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BA 513/STA 234:  Ph.D. Seminar on Choice Theory 
Professor Robert Nau 
Spring Semester 2008 
 
Notes for class #5:  a bestiary of solution concepts for noncooperative games (revised 
February 14, 2008) 
 
Primary readings: 
 
1a.  “Game Theory” by Robert Aumann, from The New Palgrave, 1987 
 
1b.  “A survey of applicable game theory” by Robert Gibbons, Journal of Economic 

Perspectives, 1997 
 
1c.  “Solution concepts for noncooperative games” by David Kreps, chapter 12 of A Course 

in Microeconomic Theory, 1990 
 
Notes and guide to the readings: 
 

bestiary \'bes(h)-che,er-e [ML bestiarium, fr. L, neut. of bestiarius of beasts, fr. bestia]: 
a medieval allegorical or moralizing work on the appearance and habits of real or 
imaginary animals 

 
Game theory is at the heart of the modern rational choice revolution.  The revolution was 
launched in the 1940’s by von Neumann and Morgenstern, who proposed to make game theory 
the new mathematical foundation of economics.  Along the way, they axiomatized and 
rehabilitated the concept of cardinal expected utility, which turned out to be epochal in its own 
right.  But their main goal was to develop a mathematical theory that would describe the 
behavior of a small number of rational individuals: the problem of “2, 3, 4,… bodies.”  By most 
measures, their vision has been fulfilled.  Game theory is “rampant” in economics (in Gibbons’ 
words) and has provided the wedge with which rational choice theory has penetrated other 
social-scientific disciplines such as political science, sociology, philosophy, and management 
science.  This week’s readings provide an introduction to the basic solution concepts and 
orthodoxy of noncooperative game theory. 
 
The historical survey by Aumann (1987) portrays game theory as a rich tapestry that has been 
woven over many decades, dating back to the early 1900’s.  Aumann emphasizes the many 
interesting contributions to mathematics that have emerged from game theory.  He is careful not 
to take sides in the debates that have swept through the field, nor to dwell on the disappointments 
or retrenchments.  He describes a steady march of progress, a harmonious ensemble (rather than 
a cacaphony) of competing ideas.   Aumann chronicles the development of the theory of two-
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person zero sum games in the 1920’s and the introduction of the concept of stable sets in the 
1940’s (both of which were due to von Neumann), the noncooperative equilibrium concept and 
bargaining model introduced by Nash in 1950-51, the rise of cooperative game theory in the 50’s 
and ‘60’s, the explosion of interest in the study of repeated games (particularly the prisoner’s 
dilemma), the resurgence of noncooperative game theory in the ‘70’s and ‘80’s (the era of 
refinements of Nash equilibrium), and the more recent fascination of game theorists with 
biological models of strategic interaction.  
 
Aumann is also careful not to claim that game theory makes predictions:  it just provides a set of 
instruments for studying interactive decisions from different perspectives, a formal language in 
which to describe various outcomes that might occur in a game of strategy.  The section of his 
paper on “solution concepts” (pp. 10-11) makes this clear: 
 

“Given a game, what outcome may be expected?  Most of game theory is, in one way or 
another, directed at this question.  In the case of two-person zero-sum games, a clear 
answer is provided:  the unique individually rationally outcome [i.e., the minimax 
solution].  But in almost all other cases, there is no unique answer.  There are different 
criteria, approaches, points of view, and they yield different answers. 
 
A solution concept is a function (or correspondence) that associates outcomes, or sets of 
outcomes, with games.   .... for example, the strategic [Nash] equilibrium and its variants 
for strategic form games, and the core, the von Neumann-Morgenstern stable sets, the 
Shapley value and the nucleolus for coalitional games.  Each represents a different point 
of view. 
 
What will ‘really’ happen?  Which solution concept is ‘right’?  None of them; they are 
indicators, not predictions.” 
 

Nevertheless, in most applied game theory, a solution concept is invoked precisely so as to 
generate a strong prediction!   
 
A sizable chunk of Aumann’s article is concerned with developments in cooperative game 
theory, which occupied center stage in the 1950’s and 1960’s.  The highlight of this period was 
the discovery of the “core equivalence theorem,” which states that as the number of agents in a 
market game tends to infinity, the core of the game shrinks to the set of competitive equilibrium 
allocations, as conjectured by Edgeworth 70 years earlier.  This result seemed to fulfill von 
Neumann and Morgenstern’s dream of a game-theoretic bridge between single-agent decision 
theory and competitive market theory.  (We will see later that there is another, and much simpler, 
way to build the same bridge, namely by appealing to the arbitrage principle.)  However, 
cooperative game theory was deflated in the late ‘60’s by the discovery that even simple games 
sometimes have empty cores.  Many researchers began to take a renewed interest in the 
noncooperative concepts that had been pioneered by Nash and extended to incomplete-
information games by Harsanyi in 1967.  Apart from the question of whether it always yields 
solutions, noncooperative game theory makes lower informational demands on the players than 
does cooperative theory, and intuitively it seems more suitable as a foundation for models of 
decentralized economic behavior. 
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In the 1970’s, many researchers began to seek refinements (i.e., strengthenings) of the concept of 
Nash equilibrium in order to obtain tighter predictions, following Selten’s pioneering work on 
“subgame perfect” and “trembling hand perfect” equilibrium.  Others (including Aumann) 
proposed coarsenings of Nash equilibrium, which had more thoroughly “Bayesian” axiomatic 
foundations or which were otherwise more realistic in their assumptions about the cognitive 
abilities of game players.  In the late ‘70’s and early ‘80’s, refinements and coarsenings of Nash 
equilibrium were proliferating as fast as axiomatic theories of non-expected utility.   For a time it 
seemed as though the discovery of a new concept that would uniquely solve every 
noncooperative game might be just around the corner.  (Indeed, Harsanyi and Selten developed a 
solution method called the “tracing procedure” that claimed to achieve this goal.)  But the 
refinements-and-coarsenings movement ultimately failed to converge, and interest among game 
theorists began to shift in other directions, toward biological analogies of strategic equilibrium 
and toward phenomena of learning and adaptation in games. 
 
It is a shame that Aumann was not at least a co-recipient of the 1994 Nobel prize in economics 
that was first awarded for contributions to game theory, which went to Nash, Harsanyi, and 
Selten instead.   (http://www.nobel.se/economics/laureates/1994/index.html). Aumann has done 
more than anyone else to make game theory the robust institution that it is today, and he has 
made some of the deepest contributions to the mathematical and conceptual foundations of the 
theory, which we will study next week.  Aumann introduced a more general and more “correct” 
solution concept for noncooperative games—namely correlated equilibrium—although the 
concepts introduced by Nash, Harsanyi, and Selten are more widely used.  Happily, Aumann was 
finally awarded the Nobel prize (along with Thomas Schelling) in 2005. 
 (http://nobelprize.org/economics/laureates/2005/). 
 
