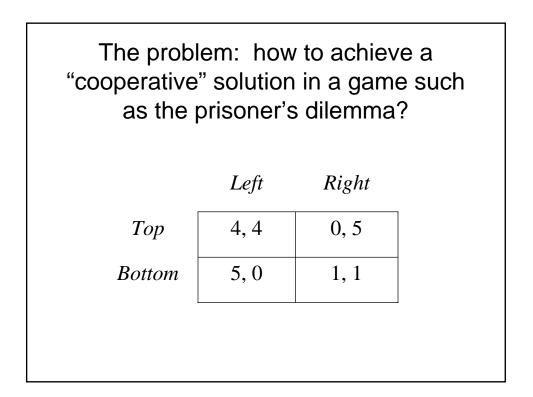
Coherent Cooperation

Robert Nau Fuqua School of Business Duke University

Presentation for the Philosophy of Science Association Meeting Vancouver, November 3, 2006



What dilemma?

- Fact 1: Each player is 1 utile better off by playing the second strategy rather than the first, regardless of the other's move.
- Fact 2: Each player is 4 utiles better off if her opponent plays the first strategy rather than the second, regardless of her own move.
- Noncooperative solution concepts (correlated equilibrium, Nash equilibrium...) only "hear" Fact 1.
- They perceive no dilemma in playing *BR*, because they *don't know* it yields (1,1) instead of (4,4).

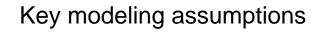
"What we have here, is a failure to

communicate." --Strother Martin in "Cool Hand Luke"

- The inefficient noncooperative solution is not so much due to a failure to cooperate, but rather due to a failure to *communicate*.
- In the usual noncooperative framework, there is no way for the players to credibly communicate their preferences for *others*' moves via *unilateral* commitments such as offers to accept gambles.
- Hence, full information about payoff functions is not really common knowledge.

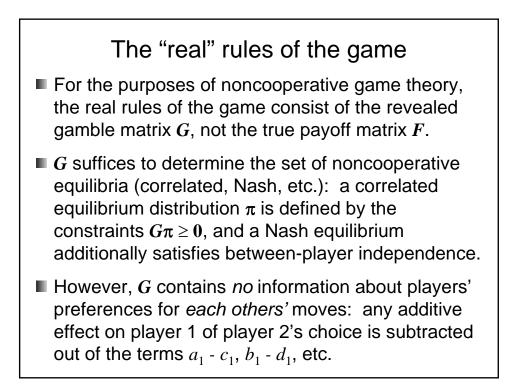
A non-cooperative approach to the modeling of cooperation

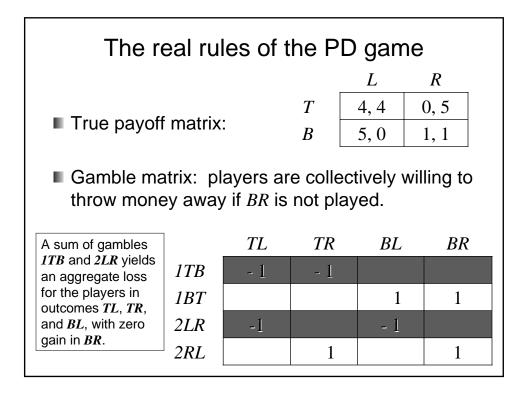
- Following Myerson (1991), the usual noncooperative approach will be extended to allow a limited form of *bilateral* commitment.
- Players' strategy sets are enlarged to include conditional agreements to accept a cooperative solution, provided that other players also agree.
- The focus here is on the epistemic implications of this approach for the *communication* of preferences and for the modeling of strategic rationality in terms of *coherence*.

