calendar year with an aggregate face value exceeding $20,000 and one if he or she makes between six and twenty-four transactions in a calendar year with an aggregate face value less than $20,000. Specifications (1)–(3) include the entire sample of transactions among deposit-account holders, with specification (2) including account-holder fixed effects. Specification (4) uses a sample restricted to customers who made a transaction in the pre-cut period. Specifications (5) & (6) use a sample restricted to those customers making between six and twenty-four transactions in a calendar year. Specification (7) uses a sample restricted to checks between $150 and $250 for transactions made on a non-holiday Mondays, Tuesdays, or Wednesdays. Specification (8) uses a sample restricted to weekdays. Specification (9) uses a sample restricted to holidays that occur on different days of the week each year.