The paper by Gibbons (1997) makes it appear that game theory is almost completely cut-and-
dried.  There are four major classes of games, (static and dynamic, each with or without 
complete information), and each has its own received solution concept:  Nash equilibrium for 
static games of complete information, backward induction and subgame perfect Nash 
equilibrium for dynamic games of complete information, Bayesian Nash equilibrium for static 
games of incomplete information, and perfect Bayesian equilibrium for dynamic games of 
incomplete information.  Gibbons states: 
 

“This outline may seem to suggest that game theory invokes a brand new equilibrium 
concept for each class of games, but one theme of this paper is that these equilibrium 
concepts are very closely linked.  As we consider progressively richer games, we 
progressively strengthen the equilibrium concept to rule out implausible equilibria in the 
richer games that would survive if we applied equilibrium concepts suitable for simpler 
games.  In each case, the stronger equilibrium concept differs from the weaker concept 
only for the richer games, not for the simpler games.” 
 

Note the euphemism “implausible.”  Ruling out implausible equilibria really means just trying to 
cut down on the combinatorial explosion of rational solutions that occurs as the game gets more 
complex.  Although each strengthening of the solution concept does rule out some implausible 
equilibria, it typically throws out a good many plausible ones as well, as we will see.  
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Nevertheless, Gibbons gives a very accessible introduction to the solution concepts that are 
currently most popular.  
 
Kreps writes with refreshing candor about fundamental issues in game theory.  This chapter from 
his microeconomics textbook (1990)  provides a much more thorough (and more technical) 
introduction to the major solution concepts for noncooperative games than does Gibbons.  The 
chapter begins with a table of 15 games that are used as the basis for subsequent discussions.  
Kreps asks the reader to ponder the games and come up with his or her own solutions before 
proceeding.  Do this:  ask yourself how you would play each of the games in figure 2.1, and what 
predictions  you would make for your opponent.  (The same games are revisited later in the 
chapter.  We will discuss these examples in class and compare notes.) 
 
Kreps is a good deal more skeptical than Gibbons about the authority of the various solution 
concepts, particularly the varieties of Nash equilibrium.  He writes: 
 

“In the great majority of the applications of noncooperative game theory to economics, 
the mode of analysis is equilibrium analysis.  And in many of these analyses, the analyst 
identifies a Nash equilibrium (and sometimes more than one) and proclaims it (them?) as 
“the solution.”  I wish to stress that this practice is sloppy at best and probably a good 
deal worse.   ...it is clear that having the answer ‘Nash equilibrium’ is pretty thin gruel if 
what we are after is a way to solve games.” 
 

 
The rules of the game 
 
Aumann’s survey article begins with the observation:  “ ‘Interactive Decision Theory’ would 
perhaps be a more descriptive name for the discipline usually called Game Theory.”  But game 
theory circumscribes the “interaction” between two or more players in a curious way.   On the 
front end, it begins with the assumption that the rules of the game—i.e., the payoff matrices 
containing the players’ utilities for outcomes—are already written and are commonly known.1    
Usually the question of how or why the rules were written in that way or how they came to be 
commonly known is outside the scope of the model, and there is little or no provision for 
communication between players.  On the back end, game theory does not directly address the 
question of how the players form subjective beliefs about the actions of their opponents:  belief 
formation is addressed only indirectly through the invocation of solution concepts.  The theory 
mainly focuses on the question of how the solution of a game is “objectively” determined (or at 
least constrained) by the rules which have already been laid down and the solution concept that 
has been invoked.  Even when the issue of “learning” or “convergence to equilibrium” is raised, 

                                                 
1 Actually, the players’ absolute utility payoffs are not assumed to be commonly known—they 
are not uniquely determined by preferences anyway.  (Recall that von-Neumann Morgenstern 
utilities are unique only up to positive affine scaling.)  Rather, what noncooperative game theory 
assumes to be commonly known are the relative differences in utilities between every pair of 
strategies of every player.  We will return to this point later in our discussion of the prisoner’s 
dilemma game and yet again in our discussion of correlated and arbitrage-free equilibria. 
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it is usually in the context of a fixed game that is played over and over again without 
communication. 
 
Think for a moment about what it means for the rules of a game to be common knowledge, in 
light of our earlier discussion of subjective expected utility and more general theories of state-
dependent-utility and non-expected utility.   A rational decision maker’s preferences may or may 
not conform to all the axioms of SEU theory, and even if they do, it may difficult or impossible 
for an observer to uniquely determine the decision maker’s probabilities and utilities from a 
finite number of feasible measurements.    Nevertheless, game theory heroically starts with the 
assumption that each player is able to construct an SEU representation of her own decision 
problem and everyone else’s decision problem, and the SEU representation that A attributes to B 
agrees with the SEU representation that B constructs for herself.  The SEU representation 
specifies the states and consequences that are relevant for decision making, including such 
subtleties as the “constant” consequences that are needed to uniquely separate utilities from 
probabilities, and it also requires the contemplation of counterfactual acts (arbitrary mappings of 
states to consequences).  Furthermore, it is not enough for this to happen:  it must also be 
common knowledge that it has happened.  Although we are all familiar with situations under 
which facts may be considered to be common knowledge (namely, situations in which we all 
observe each other observing the same thing at the same time, or when we all know that we have 
read or watched the same recorded accounts of the same events), it is actually rather tricky to 
make this notion precise.  Aumann’s famous paper on “agreeing to disagree,” which we will 
discuss next week, addresses that problem. 
 
We are not yet done.  In games of incomplete information, where uncertainty exists about 
exogenous states of nature as well as endogenous moves of human players, it is usually assumed 
(following Harsanyi) that the players’ beliefs about states are consistent with a common prior 
distribution.  That is, each player is imagined to have several possible types (e.g., different 
possible utility functions and/or different states of information with respect to exogenous events), 
and each player’s probability distribution over the types of the other players, given her own type, 
is obtained by performing Bayesian updating on a common prior distribution over types.  A Nash 
equilibrium of an incomplete-information game with a common prior distribution is therefore 
called a Bayesian Nash equilibrium.  The common prior distribution, like the rest of the rules of 
the game, is simply “given.”   
 
We are still not done.  If the solution of the game is not trivial or obvious, it is necessary for the 
players to invoke the same solution concept—i.e., the same species of equilibrium—and for this, 
too, to be common knowledge.  And finally, if the solution concept does not yield a unique 
solution (as it often does not), it is necessary for the players to tacitly agree on additional 
constraints that should be imposed in order to coordinate on a particular equilibrium. 
 
Of course, no one seriously argues that the steps described above actually take place:  it is merely 
“as if” they take place.   Somehow it is as if the players know each other’s utilities, they share the 
same prior probabilities for exogenous states of nature, and they agree on the solution concept to 
be used and the particular equilibrium to be selected. 
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At bottom, game theory (like all of rational choice theory) merely assumes that the behavior of 
different players is in some ways consistent:  it would seem pointless and unfair to prescribe 
behavior that is self-contradictory.  The axioms of expected utility or subjective expected utility 
provide a standard of intra-agent consistency of behavior, and the common knowledge 
assumptions and solution concepts of game theory provide additional standards of inter-agent 
consistency.  Notice, however, that the assumptions of inter-agent consistency are rather 
different in kind from those of intra-agent consistency.  As we have seen, decision theorists take 
great pains to express the axioms of individual rationality in terms of “primal” behavior, namely 
preferences among acts.    From those axioms, it then follows as a theorem that there is a “dual” 
representation of rational behavior in terms of probability distributions and utility functions with 
respect to which an agent seemingly optimizes.   This can viewed as a kind of mind-body 
duality:  the body makes choices that reveal preferences, while the mind harbors probabilities 
and utilities.  But the “axioms” of game theory refer directly to the dual representation—the 
probabilities and utilities—rather than the primal behavior.    We have seen that even the 
concepts of preferences and acts are rather slippery and that the preference axioms are not 
always descriptively valid.  Our grip is even less firm when assumptions are imposed on 
unobservable mental constructs whose very reality and concreteness depend on the validity of 
the preference axioms!   
 