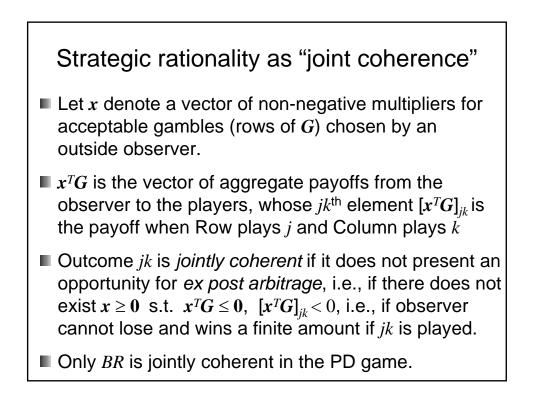


- De Finetti's concept of coherence is extended to a game-theoretic framework (Nau and McCardle 1990).
- For convenience, game outcomes are assumed to be monetary, and utility for money is assumed to be linear and state-independent.
- These assumptions could be relaxed to allow nonmonetary outcomes and nonlinear and/or statedependent utility for money.
- However, it is necessary for money to be one attribute of utility, with local linearity (i.e., linear, possibly statedependent utility for "small" gambles).

Review: communication of unilateral preferences via acceptance of gambles											
True payoff matrix (" F ") with entries $f_1(s_1, s_2)$, $f_2(s_1, s_2)$ T B $\begin{bmatrix} L & R \\ a_1, a_2 & b_1, b_2 \\ c_1, c_2 & d_1, d_2 \end{bmatrix}$											
Gamble matrix ("G") whose rows are unilaterally acceptable gambles that reveal individual preferences											
Interpretation of gamble <i>1TB</i> : in the		TL	TR	BL	BR						
event that player 1 plays <i>T</i> when <i>B</i> is	1TB	$a_1 - c_1$	$b_1 - d_1$								
available, she would	1BT			<i>c</i> ₁ - <i>a</i> ₁	$d_1 - b_1$						
accept a gamble proportional to	2LR	$a_2 - b_2$		$c_2 - d_2$							
payoff differences between <i>T</i> and <i>B</i>	2RL		<i>b</i> ₂ - <i>a</i> ₂		$d_2 - c_2$						





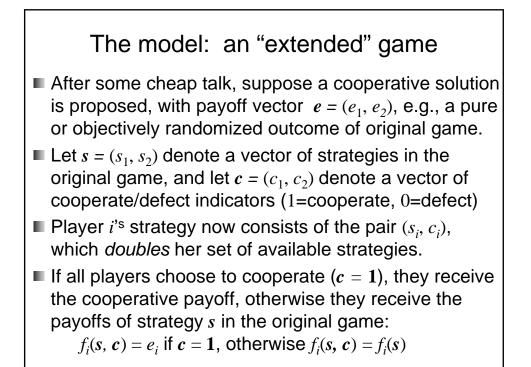


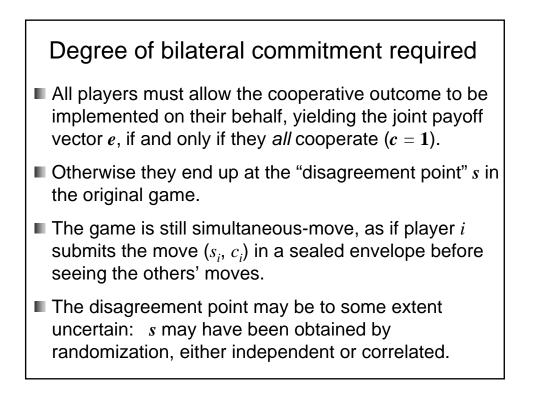
Fundamental duality theorem of noncooperative games

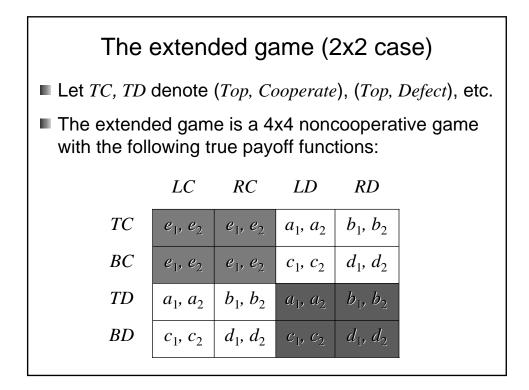
- Joint coherence is the appropriate extension of the concept of Bayesian rationality (â la de Finetti) to a noncooperative game of strategy.
- Theorem (Nau and McCardle 1990): An outcome is jointly coherent if and only if it has positive probability in some correlated equilibrium of the game.
- Hence, correlated not Nash equilibrium is the expression of Bayesian rationality in noncooperative games, as originally claimed by Aumann (1974, 1987).