 
The prisoner’s no-brainer 
 
Discussions of game theory often begin with the prisoner’s dilemma game (and for critics of the 
theory they sometimes end there).   The prisoner’s dilemma is a 2×2 game with a payoff matrix 
such as the following: 
 

 Left Right 
Top 1, 1 11, 0 

Bottom 0, 11 10, 10 
 
At first glance, it appears that the players would want to choose Bottom-Right and get the 
socially efficient outcome of 10 units2 each.  On closer inspection, that solution is seen to be 
unstable:  if Row really thought that Column would play Right, then she would be better off by 
playing Top (thereby getting 11 instead of 10); and similarly if Column thought that Row would 
play Bottom, then she should play Left.   This game is technically a no-brainer:  it is dominance 
solvable.  Top is a dominant strategy for Row and Left is a dominant strategy for Column.   The 

                                                 
2 In the payoff matrix of a noncooperative game, the payoffs are theoretically supposed to be 
expressed in units of personal utility rather than money, so the scaling of each player’s payoffs is 
completely arbitrary.  Thus, if both players have possible payoffs of 0, 1, and 10, it does not 
mean the two players get the “same” payoff in any objective sense when the outcome of the 
game is  (1, 1) or (10, 10).  Rather, it just means their relative utilities are the same—i.e., the 
utility difference between 10 and 0 is ten times as large as the difference between 1 and 0 for 
both players.   For concreteness, though, payoffs are often loosely interpreted as amounts of 
money—as von Neumann intended when he axiomatized expected utility. 
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idea that one should choose a dominant strategy over a dominated strategy is a seemingly 
uncontroversial requirement of individual rationality, hence we should expect the outcome of the 
game to be Top-Left:  the players will settle for (1, 1) instead of (10, 10). 
 
The lesson that is usually drawn from the prisoner’s dilemma is that individually rational 
behavior is not always socially rational.   This observation has spawned a vast literature on the 
general subject of “social dilemmas.”  It is also a prelude to what we will find as we study the 
various solution concepts that are used to solve more complicated games.  It will often be the 
case that a more refined (i.e., “more highly rational”) solution concept forces the players to 
accept a worse outcome than a less refined concept.  Thus, more refined solution concepts do not 
necessarily yield better payoffs to the players:  sometimes it is better to be (at least a little bit) 
irrational. 
 
There is also a methodological issue here concerning the peculiar way in which noncooperative 
game theory frames an interactive decision problem:  it ignores some critical information about 
the players’ preferences.   Suppose that the two participants in the prisoner’s dilemma game 
initially know only their own payoffs but not the payoffs of the other player.   Imagine that they 
begin to reveal their private information to each other via the following conversation: 
 
 Dialog 1: 
 

ROW:  Regardless of whether you play Left or Right, I will be $1 better off if I play Top 
rather than Bottom. 
 
COLUMN:  Regardless of whether you play Top or Bottom, I will be $1 better off if I 
play Left rather than Right. 

 
Given only this information, there is no dilemma concerning how the game should be played.  
Everyone should expect Row to play Top and Column to play Left, which appears to yield the 
best-case outcome for both players.  But wait—there is more information that could be revealed!  
The players could continue the conversation like this: 
 

Dialog 2: 
 

ROW:  Regardless of whether I play Top or Bottom, I will be $10 better off if you play 
Right rather than Left. 
 
COLUMN:  Regardless of whether I play Left or Right, I will be $10 better off if you 
play Bottom rather than Top. 

 
If both these dialogs were to occur, there would be a real dilemma.   The players’ preferences for 
their own actions would be seen to be in conflict with their stronger preferences for their 
opponents’ actions, and their individually rational behavior would be revealed to be socially 
irrational.   But Dialog 2 is forbidden in noncooperative game theory—at least in the context of a 
single-play game.  The “language” of noncooperative game theory is incapable of expressing the 
idea that one player has preferences concerning the actions of her opponent, because it rules out 
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the possibility of binding multilateral contracts or any other reciprocal influence.   Notice that the 
statements in Dialog 2 refer to payments that one player might be willing to make in return for a 
reciprocal move by another player—i.e., they refer to multilateral commitments—whereas the 
statements in Dialog 1 do not.  (The statements in Dialog 1 are special cases of unilateral offers 
to accept gambles, as we will see when we get to the topic of arbitrage-free equilibria.)   The 
only “talk” that is permitted under noncooperative rules of play is “cheap talk,” which can never 
persuade players to choose dominated strategies or otherwise trade off their own petty interests 
against the larger interests of society.  The prisoners obviously could break out of the dilemma if 
they could sign a binding contract to play the socially optimal strategy, but that’s another 
department:  cooperative game theory. 
 
Technically, the meaning of “noncooperative” play is that the players only consider the 
consequences for themselves of variations in their own strategies, taking the strategies of their 
opponents as fixed.   Thus, solution concepts of noncooperative game theory use only a subset of 
the information contained in the players’ preferences:  they only look at the relative differences 
in utilities between pairs of strategies of a single player.  If you perturb the payoffs of the 
original game by adding to each player’s payoff function an arbitrary function of the other 
players’ strategy choices, you get a game that is “best-response equivalent” to the original game, 
because the added payoffs will cancel out when differences in utilities between two strategies of 
a given player are evaluated. 
 
To illustrate this idea, let the prisoner’s dilemma game be perturbed by adding 10 to Row’s 
payoffs if Column plays Left and subtracting 10 from Row’s payoffs if Column plays right, and 
similarly for Column’s payoffs.  Then you get a game with the following payoff matrix: 
 

 Left Right 
Top 11, 11 1, 10 

Bottom 10, 1 0, 0 
 
There is no dilemma here—it is a real no-brainer.  Top-Left is the only rational solution no 
matter how you look at it.  But this game is best-response equivalent to the prisoner’s dilemma!    
When you compute the differences in Row’s payoffs between her Top and Bottom strategies, 
you lose the information that she is $10 better off in the first game if Right is played, or $10 
better off in the second game if Left is played.   The lost information is precisely what was 
expressed in Dialog 2—precisely what we are required to ignore under noncooperative rules of 
engagement.   
 
By the way, the trick that was used here—namely adding to each player’s payoffs an arbitrary 
function of the others players’ strategy choices—can be used for dramatic effect to make 
particular solutions look especially good or especially bad in nearly any game, without changing 
the set of equilibrium solutions.  This is why “refinements” do not necessarily yield attractive 
solutions:  if a refinement selects one out of several equilibria in the original game, it is often 
possible to jigger the payoffs so that the equilibria are unchanged but the more refined 
equilibrium yields worse all-around payoffs than some less refined equilibrium.  Therefore, you 
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should beware of “anecdotal” evidence in which a few well-chosen examples are used to 
showcase a particular solution concept, for better or worse. 
 
A cynical view of the preceding result is that it exposes the relative poverty of noncooperative 
game theory as a language for studying human interaction:  the language is simply deaf to a lot 
of important preference information.   Indeed, the inability of noncooperative game theory to 
provide a satisfactory resolution of the one-shot prisoner’s dilemma is widely viewed as a failure 
of the theory by its detractors.  (On several occasions when I’ve told colleagues in other fields 
that I’m working on solution concepts for games, their knee-jerk reaction has been  “first tell me:  
how does your theory solve the prisoner’s dilemma?”)  In reply, it can be argued that social 
dilemmas are real problems that do arise when contracting is impossible, social norms fail, or 
communication otherwise breaks down.  It can also be argued that the language becomes 
enriched when repeated play is considered, giving the players time to learn about each other’s 
idiosyncracies and to punish each other for socially irresponsible behavior.  Over the years, 
thousands of papers have been written on the subject of the repeated prisoner’s dilemma.    But 
the theory of repeated games has its own dilemmas—such as the “folk theorem” which says that 
nearly any behavior can be supported in an equilibrium of an infinitely repeated game—and in 
any case, many important strategic decisions are faced just once.  
 
 
Dominance solvability and backward induction 
 
The prisoner’s dilemma illustrates the “coarsest” and least controversial solution concept for 
noncooperative games, namely dominance solvability in strictly dominant strategies.  The fact 
that the solution of that game is far from uncontroversial is a sign of the stormy weather ahead.  
Here are some brief comments on the other solution concepts that will be discussed later.  More 
detail is provided in the articles by Gibbons and Kreps—or any book on game theory. 
 
In looking for ways to solve a game, one usually begins by not only deleting strictly dominated 
strategies from consideration, but also by deleting any strategies which become strictly 
dominated after other strictly dominated strategies are eliminated.   This is called iterated or 
successive strict dominance.   Consider the following game: 
 

 Left Right 
Top 2, 2 1, 1 

Bottom 3, 1 0, 0 
 
Here, Row does not initially have a dominant strategy, but Column does:  Left strictly dominates 
Right for Column, and after Right is deleted, Bottom is (trivially) strictly dominant for Row, 
hence the solution is Bottom-Left.  Iterated strict dominance generally yields sensible results 
within the limits of noncooperative rules of engagement.  In fact, if the players do not comply 
with iterated strict dominance, they are vulnerable to arbitrage in the same sense that any 
individual choosing a dominated strategy would be.   (More about this later.) 
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Many theorists argue that weakly dominated strategies should also be eliminated.  Consider the 
following example: 
 

 Left Right 
Top 4, 4 4, 4 

Bottom 5, 1 0, 0 
 
Here Right is a weakly dominated strategy:  it is no better than Left in all cases, and it is strictly 
worse if Bottom is played.  After eliminating Right as an option for Column, we are left with 
Bottom as the obvious move for Row, hence the solution is Bottom-Left.  Are you convinced 
that this is the unique rational solution to the game?  I am not.  Notice that the weakly dominated 
strategy was eliminated on behalf of Column, who then gets the short end of the deal when Row 
plays Bottom.  You might expect Column to say—“hey, wait, I don’t care about weak 
dominance—I’m going to play Right and you had better play Top!”  The standard objection to 
this ploy is that Column’s “threat” to play Right would not be considered credible by Row, since 
it would be painful to carry out.  Column might huff and puff about her intention to play Right, 
but when it came time to move, she would hedge her risks by playing Left, taking Row’s move 
(whatever it might be) as “given” at that point.  Or would she?   If Column is able to convince 
Row of her resoluteness, then we might not be surprised to see Top-Right as the result.  In fact, 
Top is optimal for Row if she thinks there is even a 20% chance that Column will play Right.   
Of course, on the other hand, it is conceivable that Row would seize the advantage by declaring 
“I’m going to play Bottom in any case—and I dare you to carry out your threat,” which might 
lead to a result of Bottom-Left.  Both Top-Right and Bottom-Left are pure-strategy equilibria of 
this game.   Depending on the real or hypothetical conversation through which the players 
construct their reciprocal beliefs, you might expect to get one or the other.   . 
 
The preceding example illustrates the least controversial application of weak dominance, in 
which only a single round of elimination is used.  Some theorists go further and recommend the 
use of iterated weak dominance, but this leads to horrors.  The solution of the game may then 
depend on the order in which strategies are eliminated, and even more bizarrely, the solution can 
be affected by the addition of dominated strategies such as the option for one player to “burn 
money.”  A famous example of this was given by Eric von Damme:  in the battle of sexes game 
(introduced below), if one player is given the option to burn or not burn money in conjunction 
with her original move, she can force a unique solution of the game in which in she gets the 
superior payoff, if the solution method is iterated weak dominance. 
 
Iterated weak dominance is related to the solution concept of backward induction which is 
applicable to extensive-form games of perfect information.  Solving a game by backward 
induction is just like rolling back a decision tree:  starting at the end of the game tree, each player 
chooses the branch that leads to the better outcome for him or her, and they work their way back 
to the front.  In principle, the game of chess can be solved this way.    For example, the preceding 
example is actually the normal-form representation of the following extensive-form game: 
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When the game is presented in this form, the argument that BL should be played is generally 
considered even more compelling:  in the event that the node is reached in which the second 
player has a move to make, her best option is to play L rather than R.  Knowing this, the first 
player can safely choose B.  But if the entire structure of the game is common knowledge, then 
the second player must know that she can get a better deal for herself by somehow persuading 
the first player that she resolutely intends to play R.  We can spin various yarns about how this 
might be accomplished. 
 
Another way to frame the question of whether TR is a rational solution of the preceding game(s) 
is to take the viewpoint of an outside observer.   If he observes that the result of the game is the 
payoff pair (4, 4) rather than (5, 1), should he conclude that the players have acted irrationally?  
Would he be able to exploit them in the sense of being able to earn an arbitrage profit?  We will 
see later that he cannot:  no-ex-post-arbitrage does not necessarily require backward induction or 
iterated weak dominance to be used. 
 
To paraphrase Glenn Shafer (in his “Savage Revisited” article), the question raised by the 
preceding discussion is whether we should deny the players the freedom to exercise their 
imagination and their will in pursuit of feasible goals.  If it is possible for the players to construct 
mutually consistent beliefs leading to a particularly desirable outcome—say, the payoff pair 
(4, 4) in the last example—should they be prohibited from doing so?  The more refined solution 
concepts for games establish such prohibitions, not in the interests of the players but in the 
interest of the modeler who would like to obtain tighter predictions. 
 