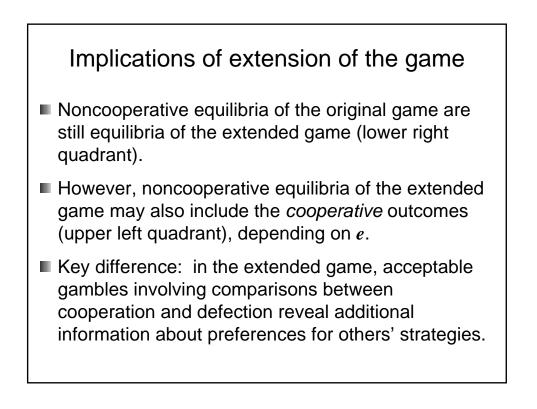
How to extend this duality result to provide a way out of the prisoner's dilemma?

- Evidently it is necessary for the players to accept additional gambles that express their preferences for their opponents' actions.
- This requires a limited form of *bilateral* commitment, enforced by a mediator or contracting mechanism.

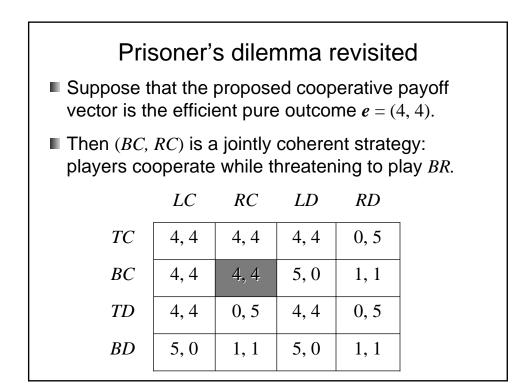






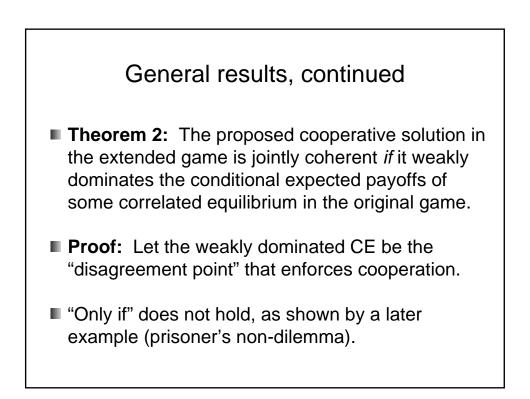


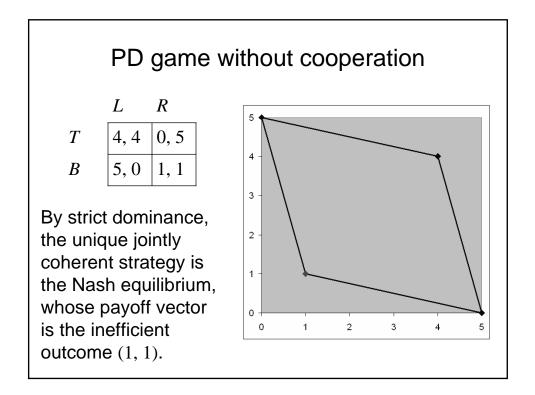
Gamble matrix for extended 2x2 game (player 1's rows only))				
	TC	TC	TC	TC	BC	BC	BC	BC	TD	TD	TD	TD	BD	BD	BD	BD
	LC	RC	LD	RD												
1TCBC	0	0	a-c	b-d												
1TCTD	e-a	e-b	0	0												
1TCBD	e-c	e-d	a-c	b-d												
1BCTC					0	0	c-a	d-b								
1BCTD					e-a	e-b	c-a	d-b								
1BCBD					e-c	e-d	0	0								
1TDTC									a-e	b-e	0	0				
1TDBC									a-e	b-e	a-c	b-d				
1TDBD									a-c	b-d	a-c	b-d				
1 <i>BDTC</i>													с-е	d-e	c-a	d- b
1BDBC													с-е	d-e	0	0
1 <i>BDTD</i>													c-a	d-b	c-a	d-b
Green cells involve new comparisons of e vs. a,b,c,d Purple cells correspond to comparisons in original game.																