To be fair, most theorists are careful not to push the solution concepts to extremes in particular 
cases.  For example, it is well known that backward induction can lead to absurdities when many 
too many rounds of it are applied, as illustrated by the famous “centipede game” introduced by 
Robert Rosenthal.  (See the discussion of it in Kreps’ chapter.)     So, most theorists admit that 
deviations from the theory are appropriate in some situations. 
 
 
Nash equilibrium 
 
Nash equilibrium is the most over-used and abused concept in game theory:  it is to game theory 
what R-squared is to statistics.  Many authors defend Nash equilibrium with the following 
argument:  “if there were an obvious way to play the game—i.e., a uniquely correct solution in 
pure strategies—then it would have to be a Nash equilibrium.”  But the same statement applies 
equally well to other solution concepts that are coarser than Nash equibrium, such as iterative 
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deletion of strictly dominated strategies, correlated equilibrium, and rationalizability.  The 
defining property of a Nash equilibrium is what it says about the case in which players use 
“mixed” (i.e., randomized) strategies rather than “pure” (i.e., deterministic) strategies:  a Nash 
equilibrium is a profile of pure or independently mixed strategies from which no player would 
have an incentive to deviate unilaterally.  Thus, if the players use mixed strategies (or if, for 
whatever reason, some players are uncertain about the strategies being played by others), the 
probability distributions are required to be independent between players in order for the solution 
to be a Nash equilibrium.  The classic example of a mixed strategy is “bluffing” in poker, i.e., 
sometimes betting as though you have a good hand when you don’t.   Other examples are 
abundant in competitive sports and warfare:  baseball pitchers randomly vary their pitch 
selection to keep batters off guard, football teams randomize their play-calling to confuse the 
defense, fighter planes make random movements to avoid getting shot down, and so on. 
 
Randomized (or otherwise uncertain) strategies certainly do arise in nature, and often for good 
reasons.  That is one of the elementary lessons of the study of games.  But… why assume that 
randomized strategies must always be probabilistically independent?   A cynical answer is that 
independence is assumed merely because Nash discovered a beautiful and powerful existence 
proof, based on the Kakutani fixed-point theorem, for the case in which mixed strategies are 
independent.   (Indeed, Nash is credited with ushering fixed-point methods into economics more 
generally.)  Modelers naturally gravitate toward the strongest equilibrium concept for which 
existence can be proved, and this existence result is so powerful that it applies under very general 
conditions (technically, to any game in which the players’ best-reply correspondences are 
“upper-hemicontinuous,” which includes all finite games and some infinite ones).   But a more 
conventional answer is that independence is assumed because it seemingly epitomizes the spirit 
of “noncooperative” play.  The players are imagined to be alone in their cubicles in the 
psychology lab, cut off from the world, at the instant they make their moves.   If they use 
randomization under such conditions, they must do it independently of everyone else.   This line 
of defense ignores the fact that a good deal of implicit or explicit communication between 
players must take place in order for them to arrive at a state of common knowledge concerning 
the game they are playing and concerning the solution concept they are mutually adopting (when 
there is not a unique, obvious solution).  It also ignores the fact that, under a subjective 
interpretation of probability, events are almost never probabilistically independent, even when 
they are physically independent, as de Finetti pointed out when he introduced the important 
concept of exchangeability. 
 
Last but not least, the standard defense ignores the fact that the “obvious” solution of the game, 
when one exists, may involve correlated mixed strategies:  even two-player games can have 
correlated strategies that are better for both players than any Nash strategy.  (A 2-player example 
is given in my 1990 paper with McCardle.  A 3-player example is given below.)   Against this 
last point, Nash equilibrium is sometimes defended by the argument that it is technically 
“without loss of generality” because an equilibrium in correlated strategies can always be 
implemented as a Nash equilibrium of a larger game that includes a communication or 
correlation device.  The players then “independently” decide to do whatever the device tells them 
to do.   This defense is technically correct, but it gets the horse and cart completely backward:  it 
can be argued (and will be argued by me) that correlated equilibrium is the more fundamental 
concept—because it rests directly on the same no-arbitrage standard of rationality and the same 
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separating-hyperplane argument that underpin most of the other key results in choice theory—
while Nash equilibrium is merely an interesting special case.  In any event, Nash equilibrium is 
hardly ever mentioned in connection with correlating devices:  it or one of its refinements is 
usually used to deliberately exclude the possibility of correlation so as to cut down on the size of 
the set of equilibria that would otherwise be possible, regardless of whether correlation would be 
beneficial. 
 
Some of the issues surrounding Nash equilibria are illustrated by the coordination game known 
as “battle of the sexes” (Luce and Raiffa 1957), which has the following payoff matrix: 
 

 Ballet Boxing 
Ballet 2, 1 −1, −1 

Boxing −1, −1 1, 2 
 
The story line behind this game goes something like this:  Alice (the row player) wants to go to 
the ballet tonight, while Bob (the column player) would prefer to attend the boxing match, but 
they both strongly prefer to go to somewhere together rather than separately.  The game has two 
pure Nash equilibria:  ballet-ballet and boxing-boxing.  It also has a “completely mixed” Nash 
equilibrium in which Alice goes to the ballet with probability 3/5 and Bob independently goes to 
the boxing match with probability 3/5, which makes it more than likely (a probability of 13/25) 
that they will split up for the evening.  What makes the latter state of affairs an equilibrium is 
that Bob thinks it is just likely enough that Alice will randomly choose the ballet that he doesn’t 
care what he chooses for himself, so he decides to randomize his own choice in just such a way 
as to make Alice not care about her choice either, and Alice does the same with respect to Bob.    
The completely mixed Nash equilibrium is a rather dismal solution, as is usually the case in 
games that have multiple equilibria.  Any completely mixed Nash solution remains an 
equilibrium of the game if the players try to minimize their expected utilities—i.e., to maximize 
their unhappiness.  Of course, the solution of the battle-of-sexes game that most persons 
naturally think of is for Alice and Bob to flip a coin in order to choose between ballet and 
boxing, but that would be a correlated equilibrium, not a Nash equilibrium.3 
 
Refinements of Nash equilibrium 
 
One of the cardinal virtues of Nash equilibria is that they always exist in finite games.  A 
shortcoming—at least from the perspective of a modeler who wants to make sharp predictions—
is that more than one of them may exist in any particular game.  In the worst case, the number of 
Nash equilibria can grow exponentially with the size of the game.  A great deal of effort has been 
expended on the search for refinements of the Nash concept which would eliminate some of the 

                                                 
3 A variant of the separate-cubicle story is sometimes used to argue that the mixed-strategy Nash 
equilibrium is the only rational solution of the game:  Alice and Bob have gone their separate 
ways during the day without having decided where to meet in the evening, so they are unable to 
implement either of the pure-strategy equilibria, let alone the correlated equilibrium.  But this 
begs the question:  was it rational for them to not make better plans in advance if they understood 
the rules of the game? 
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equilibria—ideally the more “implausible” ones.  This line of work was pioneered by Nobel 
laureate Reinhard Selten, who developed the concepts of subgame perfect and trembling-hand 
perfect Nash equilibria.    Subgame perfection is a refinement that applies to extensive form 
games—essentially it is a backward-induction application of the Nash equilibrium concept.    
Under subgame perfection, the solution in every proper subtree of the game must be a Nash 
equilibrium.    The concept of subgame perfection does not always “bite,” since not all games 
have proper subtrees.   The concept of trembling-hand perfect equilibrium is stronger than 
subgame perfect equilibrium—in fact, it is one of the strongest refinements—and it applies to 
normal and extensive-form games, with or without subtrees.   (The qualifier “trembling-hand” is 
usually used only in applications to extensive-form games, where it is applied to the agent 
normal form of the game, but I will use the term more broadly here.)   Trembling-hand 
perfection requires that each player’s strategies should be robust against mistakes that might be 
made, with very small probabilities, by other players:  each player is assumed to contemplate the 
possibility that her opponent’s hand will “tremble” at the instant he makes his move, leading to a 
mistake.  Trembling-hand perfection obviously eliminates weakly dominated strategies, since a 
weakly dominated strategy can only be justified by the hypothesis that one’s opponent will play 
some strategies with probability zero.  If every player has trembling hands, all strategies have 
positive probability.  The following 3-player game example was used by Selten (and also appears 
as Figure 12.12(a) in Kreps): 
 
 
 
 
 
 
 
 
 
 
Here, player 1 chooses T or B, player 2 chooses U or D, and player 3 chooses L or R.  The 
dashed ellipse indicates an “information set” of player 3:  she does not know which of the two 
nodes has been reached at the time she makes her move.  This game has two pure Nash 
equilibria:  TUR which yields (3, 3, 0) and BUL which yields (4, 4, 4).  The “implausible” 
equilibrium here is supposedly the one that yields (4, 4, 4), because U—which is played “off the 
equilibrium path”—is not robust against trembling hands in the context of BL.  If player 2 thinks 
there is any non-zero chance that player 1 will play T, then she would be better off to defect to D, 
in which case 3 should play R, in which case player 1 should play T, but then 2 would want to 
play U after all, leading to TUR.  Are you convinced?  A striking feature of this example is that 
the “plausible” equilibrium is strictly payoff-dominated by the implausible one.  Should the 
players be forbidden to pursue the dominant solution?  If the outcome of the game is the payoff 
triple (4, 4, 4), should we consider the players irrational?   If communication is possible, I can 
imagine a scenario in which player 2 sizes up the situation and declares (cheaply) “I am going to 
play U” and then walks off, leaving 1 and 3 to work out the implications.   Or, even if 
communication is impossible, the strategies that yield the outcome (4, 4, 4) might be considered 
“focal” by all the players.  They might also misjudge each other and make a mistake in trying 
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achieve that result, but if the story of trembling hands is taken seriously, an occasional mistake is 
inevitable, and perhaps it should not dominate their thinking. 
 
Of course, by the same trick we used in the prisoner’s dilemma game, we can jigger the payoffs 
of the preceding game to eliminate the social inefficiency without changing the set of equilibria.  
For example, if we change (3, 3, 0) to (3, 3, 10), which doesn’t affect player 3’s comparisons 
between L and R, the trembling-hand-perfect TUR equilibrium is moved out to the efficient 
frontier.  
 
Trembling-hand perfection has an intuitive quality of robustness, but it is rather ad hoc from a 
decision-theoretic perspective:  it does not fully specify what the players actually believe at the 
moment of choice.   The refinements that are most commonly used nowadays, sequential 
equilibrium and (what is almost the same thing) perfect Bayesian equilibrium, have a more 
Bayesian flavor.  A solution of the game consists not only of a set of prescribed actions for each 
player at each decision node but also a set of beliefs supporting that action at that node.  Beliefs 
are required to be updated by Bayes’ rule wherever possible, and conditional beliefs are specified 
even at nodes that are off the equilibrium path, which are expected to be reached with probability 
zero.  Details are given in the articles by Gibbons and Kreps. 
 
Alas, a difficulty with notions of “sequential” rationality, including subgame perfection and 
sequential equilibrium, is that they can yield different solutions for two fully equivalent forms of 
the same game.  For example, if one player has a three-branch decision node—say, 
Top/Middle/Bottom—the solution of the game can be changed by splitting it into two 
consecutive nodes, in which the first choice is between Top/Not-Top and the Not-Top branch 
then leads to a choice between Middle and Bottom, even though logically it is the same decision.   
Kohlberg and Mertens (1986) point out that no solution concept which prescribes a single 
strategy profile can possibly meet all the desiderata for refinements that have been proposed 
(including robustness against the node-splitting problem just mentioned), and they argue for a 
set-valued solution concept known as strategic stability.   (I, too, feel that a set-valued solution 
concept is appropriate, but rather on the grounds that the players should be granted as much 
flexibility in the construction of their reciprocal beliefs as is consistent with the rationality 
principle of no ex post arbitrage—more about this next class.) 
 
Kohlberg and Mertens also give an example of a game that illustrates yet-another mode of game-
theoretic reasoning:  forward induction.  The game can be drawn like this: 
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Here, player 1 chooses T, M, or B and player 2 chooses L or R without knowing player 1’s 
move.  There are two pure Nash equilibria, TR leading to (2, 2) and ML leading to (5, 1).   The 
first equilibrium is sequentially rational, because it is possible to specify beliefs of player 2 that 
justify her choice of R over L given that her information set is reached, namely, she should think 
there is at least a 25% chance that B has been played rather than M.  These beliefs could be 
justified, for example, on the hypothesis that any move by player 1 other than T must be a 
random mistake, and hence M and B are equally likely in the event of not-T.   Yet… why should 
player 1 ever choose B—it is strongly dominated by T!   We can argue that ML ought to be the 
solution on the following grounds:  if player 2 gets the opportunity to move, she should assume 
that player 1 has chosen M rather than B, angling for the payoff of 5 rather than 2.  In other 
words, player 2 should reason about the “signal” that player 1 has sent in the event that she plays 
something other than T.  This type of reasoning is called forward induction because it focuses on 
what has happened before rather than what is going to happen afterward. 
 
A final word on refinements is given by Kreps (in chapter 13 of his book): 
 

“So, what is the bottom line for refinements of Nash equilibrium?  The philosophy 
espoused here can be paraphrased as follows:  The bottom line is that there is no bottom 
line.  In refining Nash equilibrium, one is speculating about what is supposed to happen 
after there is evidence that the going theory is incorrect.  Depending on why you (and the 
players involved) think one sees deviations from a priori likely play and what this 
portends about future play, one supports or diminishes the relevance of particular formal 
refinements.  Since the appropriate story is apt to be specific to the context (and, 
especially, to depend on why one thinks there is a “solution” in the first place), it seems 
fruitless to try to choose among refinements in the abstract.” 