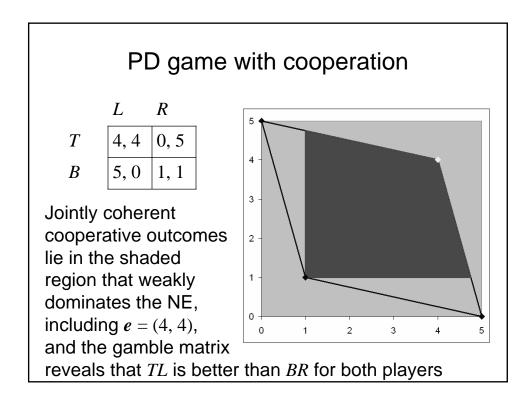


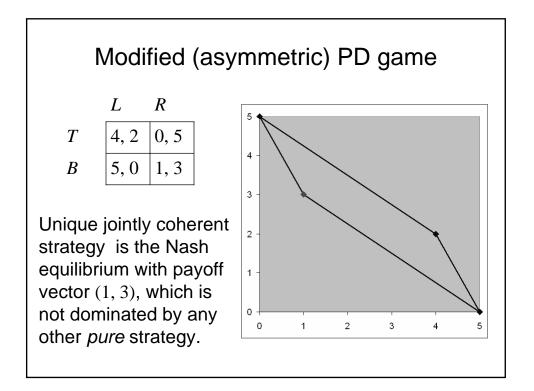
General results

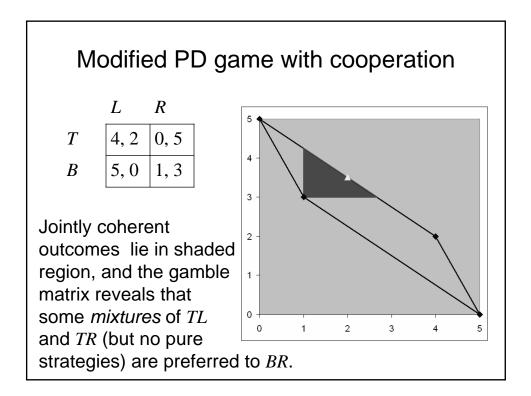
- Theorem 1: Every jointly coherent outcome in the original game remains a jointly coherent outcome of the extended game.
- Proof: If it is recommended that every player defect to some correlated equilibrium strategy, then no *single* player is better off *either* by choosing to cooperate or by choosing some nonrecommended strategy in the original game.

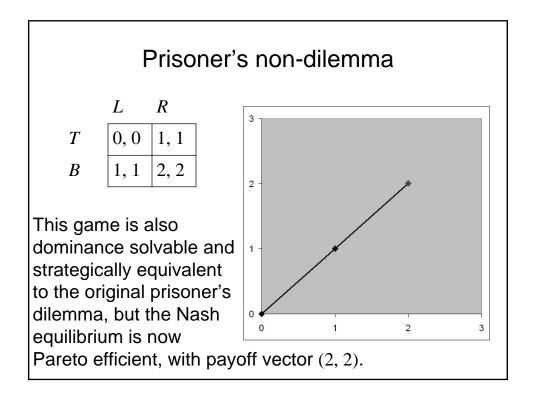


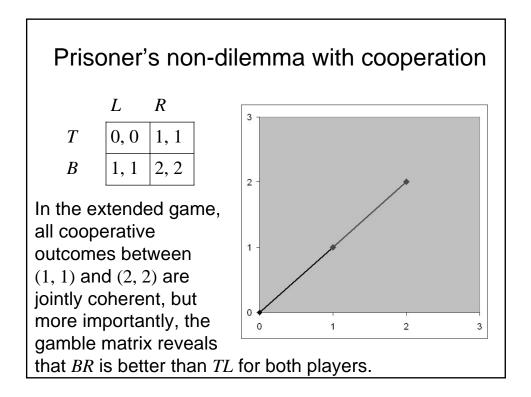












Conclusions

- Noncooperative modeling of cooperation, via conditional contracts, enriches the possibilities for communication as well as rational behavior.
- Joint coherence (no ex post arbitrage) is still an appropriate standard of rationality in this setting.
- Any pure or randomized joint strategy that weakly dominates the conditional payoffs of a correlated equilibrium can be rationalized in this way.