 
 
The real rules of the game 
 
The rules of a game in normal form are typically presented in the form of a payoff matrix, in 
which the values in the cells are the utility payoffs to the players, as in the following generic 2×2 
example: 
 

 Left Right 
Top a, a′ b, b′ 

Bottom c, c′ d, d′ 
 
The rules are assumed to be common knowledge.  Thus, it might seem as if both players in the 
game are supposed to know that the utility payoffs of player 1 are {a, b, c, d} while those of 
player 2 are {a′, b′, c′, d′ }.  But, not so fast!  As we saw in the analysis of the prisoner’s 
dilemma and non-dilemma games above, the preference information that is used in 
noncooperative analysis does not consist of absolute utility payoffs, but rather only the relative 
differences in utility between strategies of a given player, taking the strategies of the other 
players as fixed.   The latter information is summarized by the following matrix, which will 
henceforth be denoted by G: 
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 TL TR BL BR 
1TB a – c b – d   
1BT   c – a d – b 
2LR a′ – b′  c′ – d′  
2RL  b′ – a′  d′ – c′ 

   
The matrix G has one column for every pure-strategy outcome of the game and one row for 
every possible comparison between a “chosen” strategy and an “alternative” strategy of every 
player.   For this 2×2 game, the first row of G, which is labeled 1TB, represents the scenario in 
which player 1 chooses T over the alternative strategy B, and the values in the cells are the 
differences in utility payoffs between T and B, as a function of player 2’s choice (namely, L or 
R).  Notice that the utility differences are computed only for the outcomes in which the “chosen” 
strategy is played (in this case, T).  The blank cells are interpreted as zeroes.    Similarly, the 
second row, labeled 1BT, shows the differences in utility between strategies B and T, stored in 
the cells corresponding to outcomes where B is played.  Of course, these are just the negatives of 
values in the first row, shifted over into different columns, so there is a slight amount of 
redundancy in the data.  (The reason for this structure will become apparent later.)    
 
Claim:  The matrix G represents the “real” rules of the game for purposes of noncooperative 
analysis. 
 
For a general n-player game, the rules matrix G is constructed as follows 
 

• The rows of G are indexed by ijk, where i = player number,  j = a strategy of player i, and 
k = an alternative strategy of player i.  The number of rows is therefore 

)1||(||
1

−×∑ = i
n

i i SS , i.e., one row for each combination of a strategy and an alternative 
strategy for each player. 

 
• Columns of G are indexed by s = (s1, …, sn), i.e., pure-strategy outcomes of the game.  

The number of columns is therefore |S|, i.e., one column for every possible outcome.   
 

• The element of G in row ijk and column s is determined by  
 
  gijk (s)  = (ui(s) – ui(k, s-i))1jk, 

 
where 1jk is equal to 1 if j=k and equal to 0 otherwise. 

 
Thus, G consists of vectors of conditional utility differences between strategies of individual 
players, holding the strategies of other players fixed.  The ijkth row of G is the vector of utility 
differences between strategies j and k of player i, conditioned on the event that i chooses strategy 
j.  Its element gijk (s) is equal to zero if player i does not play strategy j in the joint strategy s, 
otherwise it is equal to the difference in utility between strategies j and k of player i when the 
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other players play s-i.   For a 3×3 game, G has 12 rows and 9 columns.   For a 4×4 game, G has 
24 rows and 16 columns.  For a 2×2×2 game, G has 6 rows and 8 columns, and so on. 
 
The deeper reasoning behind the designation of G as the “real” rules of the game will be 
presented in the following lecture.  In particular, it will be shown how G might come to be 
common knowledge and why it is central to the definition of strategically rational behavior.  For 
the time being, note that G contains the “dialog 1” information that is used to determine 
noncooperative equilibria and  refinements, minus the “dialog 2” information that determines 
social efficiency.   In particular, G contains precisely the data needed to apply the following 
noncooperative solution concepts: 
 

Nash equilibrium: 
An independent strategy profile σ* = σ1* × … ×σn*  is a Nash equilibrium if and only if 
Gσ* ≥ 0.  
 

Proof:  if si* is a strategy of player i that has positive probability in σi*, then 
Gσ* ≥ 0 implies ui(si*, σ-i*) – ui(si, σ-i*) ≥ 0 for any other strategy si, which is 
equivalent to the usual definition.  (Here ui(σi*) is shorthand for the expectation 
of ui(s) with respect to the joint distribution σ*, etc.) 

 
Correlated equilibrium: 
A probability distribution σ* on outcomes of the game (not necessarily independent 
between players) is a correlated equilibrium distribution if and only if Gσ* ≥ 0. 
 
Perfect equilibrium (Fudenberg & Tirole definition 8.5C, following Myerson): 
A strategy profile σε is an ε-perfect equilibrium if it is completely mixed (i.e., all 
strategies have strictly positive probability) and σi

ε(j) < ε for any strategy j of player i for 
which [Gσε]ijk < 0 for some k.  In other words, strategy j of player i must have probability 
less than ε if it is worse than some other strategy k.  A perfect equilibrium is any limit of 
ε-perfect equilibria σε for some sequence of positive ε’s converging to zero. 

 
How to find equilibria 
 
Given a game and a solution concept, it is natural to ask how one goes about finding an 
equilibrium solution—especially if we are to imagine that economic agents routinely do this on 
their own.  The simplest equilibria to compute are solutions of two-person zero-sum games.  
Indeed, the first major breakthrough in the theory of games was von Neumann’s proof of the 
“minimax theorem” in 1928.  The minimax theorem states that in a zero-sum game, problem of 
maximizing the minimum gain for one player has the same optimal solution as the problem of 
minimizing the maximum loss for the other player.  Let A denote the mμn payoff matrix of the 
game, expressed in terms of gains to player 1, where m is the number of strategies available to 
player 1 and n is the number of strategies available to player 2.   Thus, the element in the ith row 
and jth column of A, denoted Aij, is the gain to player 1 (and the loss to player 2) when 1 plays her 
ith strategy and 2 plays her jth strategy.   The players may either choose pure or mixed (i.e. 
probabilistic) strategies.  Let x denote an m-vector representing a possibly-mixed strategy of 
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player 1 (i.e., x is a vector of probabilities assigned to the pure strategies of player 1), and let y 
denote an n-vector representing a strategy of player 2.  Then the expected payoff to player 1 can 
be expressed by the matrix product x êA y.  Now suppose that player 1 wishes to choose x to 
maximize the minimum expected gain to herself over all strategies that player 2 might use.  
Thus, player 1 chooses x to solve: max min Ai

yx
 x y .  Meanwhile, suppose player 2 wishes to 

choose y so as to minimize the maximum expected gain that player 1 can possibly achieve 
(which is the same as maximizing her own minimum gain).  Thus, player 2 chooses y to solve 

 min max Ai
y x

 x y .  The minimax theorem states that the optimal objective value of these two 

problems is the same number—called the value of the game for player 1.  Indeed, these two 
problems are dual to each other in the sense of the duality theorem of linear programming—and 
conversely, the duality theorem of linear programming can be proved as a consequence of the 
minimax theorem.  Thus, it is easy to solve a zero-sum game:  just use linear programming to 
find the unique, minimax solution.  For example, consider the zero-sum game with the following 
payoff matrix: 
 

 Left Right 
Top 3 -1 

Bottom -4 2 
 
The number in each cell is the gain to the row player and the loss to the column player.  It may 
not be apparent at first glance who has the advantage in this game, but in fact the row player has 
the advantage:  the value of this game for row is 0.2.  Her maximin strategy which guarantees 
this expected gain is 60% top, 40% bottom, while the minimax strategy for column that prevents 
her expected loss from being more than this is 30% left, 70% right. 
 
Now consider a discrete two-player game that is not necessarily zero-sum, often called a 
“bimatrix” game.  Let A denote the matrix of payoffs to player 1 and let B denote the matrix of 
payoffs to player 2.  If it happens that B = −A, then the game is zero-sum, but henceforth we will 
assume this need not be the case.  Suppose, as before, that players use pure or mixed strategies 
represented by probability vectors x and y.  Then the expected payoff to player 1 is  x êA y and 
the expected payoff to player 2 is x êB y.  The minimax theorem is no longer applicable, because 
the interests of players 1 and 2 need not be diametrically opposed.  This is where Nash 
equilibrium rears its head as a seemingly natural generalization.  A strategy pair (x*, y*) is a 
Nash equilibrium if x* is a best response to y* and y* is a best response to x*, in the sense that 
x* solves  max Ai

x
 x y*  and y* solves max Bi

y
 x* y .  Now, it might seem as though the 

problem of finding a Nash equilibrium of a bimatrix game is not too much harder than the 
problem of finding a minimax solution of a zero-sum game.  Can’t you just use linear 
programming?  Not quite!  You can’t formulate a single linear program whose solution is 
guaranteed to be a Nash equilibrium, although it is possible to devise an algorithm that solves a 
sequence of linear programs that eventually terminates in a Nash equilibrium.  The first such 
algorithm for bimatrix games was developed by Lemke and Howson in 1964, more than a decade 
after Nash first proposed his equilibrium concept.  The Lemke-Howson algorithm is guaranteed 
to find a Nash equilibrium, but it is possible that there is more than one—indeed, in the worst 
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case, the number of possible Nash equilibria grows exponentially with the size of the game.  
Interestingly, the number of Nash equilibria in a bimatrix game is always odd.  Recently, an 
efficient algorithm for enumerating all Nash equilibria of a bimatrix game has been developed by 
Charles Audet:  it relies on a “branch and bound” approach similar to what is used to solve 
integer linear programs. 
 
Okay, so it is straightforward to find Nash equilibria of 2-player games, even if the algorithm is 
complicated and the equilibria are not always attractive.  What if the game has more than two 
players?  Now things begin to get really difficult.  Until recently there was no known algorithm 
for efficiently finding a Nash equilibrium of a matrix game with three or more players.   One 
algorithm that is not particularly efficient is to guess the strategies that have positive probability 
in a Nash equilibrium, then look at the reduced game consisting only of these strategies and 
solve a system of nonlinear (polynomial) equations to find the equilibrium probabilities.4  The 
equilibrium probabilities have the property that they render every player indifferent among all 
her own strategies that have positive probability.  If the system of nonlinear equations has a 
feasible solution, and if the “included” strategies yield expected payoffs greater than or equal to 
those of the “excluded” strategies for each player, you’ve found a Nash equilibrium.  Otherwise 
you have to go back and make a different guess as to the strategies that have positive probability.  
Another complication in games with three or more players is that the probabilities used in mixed-
strategy Nash equilibria may be irrational numbers, even if the payoffs are all integer-valued.  In 
his original paper, Nash gave an example of a 3-player “poker” game with a unique equilibrium 
in irrational mixed strategies.  How are poker players supposed to come up with such numbers? 
 
Nash’s poker game reduces to a 2×2×2 game following deletion of dominated strategies.   It is 
actually fairly easy to construct a 2×2×2 game with a unique Nash equilibrium in irrational 
mixed strategies.  For example, consider the following 3-player game in which player 1 chooses 
the row (top or bottom), player 2 chooses the column (left or right), and player 3 chooses the 
matrix (up or down).  The three numbers in each cell are, respectively, the utility payoffs to 
players 1, 2, and 3. 
 

Up: Left Right 
Top 3, 0, 2 0, 2, 0 

Bottom 0, 1, 0 1, 0, 0 
 

Down: Left Right 
Top 1, 0, 0 0, 1, 0 

Bottom 0, 3, 0 2, 0, 3 
 
The game has a unique Nash equilibrium in irrational, completely mixed strategies with the 
following marginal probabilities: 
                                                 
4 This approach is used by the PolEnum algorithm in GAMBIT:  it iterates through all possible 
“supports” of the set of Nash equilibria, and on each support it attempts to solve a set of 
polynomial equations to find a completely mixed strategy (http://gambit.sourceforge.net/) 
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σ2(L) = (–13 + √601)/24   ≈   0.47980 
σ1(T) = (9σ2(L) – 1)/(7σ2(L) + 2)   ≈   0.61923128 
σ3(U) = (–3σ2(L) + 2)/( σ2(L) +1)   ≈  0.37882534 

 
The expected payoffs for the Nash equilibrium are (0.843, 0.854, 0.594) 
 
The more “obvious” solution of this game (it seems to me) is that the players should somehow 
try to avoid the four outcomes in which one player receives 1 (her second-worst payoff) while 
the others receive zero (their worst payoff).   This requires coordination between row and matrix 
so that they play either TU or BD.  This reasoning leads to a correlated equilibrium in which 
column plays 2/3 L and 1/3 R while row and matrix play 3/5 TU and 2/5 BD, yielding expected 
payoffs of (1.467, 1.200, 1.200), strictly dominating the Nash equilibrium. 
 
The “real” rules matrix (G) for this game is as follows: 
 

 TLU TRU BLU BRU TLD TRD BLD BRD 
1TB 3 -1   1 -2   
1BT   -3 1   -1 2 
2LR -2  1  -1  3  
2RL  2  -1  1  -3 
3UD 2 0 0 -3     
3DU     -2 0 0 3 

 
 
A correlated equilibrium of the game can be found by solving a linear program in which the 
decision variables are elements of the joint distribution σ* and the constraints consist of the 
system of linear inequalities Gσ* ≥ 0.    An efficient correlated equilibrium can be found by 
maximizing any positive weighted sum of the players’ expected payoffs subject to those 
constraints, although this requires the introduction of “dialog 2” information not contained in G.  
By comparison, finding a Nash equilibrium requires searching for a profile of individual 
strategies {σ1*, …, σn*}, i.e., marginal distributions on the strategy sets of individual players,  
satisfying Gσ* ≥ 0 where σ* = σ1* × … × σn*.  However, this is not a convex optimization 
problem because the joint distribution σ* is a nonlinear function (in particular, a product) of the 
decision variables {σ1*, …, σn*}. 
 
Recently Audet, Belhaïza, and Hansen (Journal of Optimization Theory and Applications, 2006) 
have extended Audet’s branch-and-bound method for enumerating extreme Nash equilibria for 
bimatrix games to the case of “polymatrix” games, which are a special class of n-player games in 
which each player is engaged in a 2-player game against every opponent, and her total payoff is 
the sum of the payoffs in those games.   In other words, each player’s payoff function is 
additively separable in the strategies of the other players.   The set of Nash equilibria of 
polymatrix games has nice geometrical properties like those of bimatrix games:  it is a finite 
union of convex polytopes.  This is not true for general n-player games.  


